Current Near surface Humidity and Air Temperature Algorithms

February 2013

The current near-surface (10 m)specific humidity retrieval using AMSU-A and SSM/I or SSMIS observations is

 $Qa = 1190.54 + 0.0200904 \times (Tb_{52.8})^2$

+ 0.238133 x Tb_19v - 9.76803 x Tb_52.8 - 0.310587 x Tb_37v + 0.105427 x Tb_22v

The stability correction for observations north of 30°N

ΔQa = 5.64426 – 0.284124 x (SST-Tb_52.8) +0.435181 x Qa

So the corrected Qa for retrievals north of 30°N is

 $Qa_corrected = Qa + \Delta Qa$

The current near-surface (10m) air temperature retrieval using AMSU-A, SSM/I or SSMIS observations is

Ta = -244.853 + 0.459832 x Tb_52.8

- + 0.0637408 x Tb_22v
- 0.428275 x Tb_37v
- + 0.385274 x Tb_19v
- + 0.573154 x Tb_53.6

The stability correction for observations north of 30°N

ΔTa = 19.0637 – 0.699539 x (SST-Tb_52.8) + 0.259892 x Ta

So the stability-corrected Ta for retrievals north of 30°N is

Ta_corr =Ta+ ∆Ta

A second Ta correction based Ts-Ta differences between coincident ship and satellite observations is

TsTa_adjust = 0.473544 + 0.322480 x (Ts - Ta_corr)

+ 0.0238934 x (Ts – Ta_corr)²

+ 0.000614320 x (Ts-Ta_corr)³

The resulting Ta data using this final correction is

Ta_final = Ts – TsTa_adjust

Description of parameters:

Tb_52.8 = AMSU-A 52.8 GHz brightness temperature (K)

Tb_53.6 = AMSU-A 53.8 GHz brightness temperature (K)

Tb_19v = SSM/I or SSMIS 19V GHz brightness temperature (K)

Tb_22v = SSM/I or SSMIS 22V GHz brightness temperature (K)

Tb_37v = SSM/I or SSMIS 37V GHz brightness temperature (K)

Ts = Sea surface temperature (Celsius)

Ta (and all its two corrections) = 10m air temperature (Celsius)

Qa (and its correction) = 10m specific humidity (g/kg)