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Abstract4

Inflation of ensemble perturbations is employed in ensemble Kalman filters to account for un-5

represented error sources. We propose a multiplicative inflation algorithm that inflates the posterior6

ensemble in proportion to the amount that observations reduce the ensemble spread, resulting in7

more inflation in regions of dense observations. This is justified since the posterior ensemble8

variance is more affected by sampling errors in these regions. The algorithm is similar to the9

’relaxation-to-prior’ algorithm proposed by Zhang et al, but it relaxes the posterior ensemble spread10

back to the prior instead of the posterior ensemble perturbations.11

The new inflation algorithm is compared to the method of Zhang et al, and simple constant12

covariance inflation using a two-level primitive equation model in an environment that includes13

model error. The new method performs somewhat better, although the method of Zhang et al14

produces more balanced analyses whose ensemble spread grows faster. Combining the new multi-15

plicative inflation algorithm with additive inflation is found to be superior to either of the methods16

used separately.17

Tests with large and small ensembles, with and without model error, suggest that multiplicative18

inflation is better suited to account for un-represented observation network dependent assimilation19

errors such as sampling error, while model errors, which do not depend on the observing network,20

are better treated by additive inflation. A combination of additive and multiplicative inflation21

can provide a baseline for evaluating more sophisticated stochastic treatments of un-represented22

background errors. This is demonstrated by comparing the performance of a stochastic kinetic23

energy backscatter scheme with additive inflation as a parameterization of model error.24
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1. Introduction25

The ensemble Kalman filter (EnKF), an approximation to the Kalman filter (Kalman and Bucy26

1961), estimates the background-error covariance from an ensemble of short-term model forecasts.27

The use of EnKF data assimilation systems to initialize ensemble weather predictions is growing28

(e.g. Houtekamer et al. 2005, 2009; Meng and Zhang 2007; Whitaker et al. 2008; Buehner et al.29

2010; Hamill et al. 2011), because of the simplicity of the algorithm and its ability to provide flow-30

dependent estimates of background and analysis error. In order for the EnKF to perform optimally,31

the background (prior) ensemble should sample all sources of error in the forecast environment, in-32

cluding sampling error due to limitations in ensemble size and errors in the model itself. Inevitably,33

some sources of error will be under-sampled, resulting in an EnKF that when cycled has a subop-34

timal estimate of the background-error covariance with systematically underestimated variances.35

Such an EnKF may not give enough weight to observations, which in a chaotic system will cause36

the subsequent ensemble forecasts to drift farther from the truth. At the next assimilation time,37

ensemble-estimated covariance model will be even more deficient, causing the update to give even38

less weight to observations. This problem can progressively worsen, potentially resulting in a con-39

dition called “filter divergence”, in which the ensemble variance becomes vanishingly small and40

observation information is completely ignored. Because of this, all EnKF systems used in weather41

prediction employ methods to account of un-represented or underestimated error sources in the42

prior ensemble. These include multiplicative inflation (Anderson and Anderson 1999), which in-43

flates either the prior or posterior ensemble by artificially increasing the amplitude of deviations44

from the ensemble-mean, and additive inflation, which involves adding perturbations with zero45

mean drawn from a specified distribution to each ensemble member (Mitchell and Houtekamer46

2000). Covariance localization (Hamill et al. 2001) is typically used to ameliorate the effects of47

sampling error by tapering the covariances to zero with distance from the observation location.48

Whitaker et al. (2008) compared simple uniform multiplicative inflation with additive inflation in49
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a simple model, and found that additive inflation performed better, since the simple uniform mul-50

tiplicative inflation generated too much spread in regions less constrained by observations. Meng51

and Zhang (2007) found that using different physical parameterization schemes within the forecast52

ensemble can significantly improve EnKF performance. Houtekamer et al. (2009) compared addi-53

tive inflation with various methods for treating model error within the forecast model itself, such as54

multi-model ensembles, stochastic-backscatter (Shutts 2005; Berner et al. 2009) and stochastically55

perturbed physics tendencies (Buizza and Palmer 1999). They found that additive inflation, sam-56

pling from a simple isotropic covariance model, had the largest positive impact. However, Hamill57

and Whitaker (2010) found that parameterizing un-represented error sources with additive infla-58

tion will decrease the flow-dependence of background-error covariance estimates and reduce the59

growth rate of ensemble perturbations, with potentially negative consequences on analysis quality.60

In this study, we re-examine the use of inflation (additive and multiplicative) as methods for61

accounting for under-represented sources of background-error in ensemble data assimilation. The62

goal is to elucidate the strengths and weakness of each method in isolation, and justify the use63

of both simultaneously. Experiments are conducted using an idealized 2-level primitive equation64

model on a sphere, including model error. We hypothesize that multiplicative inflation algorithms65

should inflate more where observations are dense to account for the fact that sampling errors (and66

other sources of under-represented observation network dependent data assimilation errors) are67

likely to be a larger fraction of the total background error in those regions. To this end, we propose68

a very simple algorithm that inflates the posterior ensemble proportional to the amount that ensem-69

ble variance is reduced by the assimilation of observations, and we compare this new algorithm to70

existing ones. We also hypothesize that additive inflation will outperform multiplicative inflation71

alone when un-represented model errors dominate un-represented observation-network dependent72

system errors (which in this simplified environment consists solely of sampling error due to lim-73

itations in ensemble size). The opposite should be true when sampling error dominates model74

error. When neither model error or sampling error dominates, a combination of multiplicative in-75
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flation and additive inflation should perform better than either alone. To put it simply, we aim to76

demonstrate that when using inflation, observation network dependent assimilation errors are best77

handled by multiplicative schemes, while model errors (which do not depend on the observing net-78

work) are best treated by additive schemes. The following section describes the algorithms used79

and experiments performed, while the results and conclusions are summarized in the final section.80

2. Idealized experiments81

a. Forecast model82

The forecast model used in these experiments is virtually identical to the two-level primitive83

equation spectral model of Lee and Held (1993). This model was also used in the data assimilation84

experiments of Whitaker and Hamill (2002) and Hamill and Whitaker (2010). Here, unless oth-85

erwise noted, data assimilation experiments are run with a spectral resolution of T31 (triangular86

truncation at total wavenumber 31), with the two levels set to 250 and 750 hPa. Observations are87

sampled from a nature run using the same model, but at T42 resolution. The prognostic variables88

of the forecast model are baroclinic and barotropic vorticity, baroclinic divergence, and barotropic89

potential temperature. Barotropic divergence is identically zero, and baroclinic potential temper-90

ature (static stability) is kept constant at 10 K. Lower-level winds are mechanically damped with91

an e-folding timescale of 4 days, and barotropic potential temperature is relaxed back to a radia-92

tive equilibrium state with a pole-to-equator temperature difference of 80 K with a timescale of93

20 days. The radiative equilibrium profile of Lee and Held (1993) (equation 3) was used. ∇8
94

diffusion was applied to all the prognostic variables, the smallest resolvable scale is damped with95

an e-folding timescale of 3 hours (6 hours for the nature run). Time integration is performed with96

a 4th–order Runge-Kutta scheme with 18 time steps per day at T31 resolution, and 30 per day at97

T42 resolution. The error doubling time of the T31 model is approximately 2.4 days. The climate98
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of the model (computed as a zonal and time mean over 1000 days of integration) is shown in Fig.99

1 for the T31 forecast model and the T42 nature run. The time-mean systematic error of the T31100

model is quite small outside the tropics and polar regions.101

b. Data assimilation methodology102

The serial ensemble square-root filter algorithm of Whitaker and Hamill (2002) is used in con-103

junction with a 20-member ensemble, unless otherwise noted. Details are provided in Hamill and104

Whitaker (2010). Covariance localization (Hamill et al. 2001) is used to ameliorate the effects of105

sampling error, using the compact Gaussian-like polynomial function of Gaspari and Cohn (1999).106

Unless otherwise noted, the covariance localization was set so that increments taper to zero 3500107

km away from observation locations. This is close to the optimal value for all of the experiments108

with 20 member ensembles. Observations of geopotential height at 250 and 750 hPa are assim-109

ilated at Northern Hemisphere radiosonde locations (Fig. 2) every 12 hours with an observation110

error standard deviation of 10 meters. The observing network is made hemispherically symmetric111

by reflecting the Northern Hemisphere radiosonde locations into the Southern Hemisphere, result-112

ing in a network with 1022 observing locations.113

c. Comparison of multiplicative inflation methods.114

Sacher and Bartello (2008) showed that sampling error in the estimate of the Kalman gain115

should be proportional to the amplitude of the Kalman gain itself, so that more inflation is needed116

when observations are making large corrections to the background. Therefore, it seems desirable117

to have a multiplicative inflation scheme that inflates the ensemble variance more in regions where118

observations have a larger impact.119

Zhang et al. (2004) proposed an alternative to simple constant covariance inflation that relaxes120

posterior (analysis) perturbations back toward the prior (first guess) perturbations independently at121
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each analysis point via122

x
′a
i ← (1−α)x

′a
i +αx

′b
i , (1)123

where x′ai is the deviation from the posterior ensemble-mean for the ith ensemble member, and124

x′bi is the deviation from the prior ensemble-mean for the ith ensemble member. We refer to this125

method as “relaxation-to-prior perturbations” (RTPP). Unlike constant covariance inflation, this126

technique has the desired property of increasing the posterior ensemble variance in proportion to127

the amount that the assimilation of observations has reduced the prior variance. In the limit that128

tunable parameter α approaches 1.0, the posterior ensemble is completely replaced by the prior129

ensemble. For values of α between 0 and 1, part of the posterior ensemble is replaced by the130

prior ensemble. This approach amounts to a combination of multiplicative inflation (in which the131

inflation factor is less than 1) and additive inflation where the perturbations are taken from the prior132

ensemble.133

Here we propose a new approach, which we call “relaxation-to-prior spread” (RTPS), that is a134

purely multiplicative inflation. Instead of relaxing the posterior perturbations back to their prior135

values at each grid point as in RTPP, we relax the ensemble standard deviation back to the prior136

via137

σ
a← (1−α)σa +ασ

b, (2)138

where σb≡
√

1
n−1 ∑

n
i=1 x′b2

i and σa≡
√

1
n−1 ∑

n
i=1 x′a2

i are the prior and posterior ensemble standard139

deviation (spread) at each analysis grid point, and n is the ensemble size. This formula can be140

rewritten as141

x
′a
i ← x

′a
i

(
α

σb−σa

σa +1
)
. (3)142

For a given value of α , the multiplicative inflation in RTPS is proportional to the amount the en-143

semble spread is reduced by the assimilation of observations, normalized by the posterior ensemble144

spread. We have chosen to represent the inflation parameter in the RTPP and RTPS schemes with145
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the same symbol α , since in both cases it represents a relaxation to the prior (standard deviation in146

the case of RPTS, ensemble perturbation in the case of RTPP). However, because RTPS inflation is147

purely multiplicative and RTPP inflation is partly multiplicative and partly additive, the sensitivity148

of the data assimilation to both the absolute value of α and perturbations to that value may be149

different.150

Anderson (2009) proposed a Bayesian algorithm for estimating a spatially and temporally vary-151

ing field of covariance inflation as part of the state update. When run as part of an EnKF assim-152

ilation system using a global general circulation model with all “conventional” (i.e. non satellite153

radiance) observations, the Bayesian algorithm produces a spatial field of inflation that looks very154

similar to that implied by RTPS inflation (equation 3), with large values of inflation in regions of155

dense and/or accurate observations, like North America and Europe (Fig. 13 in Anderson et al.156

(2009)).157

The role of covariance localization is to ameliorate the effects of sampling error, yet we have158

hypothesized that spatially varying covariance inflation is also necessary to deal with the observation-159

network dependent effects of sampling error. Why do we need both? Covariance localization, as it160

is typically formulated, tapers increments with distance from the observation localization, allow-161

ing the full increment to be applied at the observation location and no increment past a specified162

cutoff distance from the observation. Allowing the full increment to be applied at the observation163

location (i.e. having the localization function peak at unity) implicitly assumes sampling errors164

in the estimation of background-error covariances between model and observation priors that are165

co-located in space are zero. In the simple case where observation operator is the identity matrix166

(model state variables are observed), this implies that covariance localization only deals with sam-167

pling errors in the estimation of background-error covariances, not variances. Covariance inflation168

is therefore needed to account for sampling error in the estimation of background-error variances,169

which will invariably be underestimated by small ensembles when the data assimilation system is170

cycled. In the case of RTPP inflation, it can be demonstrated that this is equivalent to applying171
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a covariance localization function that peaks at a value of 1−α at the observation location when172

updating ensemble perturbations (see Appendix A for details).173

Experiments were conducted with three different methods of multiplicative inflation (simple174

covariance inflation, RTPP and RTPS) to account for background errors not accounted for by the175

first-guess ensemble, which in this case includes both sampling error and model error, since the176

ensemble size is small relative to the dimension of the forecast model, and the forecast model is177

run at lower resolution than the model used to generate the observations. ensemble-mean error and178

spread are calculated using the total energy norm179

180

E(
−→
V1,
−→
V2,θ3/2) =

1
2
(u2

1 + v2
1)+

1
2
(u2

2 + v2
2)+
4π̄

4θ̄
θ

2
3/2, (4)181

where 4θ̄ is the constant static stability (10 K), 4π̄ is the difference in Exner function between182

the lower level (750 hPa) and the upper level (250 hPa),
−→
V1 = (u1,v1) is the lower level hori-183

zontal velocity vector, and
−→
V2 = (u2,v2) is the upper level velocity, and θ3/2 is the barotropic, or184

mid-level potential temperature. ensemble-mean error is computed by replacing the velocity and185

potential temperature in equation 4 by the difference between the ensemble-mean and the truth186

(as defined by the T42 nature run). The ensemble spread is computed by replacing the velocity187

and potential temperature in equation 4 by the difference between each ensemble member and the188

ensemble-mean, then summing over each ensemble member and dividing by the number of en-189

semble members minus one. Global and time means of the resulting quantities are computed, and190

a square root is then applied so that the result has units of meters per second.191

Fig. 3 shows global mean ensemble-mean background error, spread and inflation statistics col-192

lected over 2000 assimilation times for the three experiments after a spinup period of 50 days. The193

RTPS inflation method produces slightly more accurate analyses and short-term forecasts than ei-194

ther RTPP and constant covariance inflation. RTPP outperforms constant covariance inflation but195

produces very large errors when the inflation parameter exceeds the optimal value. For reference,196
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we also show in Fig. 3 the ensemble-mean error and spread for an experiment using the adaptive197

inflation algorithm of Anderson (2009) (the horizontal cyan curves). The adaptive inflation algo-198

rithm requires very little tuning (there is some sensitivity to the value of the prior inflation variance199

chosen), and produces analysis of similar quality to the best-tuned RTPS results. Maps of time200

mean ensemble-mean background error, spread and inflation factor for RTPP and RTPS are shown201

in Fig. 4. The parameter settings were chosen to maximize the consistency between globally aver-202

aged error and spread, which approximately corresponds to the point at which the dashed and solid203

lines cross in Fig. 3. The time mean inflation factor was estimated by computing the ratio of the204

time mean spread after and before the application of RTPP and RTPS inflation (equations 1 and 2).205

The pattern of ensemble mean error is similar in both experiments, with a large error maxima at the206

downstream end of the observational data voids. The largest relative difference in error between207

RTPP and RTPS is in the tropics. The pattern of ensemble spread in the RTPP experiment is more208

zonally homogeneous than in the RTPS experiment, and does not match the pattern of ensemble209

mean error as closely. We hypothesize that this is due to the fact that the ensemble perturbations210

in the RTPP ensemble are controlled more by the growing instabilities of the dynamical system,211

and less by inhomogeneities in the observing network. The reason for this is described in the fol-212

low paragraphs. The effective inflation is nearly twice as large in the RTPP experiment over the213

data rich regions in mid-latitudes. This is because the background ensemble spread is larger in the214

RTPP experiment in those regions, so that the reduction in ensemble spread by the analysis (which215

is roughly proportional to the ratio of background error variance to observation error variance) is216

also larger. Since the inflation algorithms relax back to the amplitude of the prior ensemble stan-217

dard deviation (for RTPS) or ensemble perturbations (for RTPP), the amplitude of the inflation will218

be approximately proportional to the background ensemble spread where there are observations.219

RTPP inflation has at least one desirable property; it produces ensemble perturbations that grow220

faster than the other inflation methods. This is illustrated in Fig. 5, which shows that ratio of back-221

ground spread to analysis spread for the experiments depicted in Fig. 3. Near the minimum in222
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ensemble-mean error, the RTPP ensemble spread grows about 19% during over the assimilation223

interval (12 hours), compared to 7.6% for RTPS inflation and 6.5% for simple covariance infla-224

tion. The reason for this can be understood by noting that RTPP inflation involves adding scaled225

prior perturbations to the posterior ensemble. When the inflation parameter α is 1, the posterior226

ensemble is completely replaced by the prior ensemble. In that case, the structure and amplitude of227

the ensemble perturbations is not modified during the assimilation and the perturbations are sim-228

ply re-centered around the updated ensemble-mean. The assimilation cycle then becomes similar229

to the process used to compute the leading Lyapunov vector (Legras and Vautard 1995), which230

reflect the dominant instabilities of a dynamical system. This also explains why the performance231

of RTPP inflation degrades rapidly when the inflation parameter is increased above the optimal232

value - the ensemble perturbations become increasingly co-linear as they collapse to the leading233

Lyapunov vector, reducing the effective number of degrees of freedom spanned by the ensemble.234

However, Fig. 5 shows that the spread growth does not increase for RTPP inflation monotonically235

as the inflation parameter is increased. This is because the amplitude of the ensemble perturbations236

becomes large enough that nonlinear effects begin to cause saturation.237

To further explore the impact of the multiplicative inflation method on the growth properties of238

the analysis ensemble, we have calculated the analysis-error covariance singular vector (AECSV)239

spectrum following the methodology of Hamill et al. (2003). The AECSVs are the structures that240

explain the greatest forecast variance and whose initial size is consistent with the flow-dependent241

analysis-error covariance statistics of the data assimilation system. Figure 6 confirms that the242

RTPP ensemble AECSV spectrum is steeper, with more of the variance concentrated in fewer,243

faster growing modes (as indicated by the dashed lines on the figure). The AECSVs for the RTPS244

ensemble grow more slowly, and about half of them are decaying modes (as indicated by the red245

solid line dropping below the horizontal black line on Figure 6). This results in less spread growth246

over the assimilation interval, but an ensemble that can effectively span a larger portion of the247

space of possible analysis errors. The fact that the RTPP ensemble is dominated more by growing248
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instabilities of the dynamical system is consistent with the pattern of ensemble spread shown in249

Fig. 4. The pattern of time mean RTPP ensemble spread is more zonally symmetric than RTPS250

spread, and is more reflective of the energy source for baroclinic growth (the mid-latitude jet and251

associated baroclinic zone) and less reflective of the inhomogeneities of the observing network.252

RTPP spread is also much smaller than RTPS spread in the tropics, where the energy source for253

dynamical growth is much weaker.254

Although we have not explored the impact that RTPP and RPTS inflation have on the degree255

of balance between the temperature and wind fields in the analysis ensemble, we do expect that256

the analyses produced using RTPP inflation will be more balanced. This is because RTPS inflation257

is a spatially varying multiplicative inflation which inevitably will alter the balance between the258

temperature and wind fields that is present in the analysis ensemble. In contrast, RTPP inflation259

merely re-scales the analysis perturbations by a spatially uniform value 1−α , and adds back-260

ground perturbations scaled by α. Neither of these operations should affect the existing covariance261

between temperature and wind in the ensemble. Therefore, if preserving the balances present in262

the ensemble is of primary concern, RTPP inflation may be preferred over RTPS inflation, even263

though RTPS inflation produces smaller analysis errors.264

d. Combined additive and multiplicative inflation.265

In Hamill and Whitaker (2005), it was found that additive inflation performed better than con-266

stant covariance inflation in an idealized 2-layer primitive equation model, including truncation267

model error. Similarly, Whitaker et al. (2008) found that additive inflation outperformed con-268

stant covariance inflation and RTPP inflation in a full global numerical weather prediction system.269

Given that RTPS inflation generally performs better than RTPP and constant covariance inflation,270

how does it perform compared to additive inflation? Here we use random samples from a climato-271

logical distribution of actual 12-h forecast model error for our additive inflation. The distribution272
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is computed using the same method as Hamill and Whitaker (2005), that is by truncating the T42273

nature run to T31, running 12-h forecasts at T31 and computing the difference between these fore-274

casts and the corresponding T31 truncated nature run fields. The only source of error in these275

forecasts is due to the lower resolution of the forecast model. At each analysis time, 20 samples276

are chosen randomly from this distribution, the mean is removed, and the resulting fields are scaled277

and added to each ensemble member. Figure 7 shows the ensemble background error for experi-278

ments using a combination of this additive inflation and RTPS multiplicative inflation. The additive279

inflation parameter is simply the scaling factor applied to the randomly chosen truncation model280

error fields. The values of ensemble-mean error when the additive inflation parameter is zero are281

identical to those shown in Fig. 3 (the solid red line). From this plot, it is easy to see that additive282

inflation without multiplicative inflation produces lower errors than multiplicative inflation alone,283

in agreement with the results of Hamill and Whitaker (2005) and Whitaker et al. (2008). However,284

a combination of additive and multiplicative inflation produces lower errors than either method285

used alone. The minimum error (8.6 ms−1) occurs with a multiplicative inflation parameter of 0.5286

and an additive inflation parameter of 1.4. Conditioning the additive perturbations to the dynamics287

by adding them to the previous ensemble-mean analysis (instead of the current analysis) and evolv-288

ing them forward in time one assimilation interval (as suggested by Hamill and Whitaker (2010))289

reduces the minimum error slightly, by approximately 2-3% (not shown). Using random samples290

of 12-h differences drawn from a T31 model run works nearly as well as using actual truncation291

model error fields for the additive inflation, yielding a minimum error of (8.8 ms−1) when the292

additive inflation parameter is 0.24 and the multiplicative inflation parameter is 0.5 (Fig. 8).293

The fact that a combination of additive and multiplicative inflation works better than either294

alone suggests that they are simulating different un-represented background-error sources. RTPS295

multiplicative inflation is by design dependent on the observation network, while the additive infla-296

tion we have used is independent of the assimilation system. Therefore, we hypothesize that RTPS297

multiplicative inflation is useful in capturing the especially deleterious effects of sampling errors298
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in regions where observations are dense, while additive inflation is useful in capturing sources of299

background error that are assimilation-system independent, such as errors in the forecast model.300

To test this idea we ran two experiments, one in which the model error was eliminated by301

using the T42 model in the assimilation, and another in which the sampling error was reduced302

by increasing the ensemble size from 20 to 200. In the former experiment, we expect that the303

impact of additive inflation would be reduced relative to multiplicative inflation, since the only304

source of un-represented error (sampling error) comes from the data assimilation system itself.305

In the latter experiment, sampling error is greatly reduced, so that the dominant un-represented306

source of error should be model error and the impact of multiplicative inflation should be reduced307

relative to additive inflation. These expectations are confirmed in Figs. 9 and 10. Figure 9 shows308

that in the absence of model error, multiplicative inflation alone outperforms any combination309

of multiplicative and additive inflation. Figure 10 shows that when model error is the dominant310

source of un-represented background errors, additive inflation alone outperforms any combination311

of multiplicative and additive inflation.312

e. Replacing additive inflation with stochastic backscatter.313

The additive inflation algorithm used here is somewhat ad-hoc, and it would be preferable to314

incorporate a physically based parameterization of model error directly into the forecast model.315

Such a parameterization would account for the presence of model error directly in the background316

ensemble forecast. The only source of error in our two-level model experiments is associated317

with model truncation. More specifically, model error in our experiments is a result of the effects318

of unresolved and unrealistically damped scales on the resolved scales through an inverse energy319

cascade. This is exactly the sort of model error that stochastic kinetic energy backscatter (SKEB)320

schemes (Shutts 2005; Berner et al. 2009) were designed to represent. The algorithm described by321

Berner et al. (2009) involves generating a random streamfunction pattern from an AR-1 process322
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with a specified timescale and covariance structure. These random patterns are then modulated by323

the model’s kinetic energy dissipation rate (resulting from the ∇8 hyperdiffusion). The resulting324

tendencies are added as a forcing term in the vorticity equation. Figure 11 shows the the total325

kinetic energy spectra for the T42 model, the T31 model without SKEB, and the T31 model with326

SKEB. The kinetic energy in the T31 model without SKEB is deficient relative to the T42 model327

at all scales, but especially so near the truncation wavenumber where the hyperdiffusion is active.328

Adding SKEB to the T31 model brings the energy up much closer to the level of the T42 model.329

The random streamfunction pattern used to generate the SKEB forcing was assumed to be spatially330

white in the streamfunction norm, with a decay timescale of 6 hours. The amplitude of the random331

streamfunction pattern was set to 15, a value chosen to give the best fit to the T42 model kinetic332

energy spectrum shown in Fig. 11.333

Figure 12 show the results for a set of assimilation experiments using a combination of SKEB334

to represent model error, and multiplicative inflation to represent other sources of un-represented335

background errors (in this case, primarily sampling errors). Not surprisingly, a combination of336

SKEB and multiplicative inflation turns out to be better than either alone. However, comparing337

Fig. 12 to Fig. 8, SKEB does not seem to perform significantly better than simple, ad-hoc additive338

inflation. Also, in contrast to the additive inflation case, SKEB alone does not perform better339

than additive inflation alone. Of course, there are several tunable parameters in the SKEB scheme340

(including the total variance injected, the time-scale of the random streamfunction pattern, and341

the covariance structure of the random streamfunction pattern) and it is likely that better results342

could be obtained by more carefully tuning these parameters. However, our results do suggest that343

it is surprisingly hard to beat a combination of simple additive and multiplicative inflation as a344

parameterization of un-represented sources of error in an ensemble data assimilation system. We345

do not mean to suggest that ad-hoc inflation is inherently better, merely that it provides a useful346

baseline for measuring progress in the development of more physically based methods, such as347

SKEB.348
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3. Conclusions349

In order for an EnKF to perform optimally, the background (prior) ensemble should sample all350

sources of error in the forecast environment, including those associated with the data assimilation351

itself (such as sampling error due to finite ensemble size, mis-specification of observation errors352

and errors in forward operators) as well as errors in the forecast model itself. We have proposed353

a new multiplicative inflation algorithm to deal with the effects of these un-represented sources of354

error that is simple to implement in complicated models. Using idealized experiments with a two-355

level spherical primitive equation model, where the only source of model error is associated with356

model truncation, and the only source of data assimilation error is associated with finite ensemble357

size, we show that this new inflation scheme performs as well or better than other commonly358

used schemes. It has the desirable property of inflating more strongly where the assimilation of359

observations has a larger effect on the ensemble variance. It is in these regions where sampling360

error is expected to be a larger fraction of the total background error.361

Combining this new multiplicative inflation algorithm with additive inflation, it is found that a362

combination of the two performs better than either alone, even when the additive perturbations are363

drawn from an ad-hoc distribution that does not directly use knowledge of the known properties364

of the model error in this simplified environment. This leads us to hypothesize that multiplicative365

inflation is best suited to account for un-represented observation network dependent assimilation366

errors (in this case sampling error), while model errors (which do not depend on the observing net-367

work) are best treated by additive inflation, or stochastically within the forecast model itself. Since368

the additive inflation algorithm is somewhat ad-hoc, it is expected that a more physically based369

parameterization of model error, such as stochastic kinetic energy backscatter, will perform better.370

Tests replacing additive inflation with SKEB in the data assimilation show that it is surprisingly371

hard to improve upon additive inflation. This suggest that a combination of simple ad-hoc addi-372

tive inflation with the new multiplication inflation algorithm proposed here can provide a rigorous373
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baseline for testing new more sophisticated representations of un-represented sources of error in374

ensemble data assimilation systems.375

More generally, these results suggest that it is desirable to treat different sources of un-represented376

background error in ensemble data assimilation systems separately, using as much a-priori knowl-377

edge regarding the characteristics of these errors as possible. In the case of inflation, using the378

fact that we expect part of the missing error to be observation network dependent and part of it to379

be independent of the observing network leads us to an improved scheme that has both additive380

and multiplicative aspects. Applying this philosophy to the model error, we might expect that er-381

rors associated with convection, boundary layer physics and unresolved dynamics might best be382

treated separately, as long we have a prior knowledge about the characteristics of these separate383

sources of error to guide us. Similarly, for un-represented sources of error associated with the data384

assimilation system itself, such as mis-specification of observation errors and errors in forward385

operators, there may be methods that work better than the RTPS multiplicative inflation used here.386

More research is certainly needed to understand what the most important un-represented sources387

of error are in operational ensemble data assimilation systems, and how to characterize those errors388

individually.389

Appendix: Similarities between covariance localization and RTPP390

inflation.391

In the serial ensemble square-root filter (Whitaker and Hamill 2002) the ensemble-perturbation392

update is given by393

x
′a = x

′b− K̃Hx
′b, (5)394

where395

K = PbHT (HPbHT+R)−1 (6)396
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is the Kalman gain, PbHT=x′b(Hx′b)T ≡ 1
n−1 ∑

n
i=1 x′bi (Hx

′b
i )

T , HPbHT=Hx′b(Hx′b)T ≡ 1
n−1 ∑

n
i=1 Hx

′b
i (Hx

′b
i )

T ,397

n is the ensemble size and K̃ is the gain used to update deviations from the ensemble-mean. Note398

that an over-bar used in a covariance estimate implies a factor of n−1 instead of n in the denom-399

inator, so that the estimate is unbiased. If R is diagonal, observations may be assimilated serially,400

one at a time, so that the analysis after assimilation of the Nth observation becomes the background401

estimate for assimilating the (N +1)th observation (Gelb et al. 1974). With this simplification, K̃402

may be written as403

404

K̃=

(
1+
√

R
HPbHT +R

)−1

K, (7)405

for an individual observation, where R and HPbHT are scalars, while K and K̃ are vectors of the406

same dimension as the model state vector. Covariance localization is applied by tapering K to zero407

with distance from the observation, so that Eq. 5 can be written as408

x
′a = x

′b−
(

1+
√

R
HPbHT +R

)−1

Γ�KHx
′b, (8)409

where Γ is a vector containing the localization function on the model grid for an individual ob-410

servation. Γ is unity at the observation location, and zero beyond a specified distance from the411

observation. In the special case where only a single observation is assimilated, RTPP inflation is412

equivalent to multiplying the second term on the right-hand side of Eq. 8 by 1−α , so that when413

α = 1, the analysis perturbation is identical to the background perturbation, and when α = 0, no414

inflation is applied. If the factor 1−α is incorporated into the localization function Γ, it becomes415

apparent that RTPP inflation is equivalent to applying covariance localization with a localization416

function that peaks at 1−α at the observation localization in the ensemble perturbation update417

(but not in the ensemble-mean update). When more than one observation is assimilated, applying418

RTPP inflation after the analysis step is not formally identical to localizing with a function that419

peaks at 1−α during the serial assimilation update. However, numerical experimentation shows420
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that results shown in Fig. 3 are essentially unchanged if RTPP is applied in this way. We note that421

RTPS inflation is not equivalent to a modified localization in the perturbation update.422
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(RTPS) inflation (red), and simple constant covariance inflation (black). The solid492
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x-axis, while the values of the constant covariance inflation parameter are given on495

the upper x-axis. All experiments used covariance localization that tapers covari-496

ances to zero 3000 km away from observations locations, and were run for 1000497

assimilation steps, after an initial spinup period of 50 days. The definition of the498
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square-root of total energy norm in ms−1) for experiments using relaxation-to-prior perturbation502

(RTPP) inflation (panels B, D and F) and relaxation-to-prior standard deviation (RTPS) inflation503

(panels A, C and E). The values of the inflation parameter used in the experiments were 0.755 for504

RTPP and 0.95 for RTPS - these were chosen to yield values of global mean spread that are nearly505

equal to the global mean error. The global mean values of spread, error and inflation are given in506

the title. The black dots indicate the observation locations, and continental outlines are shown for507

reference, even though the model has no orography or land-sea contrast. 27508

5 As in Fig. 3, but instead of ensemble-mean background error and spread, the ratio509

of background spread to analysis spread (the spread growth factor) is plotted as a510
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6 The mean analysis-error covariance singular vector (AECSV) spectrum for RTPP512

analysis ensembles with α = 0.755 (blue) and RTPS analysis ensembles with α =513
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dashed lines represent the mean background forecast variance explained (right y-515

axis) as a function as AECSV singular value number. 29516
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9 As in Fig. 8, but for a “perfect model” experiment in which the T42 model is used525

in the data assimilation. 32526
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200. 33528

11 Total kinetic energy spectra as a function of total wavenumber for the T31 model529
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12 Contours of ensemble-mean background error using a combination of multiplica-533
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inflation parameter varies along the x-axis, while the amplitude of the SKEB forc-535

ing varies along the y-axis. The solid red line in Fig. 3 is a cross-section along536
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FIG. 1. Zonal and time mean zonal wind (left) and potential temperature (right) for the two-level
model run at T31 and T42 resolution.
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Observation Locations

FIG. 2. Observation locations (black dots) superimposed upon a snapshot of barotropic potential
temperature (shaded contours every 5 K) and upper-level winds (vectors) from the T42 nature
run used in the two-level model data assimilation experiments. Continental outlines are shown
for reference, even though the model has no orography or land-sea contrast. Data is plotted on a
azimuthal equidistant map projection centered on the North Pole.
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FIG. 3. ensemble-mean background error and spread (in terms of the square-root of total energy
norm in ms−1) for two-level model assimilation experiments using relaxation-to-prior perturbation
(RTPP) inflation (blue), relaxation-to-prior standard deviation (RTPS) inflation (red), and simple
constant covariance inflation (black). The solid lines denote ensemble-mean error and the dashed
lines denote ensemble spread. The values of the inflation parameter for RTPP and RTPS are given
on the lower x-axis, while the values of the constant covariance inflation parameter are given on
the upper x-axis. All experiments used covariance localization that tapers covariances to zero 3000
km away from observations locations, and were run for 1000 assimilation steps, after an initial
spinup period of 50 days. The definition of the total energy norm is given in the text.
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FIG. 8. As in Fig. 7, but additive inflation is created by drawing samples from the climatological
distribution of T31 model 12-h differences.
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FIG. 9. As in Fig. 8, but for a “perfect model” experiment in which the T42 model is used in the
data assimilation.
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FIG. 10. As in Fig. 8, but the ensemble size in the data assimilation is increased from 20 to 200.
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FIG. 11. Total kinetic energy spectra as a function of total wavenumber for the T31 model (blue)
the T42 model (green) and the T31 model with stochastic kinetic energy backscatter (red). See
text for details. For reference, a line representing a -3 power-law spectrum characteristic of 2D
turbulence is shown in black.
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FIG. 12. Contours of ensemble-mean background error using a combination of multiplicative
inflation and stochastic kinetic energy backscatter (SKEB). The multiplicative inflation parameter
varies along the x-axis, while the amplitude of the SKEB forcing varies along the y-axis. The solid
red line in Fig. 3 is a cross-section along y=0 in this plot. See text for details. Filter divergence
occurs where no contours are plotted.
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