References (CarbonTracker-CH4)

  • Bergamaschi, P., C. Frankenberg, J.F. Meirink, M. Krol, M. G. Villani, S. Houweling, F. Dentener, E. J. Dlugokencky, J.B. Miller, L.V. Gatti, A. Engel, I. Levin (2009), Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, D22301, doi:10.1029/2009JD012287.
  • Bergmaschi, P., C. Frankenberg, J. F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J. O. Kaplan, S. Korner, M. Heimann, E. J. Dlugokencky, and A. Goede (2007), Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, doi:10.1029/2006JD007268.
  • Bergmaschi, P., M. Krol, F. Dentener, A. Vermuelen, F. Meinhardt, R. Graul, M. Ramonet, W. Peters, E. Dlugokencky (2005), Inverse modeling of national and European CH4 emissions using the atmospheric zoom model TM5, Atmos .Chem. Phys., 5, 2431-2460, www.atmos-chem-phys.org/acp/5/2431/.
  • Dlugokencky, E. J., L. Bruhwiler, J. White, L. Emmons, P. Novelli, S. Montzka, K. Masarie, P. Lang, A. Crotwell, J. Miller, L. Gatti (2009), Observational constraints on recent increases in the atmospheric CH4 burden, Geophys. Res. Lett., 36, L18803, doi:10.1029/2009GL039780.
  • Giglio, L., d.W. van, G.R., J.T. Randerson, G.J. Collatz, and P. Kasibhatla (2006), Global estimation of burned area using MODIS active fire observations, Atm. Chem. Phys., 6(4), 957-974
  • Houweling S., T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann (1999), Inverse modeling of methane sources and sinks using the adjoint of a global transport model, J. Geophys. Res., 104(D21), 26,137-26,160, doi:10.1029/1999JD900428.
  • Howarth, R.W., R. Santoro, A. Ingraffea (2011), Methane and the greenhouse gas footprint of natural gas from shale formations, Climatic Change, 106: 679 -690, DOI: 10.1007/s10584-011-0061-5.
  • Krol, M. and J. Lelieveld (2003), Can the variability in tropospheric OH be deduced from measurements of 1,1,1,-trichloroethane (methyl chloroform)?, , J. Geophys. Res., 108(D3), 4125-4136, doi:10.1029/2002JD9002423.
  • IPCC 2007:Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing, [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Krol, M.C. et al. (2005), The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atm. Chem. Phys., 5417-432.
  • Lambert and Schmidt (1993), Re-evaluation of the oceanic flux of methane: Uncertainties and long term variations, Chemosphere Global Change Sci., 26(1-4), 579-589.
  • Matthews, E., and I. Fung (1987), Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 61-86, 1987.
  • Montzka, S., M. Krol, E. Dlugokencky, B. Hall, P. Jockel, J. Lelieveld (2011), Small interannual variability of global atmospheric hydroxyl, Science Vol. 331, 67-69, doi: 10.1126/science.1197640.
  • Olivier, J. G. J., Berdowski, J. J. M. (2001). Global emissions sources and sinks. In The Climate SystemJ. Berdowski, R. Guicherit,B. J. Heij, Lisse, The Netherlands: A.A. Balkema Publishers/Swets and Zeitlinger Publishers, pp. 33-78
  • Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans (2005), An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations, J. Geophys. Res., 110(D24304), doi:10.1029/2005JD006157.
  • Peters, W., A. Jacobson, C. Sweeney, A. Andrews, T. Conway, K. Masarie, J. Miller, L. Bruhwiler, G. Petron, A. Hirsch, D. Worthy. G. van der Werf, J. Randerson, P. Wennberg, M. Krol and P. Tans (2007), An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, PNAS, November 27, 2007 , vol. 104, no. 48, 18925-18930.
  • Rhee, T.S., A.J. Kettle, M.O. Andreae (2009), Methane and nitrous oxide emissions from the ocean: A re-assessment using basin-wide observations in the Atlantic, J. Geophys. Res., 114, D12304, doi:10.1029/2008JD011662.
  • Ridgwell, A.J., S.J. Marshall, K. Gregson (1999), Consumption of atmospheric methane by soils: A process-based model, Global Biogeochem. Cycles, 13(1), 59-70, doi:10.1029/1998GL036037.
  • Sanderson, M.G., (1996), Biomass of termites and their emissions of methane and carbon dioxide: A global database, Global Biogeochem. Cycles, 10, 543-557, doi:10.1029/96BG01893.
  • Schaefer, Kevin, Tingjun Zhang, Lori Bruhwiler, Andrew P. Barrett (2010) Strength and timing of the permafrost carbon feedback, Tellus B, 63B, 165-180,doi:10.1111/j.1600-0889.2011.00527.x, 2011.
  • Shakhova, N., I. Smelitov, A. Salyuk, V. Yusupov, D. Kosmach, O. Gustafsson, (2010), Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf, Science, 327, 1246-1250, doi: 10.1126/science118221.
  • van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano (2006), Interannual variability in global biomass burning emissions from 1997 to 2004, Atmospheric Chemistry and Physics 6: 3423-3441.
  • Whitaker, J.S., and T.M. Hamill (2002), Ensemble Data Assimilation without Perturbed Observations, Mon. Weather. Rev., 7(130 http://dx.doi.org/10.1175/1520-0493(2002), 1913-1924.