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ABSTRACT

A hybrid analysis scheme is compared with an ensemble square root filter (EnSRF) analysis scheme in the

presence of model errors as a follow-up to a previous perfect-model comparison. In the hybrid scheme, the

ensemble perturbations are updated by the ensemble transform Kalman filter (ETKF) and the ensemble

mean is updated with a hybrid ensemble and static background-error covariance. The experiments were

conducted with a two-layer primitive equation model. The true state was a T127 simulation. Data assimilation

experiments were conducted at T31 resolution (3168 complex spectral coefficients), assimilating imperfect

observations drawn from the T127 nature run. By design, the magnitude of the truncation error was large,

which provided a test on the ability of both schemes to deal with model error. Additive noise was used to

parameterize model errors in the background ensemble for both schemes. In the first set of experiments,

additive noise was drawn from a large inventory of historical forecast errors; in the second set of experiments,

additive noise was drawn from a large inventory of differences between forecasts and analyses. The static

covariance was computed correspondingly from the two inventories. The hybrid analysis was statistically

significantly more accurate than the EnSRF analysis. The improvement of the hybrid over the EnSRF was

smaller when differences of forecasts and analyses were used to form the random noise and the static co-

variance. The EnSRF analysis was more sensitive to the size of the ensemble than the hybrid. A series of tests

was conducted to understand why the EnSRF performed worse than the hybrid. It was shown that the inferior

performance of the EnSRF was likely due to the sampling error in the estimation of the model-error co-

variance in the mean update and the less-balanced EnSRF initial conditions resulting from the extra locali-

zations used in the EnSRF.

1. Introduction

The ensemble Kalman filter (EnKF)–based data as-

similation (DA) method has been explored extensively

since it was described and tested by Evensen (1994) in

the oceanographic application and by Houtekamer and

Mitchell (1998) in the atmospheric application. Relative

to the three-dimensional variational data assimilation

method (3DVAR) that utilizes stationary background-

error covariances (e.g., Parrish and Derber 1992; Courtier

et al. 1998; Gauthier et al. 1998; Cohn et al. 1998), the

presumed benefit of the EnKF method is its ability to

provide flow-dependent estimates of the background-

error covariances through ensemble covariances so that

the observations and the background are more appro-

priately weighted during the assimilation. Encouraging

results have been reported in both observing system

simulation experiments (OSSEs) and experiments with

real numerical weather prediction (NWP) models and

observations; in the numerical predictions from global

to convective scales; and for applications on the state
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estimates of the atmosphere, ocean, and land surface

(Evensen 1994; Houtekamer and Mitchell 1998, 2001;

Anderson 2001; Szunyogh et al. 2005, 2008; Torn et al.

2006; Houtekamer et al. 2005, 2009; Whitaker et al. 2004,

2008; Miyoshi et al. 2007; Snyder and Zhang 2003;

Dowell et al. 2004; Tong and Xue 2005; Meng and Zhang

2008; Liu et al. 2008b; Dirren et al. 2007; Reichle et al.

2002; Keppenne and Rienecker 2002; Yang et al. 2008;

for reviews, see Evensen 2003; Lorenc 2003; Hamill

2006; Ehrendorfer 2007).

An emerging alternative to using ensemble forecasts

in data assimilation is called the hybrid data assimilation

scheme. In the hybrid method, ensemble forecasts are

incorporated into the variational update of the back-

ground forecast. Like the EnKF, the hybrid runs short-

term ensemble-forecast cycles. Unlike the EnKF, the

hybrid can be implemented with minor changes to the

existing variational codes that have been used opera-

tionally. The hybrid method, including a hybrid en-

semble with both 3DVAR and 4DVAR, has been a

subject of a number of recent papers (e.g., Hamill and

Snyder 2000; Lorenc 2003; Etherton and Bishop 2004;

Buehner 2005, Zupanski 2005; Wang et al. 2007a,b,

2008a,b; Liu et al. 2008a; Zhang et al. 2009). The focus of

the discussion of the current paper is on the hybrid en-

semble 3DVAR. So far, both simple model tests (e.g.,

Hamill and Snyder 2000; Etherton and Bishop 2004;

Wang et al. 2007a) and real NWP model tests (e.g.,

Buehner 2005; Wang et al. 2008a,b) have demonstrated

superior performance of the hybrid ensemble-3DVAR

method (in this paper, simply called ‘‘the hybrid’’) rel-

ative to 3DVAR. Note that Etherton and Bishop 2004

and Wang et al. 2007a did not use the 3DVAR frame-

work directly. They tested the performance of the hy-

brid by incorporating the ensemble covariance in the

classic optimum interpolation (Schlatter 1975) frame-

work. However, under their experiment design, it will

provide the same solution as if they had adopted the

3DVAR framework (Daley 1991). The same approach

will be adopted in this paper because we focus on the

quality of the analysis rather than the computational

expense and we want to save labors from developing

3DVAR for the model to be used.

Both the EnKF and the hybrid take advantage of the

flow-dependent ensemble-estimated background-error

covariance. How does the hybrid compare to the EnKF?

There have not been many published studies focusing on

directly comparing the performance of the hybrid and

the EnKF-based approaches and on understanding their

underlying differences. Recent work by Wang et al.

(2007a) directly compared the hybrid where the en-

semble was generated by the ensemble transform Kalman

filter (ETKF; Wang and Bishop 2003; Wang et al. 2004,

2007a) and the ensemble square root filter (EnSRF;

Whitaker and Hamill 2002) by using a primitive equa-

tion two-layer model with a perfect-model assumption.

The EnSRF was chosen because it was one of the well-

and extensively tested EnKF-based approaches and was

demonstrated with improved performance relative to

classical EnKF (Whitaker and Hamill 2002). Wang et al.

(2007a) found that the analysis generated by the hybrid

scheme was more accurate than the EnSRF when the

ensemble size was small. However, to better simulate

realistic NWP applications, the effect of model errors

must be considered. How then does the hybrid compare

to the EnSRF in the presence of model error? What are

the underlying reasons for differences in their perfor-

mances? These are the questions we seek to answer in

this paper.

As a follow-up to Wang et al. (2007a), we compare the

two schemes by using the same global primitive equa-

tion two-layer model but with model errors. As in

Hamill and Whitaker (2005), we examine a relatively

simple source of model error, the errors introduced by

the truncation of the forecast model. With this relatively

simple experiment setting, it will be easier to discern

fundamental differences of the two schemes in the

presence of one type of model error, which will be

beneficial to future work of comparing the two schemes

with real NWP models and observations.

Treatment of model errors has been a subject of many

data assimilation studies. For ensemble-based methods,

model errors were treated by using ensemble covariance

inflation (e.g., Whitaker and Hamill 2002), additive noise

(e.g., Whitaker et al. 2008; Houtekamer et al. 2005),

ensemble covariance relaxation (e.g., Zhang et al. 2004),

the multiphysics–multimodel method (e.g., Meng and

Zhang 2008), and stochastic perturbations to physical

tendencies and stochastic kinetic energy (KE) back-

scatter (e.g., Houtekamer et al. 2009). In 4DVAR, model

error was treated by using a weak constraint in a

4DVAR (e.g., Zupanski 1997). Dee and da Silva (1998)

described and applied a model-bias correction method

for the sequential data assimilation system. For the

simple model error resulting from truncation considered

here, we follow Hamill and Whitaker (2005) and adopt

the additive noise method, which is easy to implement

and was shown to provide the most accurate analysis

among all the model-error treatment methods consid-

ered by Hamill and Whitaker (2005).

The hybrid and the EnSRF schemes will be described

in section 2. Section 3 provides a description on the ex-

periment design. Sections 4, 5, and 6 describe the results

and tests conducted to understand the difference be-

tween the two schemes. Section 7 offers conclusions and

conjectures of the results presented in the prior sections.
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2. The hybrid and the EnSRF data assimilation
methods

a. The hybrid scheme

Figure 1 of Wang et al. (2007a) describes, in general,

how the hybrid data assimilation cycle works. Compared

to the perfect-model experiment from Wang et al.

(2007a), the main difference in the current application of

the hybrid scheme is the representation of model error

in the ensemble update, which will be specified later in

this section.

We first consider the update of the mean in the hybrid

method. The ensemble-mean forecast xb is updated by

observations y to obtain the ensemble-mean analysis xa

by using

xa 5 xb 1 PbHT(HPbHT 1 R)�1(y� Hxb), (1)

where H is the observation operator mapping from the

model state variables to the observed variables, which is

presumed linear here; R is the observation-error co-

variance matrix; and Pb is the background-error co-

variance. As in Wang et al. (2007a), PbHT and HPbHT

are formed by

HPbHT 5 (1� a)(r p3p
s 8 HPeHT) 1 a( f HBH)T and

(2)

PbHT 5 (1� a)(rn3p
s 8 PeHT) 1 a( f BH)T, (3)

where PeHT and HPeHT are calculated from the K ETKF

(Wang et al. 2007a) ensemble-forecast perturbations

(xe9
k , k 5 1, . . . , K). Note in the second terms of Eqs. (2)

and (3) that covariance localization was applied through

Schur product 8 between a correlation matrix and the

raw ensemble-covariance matrix (Hamill et al. 2001;

Houtekamer and Mitchell 2001). Horizontal localiza-

tion by using Gaspari and Cohn’s (1999) locally sup-

ported, approximately Gaussian-shaped function is used

to form the correlation matrices. As in Wang et al.

(2007a), the static covariance HBHT and BHT are

formed from a large inventory of historical forecast er-

rors over many separate times (see section 3b). Fol-

lowing Etherton and Bishop (2004) and Wang et al.

(2007a), a rescaling factor f was used to rescale the static

covariance matrix so that the total variance of the re-

scaled covariance matrix was equal to the total forecast-

error variance in the observation space [under the norm

of trace(R21/2HPtHTR21/2)]. As in Eq. (21) of Wang

et al. (2007a), the rescaling factor f was determined dy-

namically. The user-tunable factor a, where 0 # a # 1,

determines the relative weights placed on the static and

the ensemble covariances. As discussed in Wang et al.

(2007a), an inflation factor was applied so that the ETKF

ensemble-forecast variance was equal to the total forecast-

error variance in the observation space as well. Designed

this way, the weighting factor a preserves the total var-

iance (e.g., Etherton and Bishop 2004). As noted in the

previous section, although we updated the mean by

using the classic optimum interpolation (OI) formula

(Schlatter 1975), it will provide the same solution as if

we had adopted the 3DVAR framework (Daley 1991;

Wang et al. 2007b).

We now consider the method for updating perturba-

tions around the mean state. The ensemble perturba-

tions are updated by the ETKF (Wang and Bishop 2003;

Wang et al. 2004, 2007a). The ETKF transforms the

matrix of background ensemble perturbations Xb into a

matrix of analysis perturbations Xa by using a transfor-

mation matrix. Assuming that the covariance of the raw

forecast ensemble perturbations was equal to the true

forecast-error covariance, then the transformation ma-

trix is derived so that the outer product of the trans-

formed perturbations was equal to the true analysis

error covariance. The same ETKF formula described in

Wang et al. (2007a) was adopted here.

Unlike the perfect-model experiment (Wang et al.

2007a) where background ensemble perturbation Xb is

formed only from the ETKF ensemble forecasts, in this

imperfect-model experiment, following Hamill and

Whitaker (2005), we account for the model error in Xb

by using the additive noise method. The background

ensemble perturbation Xb (x9b
k , k 5 1, . . . , K) is con-

structed as

x9b
k 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1� a)
p

x9e
k 1

ffiffiffiffiffiffi

af
p

e
k
, (4)

where x9e
k is the ensemble-forecast perturbation gener-

ated from analysis ensemble updated by the ETKF

method, and ek is a random sample drawn from the large

inventory of the historical forecast errors that form the

static covariance B, which will be described in section 3b.

Note that x9e
k is used to compute PeHT and HPeHT in Eqs.

(2) and (3). Therefore, the relative weight of the ETKF

perturbation and the random perturbation in the back-

ground ensemble perturbation is consistent with the

weight of the ETKF ensemble covariance and the static

covariance in the background-error covariance used to

update the mean [Eqs. (2) and (3)]. Designed this way,

the estimated background-error covariances used for

the perturbation update and the mean update are more

consistent. Also note that, in Eq. (4), we adopted ran-

dom noise consistent with the static covariance B. These

random perturbations can also be considered drawn

from the eigenvector space of B. This method is similar

OCTOBER 2009 W A N G E T A L . 3221



to Houtekamer et al. (2005, 2009), where random noise

drawn from the 3DVAR static covariance was used to

parameterize model errors. In practice, such random

perturbations are easy to obtain.

To test the background ensemble perturbation in

Eq. (4), Fig. 1b shows the root-mean-square (rms) back-

ground error and the ensemble spread as a function of

latitude for an experiment with the hybrid scheme (a 5 0.4

and the localization scale 5 15 000 km). As a compari-

son, another experiment where no additive noise was

applied and thus a global constant inflation was used to

parameterize model error is shown in Fig. 1a. Consistent

with the findings in Hamill and Whitaker (2005), with a

globally constant inflation, the background ensemble

spread was abnormally large in the tropics, whereas by

using the additive noise method the background en-

semble spread better matched the latitudinal variation

of the background errors. As explained by Hamill and

Whitaker (2005), the actual growth of model error de-

pends on the dynamics and grows more rapidly in the

midlatitudes. Although the constant inflation uniformly

expanded the spread, the additive noise has larger mag-

nitude in the midlatitude (not shown).

b. The EnSRF analysis scheme

As opposed to the hybrid, which assimilates observa-

tions simultaneously, the EnSRF serially assimilates ob-

servations. The ensemble perturbations updated by the

previous observations are used to model the background-

error covariance for assimilating the next observation

(for details, see Whitaker and Hamill 2002). Similarly,

the updated mean from the assimilation of the previous

observation is used as the prior state for the assimila-

tion of the next observation. The EnSRF update equa-

tions for assimilating the ith single observation yi are as

follows:

xa 5 xb 1 K
i
(y

i
� H

i
xb) and (5)

x9a
k 5 (I� ~K

i
H

i
)x9b

k P. (6)

FIG. 1. Zonally averaged RMS first-guess second-layer meridional wind error (solid) and

background ensemble spread (dotted) as a function of latitude for (a) the hybrid, with locali-

zation scale of 15 000 km and no additive error; (b) the hybrid, with localization scale of

15 000 km and additive error to parameterize model error in the background ensemble; and

(c) EnSRF, with localization scale of 5000 km and additive error to parameterize model error

in the background ensemble. The weighting coefficient of (a)–(c) is 0.4.
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Note that in the previous equations, Hi maps the state

vector to the ith observation space. In Eq. (5), Ki is the

Kalman gain modified by the covariance localization

K
i
5 (rn31

s 8 PbHT
i )(H

i
PbHT

i 1 R
ii
)�1. (7)

As in the hybrid, horizontal localization utilizes the

approximately Gaussian-shaped function of Gaspari

and Cohn (1999). In Eq. (6), ~Ki is called the reduced

Kalman gain matrix (Whitaker and Hamill 2002). For

serial assimilation,

~K
i
5 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
ii

H
i
PbHT

i 1 R
ii

s
 !�1

K
i
. (8)

As in the ETKF, an adaptive inflation P is used to en-

sure that the variance of the ensemble forecast initial-

ized from the analysis perturbations x9a in Eq. (6) is

consistent with the true background-forecast-error var-

iance in the observation space.

We also use additive noise to account for model error

in the background ensemble perturbations x9b
k in the

EnSRF [Eq. (6)]. For the purpose of a parallel compar-

ison with the hybrid, the background ensemble pertur-

bation in the EnSRF is constructed the same as that in the

hybrid [Eq. (4)]; in this case, x9e
k is the kth ensemble-

forecast perturbation generated from ensemble fore-

casts initialized by the analysis ensemble and updated by

the EnSRF method. Figure 1c also illustrates that, with

the additive noise method, the background ensemble

spread for the EnSRF also can represent the latitudinal

variation of the background forecast errors.

3. Experiment design

a. Model, model error, observations, ensemble
configuration, and verification methods

In this study, we ran a dry, global, two-layer primitive

equation model (Zou et al. 1993). It was previously used

in Hamill et al. (2001), Hamill and Whitaker (2005), and

Wang et al. (2007a) for ensemble data assimilation ex-

periments in both perfect- and imperfect-model con-

texts. The model is spectral, and the model state vector

includes coefficients of vorticity and divergence at two

levels and coefficients of two layer thicknesses Dp1 and

Dp2, where p is the Exner function. There is a simple,

zonal wavenumber 2 terrain. The model is forced by

Newtonian relaxation to a prescribed interface Exner

function. A fourth-order Runge–Kutta scheme is used

for numerical integration, and =8 hyperdiffusion is used.

The parameters chosen are the same as in Hamill and

Whitaker (2005).

We assume that the ‘‘true’’ atmospheric state is de-

scribed by the forecast dynamics at T127 resolution. All

data assimilation experiments were conducted at T31

resolution (the number of complex spectral coefficients

predicted by the model is 3168, and the dimension of the

model in the Gaussian grid is 27 648). In other words, we

assume that our data assimilation and forecast system is

only able to resolve scales T31 and larger. The short-

term model error in T31 resolution is thus due to the lack

of representation of the interaction with the unresolved

scales (for detailed descriptions on the characteristics of

the model and model errors due to unresolved scales,

see Hamill and Whitaker 2005). Also as discussed in

Hamill and Whitaker (2005), this setup was designed to

produce large model errors in order to provide a strin-

gent test on the ability of the two schemes to deal with

model errors. Model errors here are dominated by ran-

dom rather than systematic components.

Observations of interface p and surface p were taken

at a set of nearly equally spaced locations on a spherical

geodesic grid (Fig. 2 of Wang et al. 2007a). The 362

observations of each consisted of the T127 true state plus

errors drawn from a distribution with zero mean and a

standard deviation of 8.75 J kg21 K21 for interface p

and 0.875 J kg21 K21 for surface p, the same values

used in Wang et al. (2007a). Observation errors were

constructed to be independent spatially and temporally.

As in Hamill and Whitaker (2005), given that the error

doubling time of the model at T31 is 3.78 days, obser-

vations were assimilated every 24 h.

Following Hamill and Whitaker (2005), we first ran

both systems with 200 ensemble members. Then, to

study the sensitivity of each scheme to ensemble sizes,

we ran 50 members. The ensemble was initialized with

random draws from the model climatology. The data

assimilation was conducted for a 150-day period, and the

error statistics were evaluated over the last 100 days.

The statistical significance of the following results was

evaluated with a paired sample t test with the temporal

correlation of the data taken into account (Wilks 2006,

p. 455).

b. Formation of static background-error covariance
and inventory of random noise

In the first set of experiments, the static background-

error covariance B and the random noise ek were con-

structed from a large inventory of historical forecast

errors over many separate times. We call this inventory

the ‘‘forecast minus truth’’ inventory. Following Wang

et al. (2007a), an iterative procedure was taken to con-

struct such an inventory to form the static covariance B

that produced the smallest analysis errors. In the final it-

eration, 6541 samples of 24-h forecast errors were collected.
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The static background-error covariance matrix B was

then constructed by directly calculating the covariance

of this large inventory of the forecast-error samples. The

fifth column of Table 1 shows the rms analysis error of

the experiment where we ran a single-member forecast

and analysis cycle by using only the static covariance

obtained from the last iteration. We denote this exper-

iment as static because it used a static covariance such as

3DVAR and OI. Note that the static covariance and the

random noise were generated from the same inventory,

which will provide a clean comparison and thus reveal

the fundamental differences of the hybrid and the

EnSRF schemes. These results are presented in sections

4 and 5.

As discussed in Wang et al. (2007a), the static co-

variance produced by the above method is likely to be

much better than the static covariances formulated for

operational 3DVAR. The random noise inventory where

parameterized model error is drawn is also not obtain-

able because in reality the true state can never be known.

The static, hybrid, and EnSRF experiments may benefit

differently from these assumptions. To test this hypoth-

esis, we form another random noise inventory where we

use the analysis to estimate the truth. In other words,

instead of collecting the forecast errors (forecast minus

truth), we collect the differences between the forecast

and the corresponding analysis and calculate the static

covariance from the new inventory. We call this the

‘‘forecast minus analysis’’ inventory, which can be more

realistically obtained. This is similar to the National

Meteorological Center (NMC) method by Parrish and

Derber (1992), where the perturbations used to form the

static covariance were obtained from the collections of

the difference of the 48- and 24-h forecasts. Results of

the second set of experiments using this new inventory

of random noise and new static covariance are described

in section 6.

4. Analysis errors with the static covariance and
random noise formed from forecast-minus-truth
inventory

We first examine the analysis errors of the different

DA schemes by using the static covariance and random

noise formed from the forecast-minus-truth inventory

described in section 3b. Figure 2 shows the root-mean-

square analysis errors in the KE upper-layer Exner

function thickness (Dp2) and surface Exner function

(ps) norms for the hybrid and the EnSRF schemes as

functions of the localization scale and the weighting

factor for 200-member ensembles. The weighting coef-

ficients tried are 0.2, 0.4, 0.6, and 0.8, and the localization

length scales tried are 3000, 5000, 15 000, and 25 000 km.

The EnSRF was more sensitive to the localization scales

than the hybrid, which means a careful tuning of the

covariance localization length is needed for the EnSRF

in order to find the optimal performance. The best-

performing hybrid and EnSRF from Fig. 2 are summa-

rized in Table 1. It is shown that the best-performing

hybrid was statistically significantly better than the best-

performing EnSRF. The hybrid improved upon the

EnSRF by 7%, 5%, and 16% for the kinetic energy,

upper-layer Exner function thickness, and surface Exner

function norms, respectively.

To measure the sensitivity of the rms analysis errors

of the hybrid and EnSRF with respect to the ensemble

size, we also ran both schemes with 50-member en-

sembles. The results of the best-performing hybrid and

EnSRF with 50-member ensembles are summarized

in the bottom of Table 1. The best-performing hybrid

was still statistically significantly better than the best-

performing EnSRF. The relative improvement of the

hybrid over EnSRF running 50-member ensembles was

11%, 9%, and 31% for the three norms, which is larger

than running 200-member ensembles. The rms analysis

TABLE 1. The rms errors in KE norm (m s21), upper-layer Exner function thickness norm Dp2 (J kg21 K21), and surface Exner function

norm ps (J kg21 K21) for the analyses of the hybrid, EnSRF, and static for the (top) 200- and (bottom) 50-member ensembles. Only the

best-performing hybrid and EnSRF are shown. The fourth column shows the absolute and relative improvement of the hybrid over the

EnSRF. The last column is the confidence level at which the rms errors of the hybrid and EnSRF are different. The optimal weighting

coefficients and localization length scales are shown in parentheses in the second and third columns (e.g., 0.4 means a weight of 0.4 is

placed on the static covariance and 15 k means 15 000 km).

200 member Hybrid EnSRF EnSRF – hybrid Static Confidence level

KE 3.938 (0.4, 15 k) 4.237 (0.4, 5 k) 0.299 (7%) 4.509 .99%

Dp2 5.997 (0.4, 15 k) 6.317 (0.4, 5 k) 0.32 (5%) 6.631 .99%

ps 0.341 (0.6, 15 k) 0.404 (0.6, 15 k) 0.063 (16%) 0.379 .99%

50 member Hybrid EnSRF EnSRF – hybrid Static Confidence level

KE 4.153 (0.6, 15 k) 4.671 (0.4, 5 k) 0.518 (11%) 4.509 .99%

Dp2 6.192 (0.6, 15 k) 6.826 (0.4, 5 k) 0.634 (9%) 6.631 .99%

ps 0.355 (0.8, 15 k) 0.515 (0.4, 5 k) 0.16 (31%) 0.379 .99%
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error of the best-performing 50-member hybrid was

comparable or even smaller than that of the best-

performing 200-member EnSRF. These results indi-

cate that the hybrid is less sensitive to the ensemble size

than the EnSRF, which is consistent with Wang et al.

(2007a).

The hybrid running 200-member and 50-member en-

sembles both outperformed the static for all three norms

considered. The 200-member EnSRF outperformed the

static, except for the ps norm, which is different from

Hamill and Whitaker (2005), where the EnSRF was

better than the static for all three norms. The differences

between the current experiment design and that of

Hamill and Whitaker (2005) are as follows: 1) Hamill

and Whitaker (2005) did not assimilate ps observa-

tions and (probably more importantly) 2) Hamill and

Whitaker’s (2005) static covariance was formed from

200 historical forecast errors with covariance localiza-

tion, whereas the static covariance here was formed it-

eratively from 6541 historical forecast errors with no

localization. The 50-member EnSRF did not outper-

form the static.

5. Why is the hybrid better than the EnSRF?

The source of parameterized model errors is the same

in both the ensemble-mean and ensemble-perturbation

updates for the hybrid and EnSRF. The superior per-

formance of the hybrid over the EnSRF shown earlier

must then arise from algorithmic differences between

the two schemes. Although the assumption made in

forming the random noise inventory and the static co-

variance is not realistic because we assumed we knew

the truth, this set of experiment still offers opportunities

for understanding the underlying differences between

the two schemes. In this section, we describe experi-

ments designed to elucidate which of the differences

between the hybrid and EnSRF algorithms contributed

to the better analysis in the hybrid than the EnSRF as

shown in section 4.

FIG. 2. RMS analysis error for the KE second-layer thickness Dp2 and surface Exner function

ps norms as a function of localization scales and weighting coefficients for the hybrid (solid

thin), EnSRF (solid thick), and static (dashed). The weighing coefficients tried are 0.2, 0.4, 0.6,

and 0.8. For the hybrid, localization scales of 5000, 15 000, and 25 000 km were tried for each of

weighting coefficients. For the EnSRF, localization scales of 3000, 5000, 15 000, and 25 000 km

were tried for each of weighting coefficients.
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a. Effect of differences in the ensemble-perturbation
update

One difference between the hybrid and the EnSRF is

in the update of the ensemble perturbations. On one

hand, the ETKF ensemble perturbations in the hybrid

have superior balance because the update of the per-

turbations does not involve covariance localization. On

the other hand, because of the global nature of the

ETKF, the ETKF perturbations will do a poorer job of

resolving the spatial inhomogeniety of the error co-

variance (Wang and Bishop 2003). To understand if the

differences in the ensemble-perturbation update were

an important factor in making the hybrid analysis more

accurate than the EnSRF, we replace the ensemble-

perturbation update in the EnSRF by the ETKF method

but still use the EnSRF to obtain the ensemble-mean anal-

yses. The results are summarized in Table 2. Comparing

the second and the third columns, it was found that with

the ETKF updating the ensemble perturbations, the anal-

ysis was no better than using the EnSRF to update the

ensemble perturbations. Note that in the only case in

Table 2 in which the EnSRF analysis (Dp2 norm for 50-

member ensemble) was inferior, the difference between

the EnSRF and the hybrid was not statistically significant.

b. Effect of sampling error in the estimation
of model-error covariance when updating
the mean

The last column of Table 2 shows that when we use

the same perturbation update, the ETKF, but use the

EnSRF and the hybrid to update the mean, the analysis

produced by using the hybrid method to update the

mean is more accurate. This suggests that the difference

of the two methods in the update of the ensemble mean

contributed to the better performance of the hybrid. We

then used a single-observation test to understand the

difference of the two methods in updating the ensemble

mean. Figures 3a–c show the increment by assimilating a

single second-layer thickness Dp2 observation located at

46.648N, 1088W that was 3 J kg21 K21 smaller than the

background forecast. Figure 3a shows the increment of

the hybrid with a weighting coefficient of 0.4 and a lo-

calization scale of 15 000 km. Note that such a combi-

nation of the weighting coefficient and the localization

scale produced the best hybrid analyses. The flow-

dependent ensemble x9e
k was from the 24-h ensem-

ble forecast at the 123rd cycle of the best-performing

200-member hybrid experiment. The exact same flow-

dependent ensemble was used in the single-observation

experiment for the EnSRF to understand the difference

in the update of the ensemble mean. Because the best-

performing 200-member EnSRF for the Dp2 norm was

using the 5000-km localization and a weighting coeffi-

cient of 0.4, in the following we first compared the hybrid

increment with the EnSRF increment by using these

parameters (Fig. 3b). Then, we further compared the in-

crement of the hybrid with the increment of the EnSRF,

adopting the same localization scale and weighting co-

efficient as the hybrid (Fig. 3c). Comparing Figs. 3a,b

shows that the length scale of the EnSRF increment was

shorter than that of the hybrid. Because the hybrid

analysis was more accurate, Figs. 3a,b thus suggest that

the observational influence that appeared to be physi-

cally important in the hybrid was missed by the EnSRF.

When the localization scale was increased to 15 000 km—

the same used in the flow-dependent ensemble part in

the hybrid—the EnSRF increment appeared more simi-

lar to that of the hybrid. Further examination, however,

reveals (Fig. 3d) the difference of increments between

the hybrid and the EnSRF with a 15 000-km localization

scale. Figure 3d shows that the difference was in relatively

small spatial scale and also that the magnitude was about

one-tenth of the increment. The EnSRF appeared to have

noisier increments at longer distances from the observa-

tion. Figures 3e–h repeat the same analysis but with the

observation located at 41.518N, 80.278W, and the results

are similar to Figs. 3a–d. Because the inputs for the flow-

dependent part of the ensemble and the localization scales

applied were the same for the hybrid and the EnSRF,

the difference shown in Figs. 3d,h were thus due to the

treatment of model error when updating the mean.

From Eqs. (1)–(5) and (7), when updating the mean,

the hybrid used a static covariance model to represent

the model error, whereas the EnSRF used a limited

sample drawn from the static covariance and then applied

a covariance localization to that sample covariance. To

reveal the differences in the two treatments of model

TABLE 2. The rms errors in KE norm (m s21), upper-layer Exner

function thickness norm Dp2 (J kg21 K21), and surface Exner

function norm ps (J kg21 K21) for the analyses updated by the

EnSRF scheme, the hybrid scheme, and the mixed EnSRF–ETKF

scheme (ensemble updated by the ETKF and ensemble mean up-

dated by the EnSRF). A localization scale of 5000 km and a

weighting coefficient of 0.4 were used. Both 50- and 200-member

ensemble runs were tried.

200 member EnSRF Mixed EnSRF – ETKF Hybrid

KE 4.237 4.312 4.059

Dp2 6.317 6.339 6.098

ps 0.448 0.460 0.446

50 member EnSRF Mixed EnSRF – ETKF Hybrid

KE 4.671 4.709 4.268

Dp2 6.826 6.799 (,80%

confidence)

6.286

ps 0.515 0.563 0.518
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errors, we plot (Fig. 4) the spatial correlation of the

static covariance (built from a large sample of pertur-

bations, as described in section 3b) and the correlation

of limited (200) samples drawn from the static covari-

ance. Figure 4 shows that applying a localization scale of

15 000 km hardly corrects the sampling error, which

presumably explains the difference between Figs. 3d,h.

Figure 4 also shows that, although applying a localiza-

tion of 5000 km can reduce the sampling error at the long

distance, it degrades the correlation at shorter distances.

c. Effect of serial and simultaneous updates

Another difference in the update of the mean is that

the EnSRF used serial assimilation of observations,

whereas the hybrid assimilates observations simulta-

neously. If the observation error is uncorrelated and no

FIG. 3. A snapshot (at the 123rd analysis cycle) of ensemble-mean upper-layer thickness Dp2 increment for a single 23 J kg21 K21 Dp2

observation increment located at the black dot at (a)–(d) 46.648N, 1088W and (e)–(h) 41.518N, 80.278W. The black lines are the contours of

the background Dp2. The color shades in (a) and (e) are the increments (J kg21 K21) for the hybrid with weighting coefficient of 0.4 and

localization scale of 15 000 km; the color shades in (b) and (f) are those of the EnSRF with weighting coefficient of 0.4 and localization

scale of 5000 km; the color shades in (c) and (g) are those of the EnSRF with weighting coefficient of 0.4 and localization scale of 15 000 km;

and the color shades in (d) and (h) are the difference in the increments between (c) and (a) and (g) and (e), respectively. Note that contour

interval of the color shades emphasizes small values.
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covariance localization is applied, then the serial update

and the simultaneous update are equivalent. However, a

serial update with the same Gaspari and Cohn (1999)

localization function applied when assimilating each

observation is not equivalent to the simultaneous update

when the same localization function is applied for the

covariance once (Ehrendorfer 2007). To test if simulta-

neous update contributed to the better performance of

the hybrid, we ran a few more experiments. In one ex-

periment, at each assimilation time, we randomly picked

200 samples from the random perturbation inventory

and conducted the assimilation by using the serial

EnSRF with localization. In the second experiment, at

each assimilation time, we first computed the covariance

by using the same 200 samples and then applied the

same localization on this sample covariance. We then

simultaneously assimilated all observations. Localiza-

tion scales of 5000 and 15 000 km were tried. The rms

analysis errors of the experiments are shown in Table 3.

We found that, for both localization scales, the simulta-

neous update performed no better than the serial update.

Note that, for the only case where the simultaneous up-

date appears to be a little better (Dp2 norm and 15 000-km

localization), the difference is not statistically signifi-

cant. Table 3 also shows that with less-severe localiza-

tion, the difference between the simultaneous and serial

updates becomes smaller. We also tried several locali-

zation scales between 5000 and 15 000 km, and the con-

clusion was the same.

d. Initial condition balance

Spurious imbalances between the mass and momen-

tum fields in the analysis increments can produce gravity

wave noise and thus reduce the accuracy of the forecast

and analysis. The mean absolute tendency of surface

pressure is a useful diagnostic of the amount of imbal-

ance for an analysis produced by a data assimilation

scheme. For the two-layer model, the surface Exner

function ps is the quantity analogous to the surface

pressure. To examine ps tendency, we reran forecasts

from the ensemble-mean analysis up to 24-h lead, pro-

ducing output every hour. We then calculated the hourly

ps tendency. Figure 5 shows the globally averaged ab-

solute hourly ps tendency for all analysis times and all

hourly tendency snapshots during the 24-h forecast pe-

riod for the hybrid and EnSRF with localization scale of

15 000 km and weighting coefficient of 0.6. These pa-

rameters produced the smallest analysis errors for ps.

The EnSRF has larger ps tendency value than the hy-

brid, which suggests the EnSRF ensemble-mean analy-

ses were less balanced. The result for the truth run is also

shown in Fig. 5 as a comparison.

As discussed in Lorenc (2003), covariance localization

can damage the wind–mass balance. Relative to the hy-

brid, the EnSRF has two extra covariance localizations:

one resides in ensemble-perturbation update, and the

other resides in the localization of the covariance of the

random noise that is used to parameterize the model

FIG. 4. Spatially lagged correlation along 458N latitude of the

second-layer thickness Dp2 as a function of zonal distance for

the static correlation (thick solid), correlation from two sets of

200-member random samples (thin solid), 200-member sample cor-

relation with 5000-km localization (dashed–dotted), and 15 000-km

localization (dotted) for the (a) first and (b) second sets of

200-member random samples.
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error. These extra covariance localizations thus can make

the EnSRF analyses less balanced than the hybrid analy-

ses. Experiments in section 5a suggested that the superior

balance of the ETKF perturbations may be compensated

by its lack of local resolution of the error covariances.

However, the extra covariance localization applied to the

model-error covariance in the EnSRF, but not in the hy-

brid, can lead to larger analysis errors in the EnSRF.

6. Sensitivity to the type of samples used to form the
static covariance and random sample inventory

In the previous experiments, the static covariance and

the random noise that was used to parameterize model

error were both constructed based on a large inventory of

historical forecast error, where we assumed we knew the

true atmospheric state, the forecast-minus-truth inven-

tory. In other words, we assumed that the climatological

distribution of the true forecast error is known. Of course

the truth is unknown. The static, hybrid, and EnSRF may

profit to a different extent from such assumptions.

To test this hypothesis, we now consider assimilation

results from using the forecast-minus-analysis inventory

discussed in section 3b. The model error was then pa-

rameterized by drawing random noise from this new

inventory and the static covariance was also recalculated

from this new inventory. We then reran the static,

the hybrid and the EnSRF experiments. The best-

performing results for the hybrid and the EnSRF with

200-member ensembles are summarized in Table 4. As

expected, the static, hybrid, and EnSRF all performed

worse (relative to results in Table 1). The relative im-

provements of the hybrid and EnSRF over the static

were both larger, indicating that the static is more prone

to the quality of the random noise. This result along with

the result in section 3a demonstrate the reliability of the

hybrid because it outperformed static, no matter how

the static covariance was formed. The hybrid still per-

formed statistically significantly better than the EnSRF.

However, the absolute and relative improvements of the

hybrid over the EnSRF were smaller.

Results from sections 4 and 5 suggest that the inferior

performance of the EnSRF relative to the hybrid was due

to the sampling error in the model-error parameteriza-

tion of the EnSRF when updating the mean. However,

when the random noise was drawn from the more realistic

forecast-minus-analysis inventory, sampling errors in the

model-error parameterization became less of a factor.

7. Conclusions and discussion

As a follow-up to the perfect-model study of Wang

et al. (2007a), we compared the skill of the hybrid and the

EnSRF analysis schemes by using an observation-system

simulation experiment in the presence of truncation

model error. A two-layer global primitive equation model

was used. The true state was a T127 nature run. The data

assimilation was performed at T31 resolution. A sim-

plified observation network was assumed, and imperfect

observations were created by adding random noise to

the nature run. In the hybrid scheme, the ensemble

perturbations are updated by the ETKF and the en-

semble mean is updated with a hybridized ensemble and

TABLE 3. The rms analysis errors for the experiments where 200

random samples were used to build the background-error covari-

ance. In the serial experiment, the observations are assimilated

serially with a fixed localization applied for each observation. In the

simultaneous experiment, observations are assimilated simulta-

neously with the localization applied for the covariance before

assimilation. Both the 5000- and 15 000-km localizations were

tried.

5000-km localization Serial Simultaneous

KE 5.04 5.25

Dp2 7.29 7.46

ps 0.50 0.59

15 000-km localization Serial Simultaneous

KE 5.28 5.31

Dp2 7.70 7.69 (,90%

confidence)

ps 0.48 0.50

FIG. 5. Mean absolute surface Exner function ps tendency

(J kg21 K21 h21) averaged globally over the subsequent 23 1-h

forecast periods and over all time for the hybrid and EnSRF with

weighting coefficient of 0.6 and localization scale of 15 000 km. The

gray bar is for the truth run.
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static background-error covariance. In the background

ensembles of the hybrid and the EnSRF, the model error

was parameterized by using the additive noise method.

To test the sensitivity of the performances of the data

assimilation schemes to the sources of additive noise, the

additive noise in the first set of experiments was drawn

from a large inventory of historical forecast errors and

the additive noise in the second set of experiments was

drawn from a more realistic inventory of differences

between forecasts and analyses. The static covariance

was formed from these inventories accordingly.

The results demonstrated that the hybrid analysis was

statistically significantly more accurate than the EnSRF

analysis. The EnSRF was more sensitive to the ensemble

size than the hybrid. Series of tests revealed that the less

accurate analyses from the EnSRF were probably due

to the sampling error in model-error parameterization

during the mean update as well as the less-balanced

initial conditions resulting from the extra covariance

localization used in the EnSRF. However, the relative

improvement of the hybrid over the EnSRF was smaller

when the parameterized model error and the static co-

variance were generated from a more realistic inventory

of differences between forecasts and analyses rather

than from an inventory of historical forecast errors.

Because, by design, the magnitude of the model error in

this experiment is large (Hamill and Whitaker 2005),

this result suggests that the advantage of the hybrid over

the EnSRF may become smaller if we lack of an accurate

specification of model error.

The simulated observational network is much simpler

and more uniform than the real observing network. The

number of observations relative to the number of de-

grees of the model is also very likely to be different from

the real world. In general, the use of the flow-dependent

ensemble covariance in data assimilation benefits data-

sparse regions more than data-rich regions, and it benefits

directly observed state variables more than indirectly

observed variables. When the observational network is

less uniform, long-distance ensemble correlation will be

used to update data-void regions. Because the hybrid is

less prone to sampling errors, as shown in this paper, the

hybrid may show larger advantages over the EnSRF. On

the other hand, because we used ETKF to generate en-

sembles for the hybrid and because of its global update,

the ETKF may not resolve the nonuniform observational

network as well as the uniform network, especially when

the ensemble size is small.

Model errors in full numerical weather prediction

models can be caused by many other factors. They are

likely to be a combination of errors in physical param-

eterizations, misspecification of parameters, model trun-

cations, and so on. Realistic model errors are also likely

to have a systematic bias component and a stochastic

component. A robust ensemble-based data assimilation

system should account for both components. In this

study, we only considered model errors due to model

truncation, and the model error was accounted for by

adopting the commonly used additive noise method.

Additive noise can be drawn from the 3DVAR covari-

ance or from the forecast-minus-analysis inventory de-

scribed in section 6. Although these methods are easy to

implement in operational data assimilation, they only

provide a crude way of parameterizing model errors. For

example, model errors can be flow-dependent, and the

deviation of the forecast from the analysis approximates

the model error only when the analysis is very close to

the truth. Future work should conduct the comparison

experiments by introducing different types of model

errors through, for example, varying the forcing term of

the model. Other methods, such as stochastic perturba-

tions to physical tendencies and stochastic kinetic energy

backscatter, that account for flow-dependent model er-

rors (e.g., Buizza et al. 1999; Teixeira and Reynolds

2008; Palmer et al. 2005; Houtekamer et al. 2009) may

also be tried. The advantage of the flow-dependent

representation of the forecast error by the EnSRF may

outweigh its deficiency resulting from sampling errors

if we implement methods to accurately represent flow-

dependent model errors.

The encouraging results of the hybrid, as compared to

the experiment with static background-error covariance

and the EnSRF in this study, and the fact that the hybrid is

straightforward to implement in an operational variational

system strongly suggest that the hybrid should be consid-

ered as a candidate for operational data assimilation. The

relative merit of the hybrid is also a function of the quality

of the 3DVAR scheme. Advanced 3DVAR schemes

feature error correlation length scales tuned by carefully

designed ensemble experiments and sophisticated balance

constraints. Hence, designers of ensemble data assimila-

tion schemes who have easy access to advanced 3DVAR

schemes may find the hybrid more appealing.

As discussed in Buehner (2005), Wang et al. (2007a,b,

2008a,b), Liu et al. (2008a), and Zhang et al. (2009), the

idea of combining ensemble covariance with static co-

variance can be extended to the 4DVAR framework.

TABLE 4. As in Table 1, but using the newly constructed random

noise inventory and static covariance.

200

member Hybrid EnSRF

EnSRF –

hybrid Static

Confidence

level

KE 4.140 4.378 0.238 (5%) 5.129 .99%

Dp2 6.257 6.459 0.202 (3%) 7.318 .99%

ps 0.379 0.412 0.033 (7%) 0.457 .99%
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The incorporation of the ensemble covariance may im-

prove the initial background-error covariance and thus

improve the 4DVAR analysis.
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