Seminar

The Validation of Climate Models: The Development of Essential Practice

DSRC entrance

Richard Rood, University of Michigan, Ann Arbor

Wednesday, February 29, 2012, 3:30 pm Mountain Time
DSRC 2A305

Abstract

It is possible from both a scientific and philosophical perspective to state that climate models cannot be validated. However, with the realization that the scientific investigation of climate change is as much a subject of politics as of science, maintaining this formal notion of "validation" has significant consequences. For example, it relegates the bulk of the work of many climate scientists to an exercise of model evaluation that can be construed as ill-posed. Even within the science community this motivates criticism of climate modeling as an exercise of weak scientific practice. Stepping outside of the science community, statements that validation is impossible are used in political arguments to discredit the scientific investigation of climate, to maintain doubt about projections of climate change, and hence, to prohibit the development of public policy to regulate the emissions of greenhouse gases.

With the acceptance of the impossibility of validation, scientists often state that the credibility of models can be established through an evaluation process. A robust evaluation process leads to the quantitative description of the modeling system against a standard set of measures. If this process is standardized as institutional practice, then this provides a measure of model performance from one modeling release to the next. It is argued, here, that such a robust and standardized evaluation of climate models can be structured and quantified as "validation."

Arguments about the nuanced meaning of validation and evaluation are a subject about which the climate modeling community needs to develop a standard. It does injustice to a body of science-based knowledge to maintain that validation is "impossible." Rather than following such a premise, which immediately devalues the knowledge base, it is more useful to develop a systematic, standardized approach to robust, appropriate validation. This stands to represent the complexity of the Earth's climate and its investigation. This serves not only the scientific method, but the communication of the results of that scientific investigation to other scientists and to those with a stake in those scientific results. It sets a standard, which is essential practice for simulation science with societal ramifications.

ALL Seminar attendees agree not to cite, quote, copy, or distribute material presented without the explicit written consent of the seminar presenter. Any opinions expressed in this seminar are those of the speaker alone and do not necessarily reflect the opinions of NOAA or CSL.