Climate, Weather and Water Science

James Wilczak

Summary and Way Forward
Summary

Heat, moisture flux

SST spatial & temporal var.

Atmospheric Rivers

AR’s and climate

Heat, moisture flux

SST spatial & temporal var.
Science Questions

- What oceanic and atmospheric processes are climate models not getting right?
 (Alexander – P2)

- Can we better predict seasonal climate?
 (Kiladis – P3)

- What controls the intensity of hurricanes?
 (Bao – P6, Voronovich – P7)

- What mechanisms produce extreme weather events? How are they affected by climate drivers such as ENSO?
 (Neiman – P8, Williams – P9)

- What mechanisms are producing the shrinking of the arctic ice sheets?
 (Persson – P10, Spackman – P5)
Products from Research

- COARE air-sea flux algorithm
- Snow level detection
- Boundary layer depth detection
- Reforecasts
- Experimental seasonal forecast
- MJO monitoring and prediction
- Coral bleaching
- Arctic cloud parameters
Products from Research

- COARE air-sea flux algorithm
- Snow level detection
- Boundary layer depth detection
- Reforecasts
- Experimental seasonal forecast
- MJO monitoring and prediction
- Coral bleaching
- Arctic cloud parameters
Products from Research

- COARE air-sea flux algorithm
- **Snow level detection**
- Boundary layer depth detection
- Reforecasts
- Experimental seasonal forecast
- MJO monitoring and prediction
- Coral bleaching
- Arctic cloud parameters
Products from Research

- COARE air-sea flux algorithm
- Snow level detection
- Boundary layer depth detection
- Reforecasts
- Experimental seasonal forecast
- MJO monitoring and prediction
- Coral bleaching
- Arctic cloud parameters
Products from Research

- COARE air-sea flux algorithm
- Snow level detection
- Boundary layer depth detection
- **Reforecasts**
- Experimental seasonal forecast
- MJO monitoring and prediction
- Coral bleaching
- Arctic cloud parameters
Products from Research

- COARE air-sea flux algorithm
- Snow level detection
- Boundary layer depth detection
- Reforecasts
- **Experimental seasonal forecast**
- MJO monitoring and prediction
- Coral bleaching
- Arctic cloud parameters
- **MJO monitoring and prediction**
- Coral bleaching
- Arctic cloud parameters
Products from Research

- Coral bleaching
- Arctic cloud parameters
Products from Research

- AR observatory web-based tool
- COARE air-sea flux algorithm
- Snow level detection
- Boundary layer depth detection
- Reforecasts
- Experimental seasonal forecast
- MJO monitoring
- Coral bleaching
- Arctic cloud parameters
Products from Research

These examples of PSD products connect:

- Atmosphere and ocean
- Weather and climate
- Global and local
Future Directions

- Extreme Precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between Climate and Ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes/Sea Spray
- MJO
- Decadal Predictions
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- **Regional Climate – modeling and downscaling**
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes/Sea Spray
- MJO
- Decadal predictions
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes
- MJO
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- **Polar Processes**
- Hurricanes/High Wind Speed Fluxes
- MJO
- Decadal predictions
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes/Sea Spray
- MJO
- Decadal predictions
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes/Sea Spray
- MJO
- Decadal predictions
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes/Sea Spray
- MJO
- Decadal predictions
- Advanced Observing Systems (BL Wind profiler, P-3)
- Renewable Energy

First EOF and associated time series of 10-year low-pass annual mean sea surface temperature from observations and two 20th Century simulations for years 1890-1999. (A,B) HadISST (C,D) NCAR/PCM1 (E,F) GFDL/CM2.1 (G,H). From Solomon et al. (2010).
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes/Sea Spray
- MJO
- Decadal predictions
- Advanced Observing Systems (P-3, BL Wind profiler)
- Renewable Energy

- Scanning Radar Altimeter
- Doppler Sea Spray Radar
- Breaking-Wave Imaging System
- GPS Bistatic Scatterometer
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes
- MJO
- Decadal predictions
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Renewable Energy

Information and knowledge about weather-driven renewable resources (wind, solar, waves, currents) will be critical for the US energy system.

“The Smart Grid cannot be smart without accurate weather forecasts built into it.”
- Dr. Henry Kelly, DOE Principal Assistant Secretary

“Private RE forecasting companies are dependent on the observations and large-scale weather forecasts provided by NOAA, and both of these are insufficient. Until NOAA is able to improve its' observational and forecasting services, private forecasters will not be able to meet the needs of utilities and electric grid operators."
- Jim Blatchford, Senior Policy Rep., Cal ISO
Renewable Energy

Information and knowledge about weather-driven renewable resources (wind, solar, waves, currents) will be critical for the US energy system.

DOE and NOAA Collaboration

Climate
- wind, solar, hydro co-variability
- dependence on climate drivers (e.g. ENSO)
- seasonal resource forecasts
- climate change impacts on resources
- impacts on local climate

Weather
- Observations required to improve forecasts
- HRRR forecasts w/data assimilation
- Improved PBL physics parameterizations
Future Directions

- Extreme precipitation (and drought) processes in a changing climate
- Regional Climate – modeling and downscaling
- Connection between climate and ecosystems
- Polar Processes
- Hurricanes/High Wind Speed Fluxes
- MJO
- Decadal predictions
- Advanced Observing Systems (BL Wind profiler, P-3, Ship)
- Renewable Energy
Thanks