What will our computing needs at ESRL be in the coming decade(s)?
All roads lead to cloud-resolving/eddy-resolving coupled GCMs...

Solutions for atmospheric convection do not statistically converge until $h < O(1000 \text{ m})$
• High resolution global models
 – Below 5 km, scales and physics change
• Global non-hydrostatic numerical weather model
 – 2 km resolution requires ~200 TF sustained
 – 1 km requires 1.6 PF sustained
• Major research problem just getting started

<table>
<thead>
<tr>
<th>Resolution (km)</th>
<th>TFLOPS sustained to achieve 60 days/day</th>
<th>TFLOPS sustained to achieve 5 years/day</th>
<th>Global WRF Data volume TB/sim year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1609</td>
<td>48260</td>
<td>1892</td>
</tr>
<tr>
<td>2</td>
<td>212</td>
<td>6350</td>
<td>466</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>1975</td>
<td>206</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>875</td>
<td>116</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>467.5</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>4.3</td>
<td>129</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>2.4</td>
<td>71</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Src: Petascale Collaboratory for the Geosciences, 2005

and it’s not just a single run of the model...
• ensembles
• data assimilation