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Motive
Surface energy fluxes are key for understanding observed changes in Arctic 
sea ice and permafrost

Objective
Determine key 
atmospheric 
processes in CAS system 
controlling Arctic surface 
energy fluxes

Methodology
- Obtain observations of relevant cloud, boundary-layer, and surface 
characteristics and fluxes over Arctic sea-ice and at long-term terrestrial sites

- Reveal processes and understand interactions through observation analysis 
and process-model diagnostics

Surface Energy Budget (SEB) - links elements of CAS system
Atmospheric surface energy flux, Fatm

Fatm = Qsi (1- ) + Qli - Qlo - Hs - Hl = SWnet + LWnet – (Hs + Hl) = Radnet – Hturb

 = Qs0/Qsi – albedo; Qsi, Qso, Qli,and Qlo - in/out going SW/LW rad. Fluxes, 
Hs, Hl - turbulent sensible/ latent heat fluxes

Surface Processes (impacts on Qso, Qlo, Hs, Hl)

Introduction Cloud Processes (impacts on Qsi, Qli, Hs, Hl) Boundary-Layer Processes (Qsi, Qso, Qli, Qlo, Hs, Hl)
Arctic stratocumulus clouds generated by cloud-top 
cooling or surface-driven updrafts
- modulated by surface, cloud, 

synoptic processes
- microphysical variations may be 

related to generation
- generation variations on multi-hour 

time scales

● Continuous energy flux measurements with occasional 
intensive process-study observational periods

– currently only possible at terrestrial sites
● Surface energy fluxes impacted by large variety and scale of

CAS processes
● Important that key processes 

appropriately represented in 
models to elicit proper physical 
response to forcing changes

Conclusions 

Selected References

Enhanced roughness and drag (CD) over summertime sea ice by 
meltpond and lead edges increases CH and CE, and thus Hs and Hl
Hs =  cp CH U (Ts – Ta); Ts, Ta – surface, air temperature, U – wind speed
Hl =  Lv CE U (Qs – Qa); Qs,Qa – surface, air specific humidity

turbulent dissipation rate
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Cloud phase in Sc determine surface radiative effects
- liquid water at cloud top: high longwave emissivity & shortwave reflectivity
- major impact on Qsi and Qli
- supercooled liquid maintained through microphysical interactions

Boundary-layer structure dependent on large-scale, 
cloud, and surface processes

Boundary-layer dynamic events control mesoclimate of 
many terrestrial sites

Potential temperature (K) – 60 GHz radiometer

Sodar backscatter (color) 
Potential temperature (60 GHz radiometer)

Ka-band radar reflectivity (color) 
Potential temperature (60 GHz radiometer) -cold-air advection aloft destabilizes 

lowest 700 m

-low-level clouds advect over 
observation site within cold air

-destabilization at cloud top due to 
radiative cooling enhances mixing 
depth from surface to near cloud top

- due to clouds, Qsi decreases and Qli
increases, though Qli increase limited 
because T200 m decreases by 8 K; Hs
cools surface

- as result of CAS interactions, Fatm
and Ts increase only slightly

Include time series of key SEB terms

ASCOS Field Program, North Pole, Aug-Sep 2008
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Cloud phase sensitive to microphysical parameterization
- WRF model using M-PACE cloud case at Barrow
- N0 – size distribution y-intercept value
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Double Moment Microphysics
prognostic q, N (mixing ratio, 
num. conc.) N0=ƒ(q,N)

Single Moment Microphysics
prognostic q (mixing ratio)
N0 – fixed intercept parameter
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Sea ice Sea ice

96CAS System

SHEBA 1998, 15/7 - 9/8
Noon  over sea ice hourly  over sea ice & melt pond

Noon  averaging sea ice, leads, melt ponds

-15.3 -9.9

SHEBA, April 23, 1998
smooth snow-covered ice, Ci = 1.0

SHEBA, July 27, 1998
many melt pond edges, Ci = 0.75

Albedo Changes – seasonal or synoptic events; precipitation; phase change
- soil, ice, snow, meltponds

SWnet = (1-1)Qsi – Qsi2
x = x2 – x1

CF = Radnet (all sky) – Radnet (clear); cloud forcing

Shupe et al 2004

Cloud radiative effects produce 
responses in other SEB terms

- downslope wind events important for annual SEB at Alert
- midwinter  wind events impact soil temperature
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Mid-Winter Atmosphere-
Soil Interaction
1) Descent of atmospheric 
inversion with high-wind 
speed mountain waves can 
be traced to the snow 
surface, through the snow to 
the soil, and through the soil 
into the permafrost at 1.2 m 
depth. 

2) Damping, smoothing, and 
phase lag of thermal wave 
occurs in snow and soil.
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