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ABSTRACT

The hybrid ensemble transform Kalman filter–three-dimensional variational data assimilation (ETKF–
3DVAR) system developed for the Weather Research and Forecasting (WRF) Model was further tested
with real observations, as a follow-up for the observation system simulation experiment (OSSE) conducted
in Part I. A domain encompassing North America was considered. Because of limited computational
resources and the large number of experiments conducted, the forecasts and analyses employed relatively
coarse grid spacing (200 km) to emphasize synoptic scales. As a first effort to explore the new system with
real observations, relatively sparse observation datasets consisting of radiosonde wind and temperature
during 4 weeks of January 2003 were assimilated. The 12-h forecasts produced by the hybrid analysis
produced less root-mean-square error than the 3DVAR. The hybrid improved the forecast more in the
western part of the domain than the eastern part. It also produced larger improvements in the upper
troposphere. The overall magnitude of the ETKF ensemble spread agreed with the overall magnitude of the
background forecast error. For individual variables and layers, the consistency between the spread and the
error was less than the OSSE in Part I. Given the coarse resolution and relatively sparse observation
network adopted in this study, caution is warranted when extrapolating these results to operational appli-
cations. A case study was also performed to further understand a large forecast improvement of the hybrid
during the 4-week period. The flow-dependent adjustments produced by the hybrid extended a large
distance into the eastern Pacific data-void region. The much improved analysis and forecast by the hybrid
in the data void subsequently improved forecasts downstream in the region of verification. Although no
moisture observations were assimilated, the hybrid updated the moisture fields flow dependently through
cross-variable covariances defined by the ensemble, which improved the forecasts of cyclone development.

1. Introduction

A hybrid ensemble transform Kalman filter–three-
dimensional variational data assimilation (ETKF–

3DVAR) system has been recently developed for the
Weather Research and Forecasting (WRF) Model
(Wang et al. 2008, hereinafter Part I). It is based on the
existing WRF 3DVAR (Skamarock et al. 2005, chapter
9; Barker et al. 2003, 2004). Unlike 3DVAR, which uses
a static covariance model to estimate the background
forecast errors, the hybrid system combines ensemble
covariances with the 3DVAR static covariances to pro-
vide a flow-dependent estimate of the background er-
ror statistics. The ensemble-based estimates of covari-
ances are incorporated into WRF 3DVAR using the
extended control variable method (Lorenc 2003; Bueh-
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ner 2005; Wang et al. 2007a). The ensemble perturba-
tions are updated by the computationally efficient
ETKF (Wang and Bishop 2003; Wang et al. 2004; Wang
et al. 2007b).

As discussed in Part I, besides the benefit of includ-
ing the flow-dependent ensemble covariance in the as-
similation, our interest in hybrid schemes also stems
from several other factors: (i) the hybrid scheme is
simple to implement in the framework of existing op-
erational variational schemes; (ii) it is potentially less
expensive than the ensemble Kalman filter (EnKF; e.g.,
Hamill 2006), as the perturbations are updated by the
less expensive ETKF and variational update of the en-
semble mean may not scale linearly with the number of
observations; and (iii) it may be more robust than the
EnKF if one can only afford to run a small ensemble or
if the model error is large (Wang et al. 2007b; Part I),
although in that case the benefit relative to standard
3DVAR can be expected to be small.

As an initial test of the newly developed system, an
observation system simulation experiment (OSSE) was
conducted in Part I. It was found that the analysis of the
hybrid was more accurate than that of the 3DVAR.
The OSSE assumed that the WRF model was perfect,
the observation-error covariance was perfectly known,
and the lateral boundary condition (LBC) ensemble
perfectly represented the LBC uncertainty. When as-
similating real observations, however, none of these as-
sumptions will be valid. In this study (Part II), we will
test the hybrid system with the assimilation of real ob-
servations and again compare its short-range forecast
performance to that of the 3DVAR.

Studies exploring the use of hybrid ensemble–
variational schemes for assimilating real observations
are rather limited. Barker (1999) reported initial test
results of combining only a single breeding ensemble
member (Toth and Kalnay 1997) with the Met Office’s
global 3DVAR system and suggested substantial fore-
cast improvement would be possible if more ensemble
members were used. Buehner (2005) constructed a hy-
brid system based upon the Canadian global 3DVAR
system and tested it with real observations. Both en-
sembles from their global EnKF (Houtekamer et al.
2005) and from “perturbed 3DVAR” were used. Their
results showed small forecast improvements and sug-
gested revisiting the problem with increasing ensemble
size. On the other hand, numerous studies have tested
the EnKF with real observations. Encouraging results
have been obtained for both global (e.g., Whitaker et
al. 2004, 2008; Szunyogh et al. 2008; Houtekamer et al.
2005) and limited-area numerical weather prediction
(NWP) applications (e.g., Meng and Zhang 2008; Torn
and Hakim 2008; Fujita et al. 2007; Dowell et al. 2004).

These studies suggest benefits of flow-dependent en-
semble covariance even in the real-observation scenario.

Given the encouraging results of the previous work,
we further test the newly developed WRF hybrid
ETKF–3DVAR data assimilation system with real ob-
servations in this study. It represents the first investi-
gation of the hybrid ETKF–3DVAR method for a lim-
ited-area NWP model with real observations. As a first
effort to understand the new system and given limited
computational resources, the experiments were con-
ducted with relatively coarse 200-km resolution and a
subset of observations. Caution is warranted when ex-
trapolating these results to operational applications,
since many regional-scale applications employ much
finer resolutions and denser observations,

In section 2, we describe how the real-data experi-
ments are designed. Section 3 will first present results
comparing WRF 3DVAR with WRF hybrid using gen-
eral diagnostic tools, and then present a case study to
further understand the differences between the two ap-
proaches. Section 4 concludes and provides further dis-
cussion.

2. Experiment design

a. Model, observations, ensemble configurations,
and verification techniques

In this study, we ran WRF with the same model con-
figuration as the OSSE in Part I. The chosen domain
covers North America and the surrounding oceans (see
Fig. 1 in Part I). As in the OSSE, in order to conduct a
large number of experiments to find optimal tunable
parameters (section 3c in Part I; section 2c in Part II)
using the limited computational resources available, we
ran WRF with a 200-km grid spacing on a 45 � 45
horizontal grid with 27 vertical levels. The model top
was at 50 hPa.

The experiments began at 0000 UTC 1 January 2003
and lasted for 4 weeks. Observations were assimilated
every 12 h beginning at 1200 UTC 1 January. The ob-
servations consisted of real radiosonde winds and tem-
peratures, taken from the operational observation
dataset from the National Centers for Environmental
Prediction (NCEP; see http://www.emc.ncep.noaa.gov/
mmb/data_processing/prepbufr.doc for a detailed de-
scription of the observations). Figure 1 of Part I shows
a snapshot of the horizontal observation distribution.
Observation errors were assumed to be uncorrelated
and the observation error statistics were obtained from
the NCEP operational observation dataset. No addi-
tional quality control was applied. Figure 2 of Part I
shows the vertical profile of the observations errors.
Note that for the purpose of facilitating comparison,
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the only difference between Part I and Part II in terms
of the observations was that Part II adopted real ob-
servation values and Part I adopted simulated values.

For the hybrid experiment, we ran a 50-member en-
semble, with perturbations updated using the ETKF
(Part I). The initial ensemble at the very beginning of
the data assimilation cycles (0000 UTC 1 January 2003)
and the LBC ensembles during the cycles were gener-
ated by adding random 50 perturbations to the NCEP
“final” analyses (FNL; http://dss.ucar.edu/datasets/
ds083.2). These perturbations were drawn from a nor-
mal distribution having the same covariance as the
WRF 3DVAR NCEP background-error covariance.
Figure 3 of Part I shows typical values of the spread of
such 50 random perturbations in the WRF domain in-
cluding the lateral boundaries. This method of gener-
ating the LBC ensembles was proposed and tested by
Torn et al. (2006) for their WRF EnKF system.

For the 3DVAR experiment, the initial background
forecast at 1200 UTC 1 January 2003 was taken from
the 12-h ensemble-mean forecast at that time so that
both the hybrid and the 3DVAR experiments started
with the same background forecast. The LBCs during
the cycles for the 3DVAR were from the NCEP FNL
analyses.

To evaluate the forecast errors of the hybrid and
3DVAR, we interpolated the 12-h forecasts from either
the 3DVAR or the hybrid analysis to the radiosonde
observation locations, and compared them to the ob-
servations. As in the OSSE, the verification domain was
within the inner quarter of the total domain (see Fig. 1
of Part I). The verification statistics were collected after
first 5 days’ data assimilation cycles.

b. Tuning the 3DVAR static background-error
covariance

Since the default WRF 3DVAR NCEP covariance
may not be the optimal model of static background-
error covariances for the current data assimilation ex-
periment, we recalculated the static error covariances.
We used the WRF ETKF background-forecast (12-h)
ensembles that were generated corresponding to the
current real-observation experiment settings men-
tioned in section 2a.

Specifically, we ran the ETKF ensemble forecasts ev-
ery 12 h. The ensemble-mean background forecast was
updated by the WRF 3DVAR, using the radiosonde
observations and the default static error covariance.
The ensemble perturbations were updated by the
ETKF. We then added the updated perturbations to
the updated ensemble mean to generate an ensemble of
analyses and started 12-h ensemble forecasts. The pro-

cedures were repeated for 4 weeks. We removed the
first 5 days, collected the rest of the 12-h ensemble
forecasts, and recalculated the static background-error
covariance B. In constructing B, the linear balance be-
tween mass and wind fields and horizontal homogenous
error covariances were assumed. For details on calcu-
lating the static covariance for WRF 3DVAR, please
refer to Skamarock et al. (2005, chapter 9). Finally, we
reran the 3DVAR experiment using the newly gener-
ated B. As shown in Table 1, the 12-h forecasts initial-
ized by the 3DVAR analysis using this tuned static co-
variance were slightly more accurate than using the de-
fault background-error covariance. As in the OSSE, the
results were also not sensitive to whether we used a 4-
or a 2-week period of ETKF forecasts to calculate B. In
the following 3DVAR and hybrid data assimilation ex-
periments, we will use this newly generated static back-
ground-error covariance.

c. Hybrid data assimilation experiments

The hybrid ETKF–3DVAR scheme for WRF was
described in Part I. For details on the ETKF ensemble
generation scheme and on how the ensemble was in-
corporated during the variational update through ex-
tending the control variables, please refer to section 2
of Part I and the references therein. Here we only
briefly describe the range of hybrid experiments asso-
ciated with different parameters.

Like the OSSE in Part I, the hybrid experiments in
this study were conducted with various combinations of
two tunable parameters. One was the weighting factor
1/�1, which defined the weight placed on the static
background-error covariances. To conserve the total
background-error variance, the weight placed on the
ensemble covariance was given by (1 � 1/�1) (Hamill
and Snyder 2000; Etherton and Bishop 2004; Wang et
al. 2007b). We used five different values for the weight-
ing factor, 1/�1 � 1.0, 0.8, 0.5, 0.2, and 0.0.

The other tunable parameter was the horizontal scale
of the covariance localization applied on the ensemble
covariance that was used to ameliorate the effect of
sampling error on the analysis (i.e., the “covariance lo-
calization”; Hamill et al. 2001). As discussed in section
2a of Part I, to save computational costs, we only in-

TABLE 1. The rms fit of the 12-h wind and T forecasts to the
radiosonde observations for the 3DVAR experiments with de-
fault and the tuned static background-error covariances.

Wind (�U 2 � V 2, m s� 1) T (K)

Default 3DVAR 6.40 1.89
Tuned 3DVAR 6.39 1.87
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cluded the horizontal covariance localization in the cur-
rent hybrid system. The detrimental effect of the sam-
pling error in the vertical covariances estimated by the
ensemble was ameliorated by the use of the static co-
variance in addition to the ensemble covariance in the
cost function. In the current system, the horizontal co-
variance localization was modeled applying the recur-
sive filter (Hayden and Purser 1995) on the extended
control variables during the variational minimization.
The correlation length scales of the recursive filter de-
termine the degree to which the ensemble covariance is
localized. For each of the four weighting factors 1/�1 �
0.8, 0.5, 0.2, and 0.0, we used four ensemble covariance
localization scales Se � 707, 1414, 2828, and 4242 km,
where Se is the e-folding scale of the asymptotic Gauss-
ian response function of the filter. For further details on
the meaning of 1/�1 and Se, please refer to sections 2a
and 3c of Part I.

As in the OSSE (section 2b of Part I), an inflation
factor � was applied to the ETKF ensemble perturba-
tions to ensure that on average the background-error
variance estimated from the spread of ensembles about
the ensemble mean was consistent with the back-
ground-error variance estimated from the differences
between the ensemble mean and the observations [Eq.
(6) of Part I]. In the current real-observation experi-
ment, the inflation factor accounts not only for the ET-
KF’s systematic underestimation of the error variance
owing to the limited ensemble size, but also for other
misrepresented error sources. These include the errors
from the model and the deficiencies in the LBC en-
sembles. One goal of this paper is to see if the hybrid
scheme can improve upon the 3DVAR scheme with
such a simple method to account for these error sources
in the ensembles. Another factor in the ETKF, denoted
as �, estimated the fraction of the forecast-error vari-

ance projected onto the ensemble subspace. Both fac-
tors were estimated adaptively as discussed in Part I.

3. Results

In this section, we first evaluate the performance of
the hybrid analysis and the ETKF ensemble spread us-
ing data collected over the verification period. Then we
present a case study to understand further the differ-
ences between the hybrid and the 3DVAR.

a. Verification of the forecasts

To evaluate the performance of the 3DVAR and hy-
brid analyses, we examined characteristics of the fore-
casts from the analyses generated by both schemes. The
forecasts were evaluated against all the radiosonde
wind and temperature observations in the verification
domain.

1) 12-H FORECAST ERROR OF THE HYBRID WITH

RESPECT TO 1/�1 AND Se

Table 2 shows the root-mean-square (rms) difference
between the 12-h forecasts from the hybrid and the
observations (called 12-h forecast fit to observations, or
simply 12-h forecast error). The rms differences of the
wind and temperature forecasts to observations are
shown as a function of the weighting coefficient 1/�1

and the localization scale Se. Note that throughout the
paper, the fit of wind to the observations is defined as
the square root of the averaged squared zonal and me-
ridional wind fit to the observations, unlike some of the
other studies (Houtekamer et al. 2005; Whitaker et al.
2008; Torn and Hakim 2008) where individual zonal
and meridional components were examined separately.
For most of the combinations of 1/�1 and Se, except

TABLE 2. The rms fit of the 12-h wind and temperature forecasts to the radiosonde observations for the hybrid with various
combinations of the weighing coefficients 1��1 and the covariance localization scales Se. Numbers in parentheses indicate the percentage
improvement relative to the 3DVAR with tuned static covariance. The smallest rms fits are set boldface. For 1��1 � 1.0, the
experiments do not depend on Se.

Wind (m s�1) Se � 4242 km Se � 2828 km 1414 km 707 km

1/�1 � 1.0 6.255 (2.2) — — —
0.8 5.991 (6.3) 6.001 (6.1) 6.046 (5.4) 6.186 (3.2)
0.5 5.997 (6.2) 5.960 (6.8) 5.998 (6.2) 6.146 (3.9)
0.2 5.964 (6.7) 6.010 (6.0) 6.045 (5.4) 6.160 (3.6)
0.0 6.457 (�1.0) 6.327 (1.0) 6.241 (2.4) 6.201 (3.0)

T (K) Se � 4242 km Se � 2828 km 1414 km 707 km

1/�1 � 1.0 1.858 (0.6) — — —
0.8 1.818 (2.7) 1.813 (3.0) 1.813 (3.0) 1.827 (2.2)
0.5 1.821 (2.6) 1.818 (2.7) 1.816 (2.8) 1.823 (2.5)
0.2 1.851 (1.0) 1.845 (1.3) 1.829 (2.1) 1.841 (1.5)
0.0 2.034 (�8.8) 1.979 (�5.9) 1.921 (�2.8) 1.886 (�0.9)
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when 1/�1 � 0 for temperature, and 1/�1 � 0, Se � 4242
km for wind, the hybrid forecasts were more accurate
than the 3DVAR. The optimal parameters were 1/�1 �
0.5, Se � 2828 km for the wind, and 1/�1 � 0.8, Se �
1414 km, 2828 km for the temperature.

As discussed in Part I’s OSSE, the slight improve-
ment of the 1/�1 � 1.0 experiment (full 3DVAR co-
variance updating the mean of the ETKF ensemble
forecasts) over the 3DVAR experiment (a single-mem-
ber forecast-assimilation cycle) was presumably be-
cause the background forecast from the ensemble mean
was more accurate than the single control forecast. Fur-
ther examining columns of Table 2, when 1/�1 was de-
creased from 1.0 to intermediate values, the forecast
error also decreased. This indicated further improve-
ment of the analysis when the ensemble covariance was
incorporated. The improvement of the best-performing
hybrid over the 1/�1 � 1.0 experiment was larger than
the improvement of the 1/�1 � 1.0 experiment over the
3DVAR experiment, suggesting the improvement of
the best-performing hybrid over 3DVAR was mainly
due to incorporating the flow-dependent ETKF en-
semble covariances during the data assimilation. When
1/�1 was reduced to 0, the analyses became worse than
when 1/�1 � 1, especially when the localization scales
were large. This suggested that when the background-
error covariance was fully estimated by the ensemble,
appropriate covariance localization needed to be ap-
plied. Otherwise, the detrimental effect of the sampling
error will overwhelm the advantage of the flow-
dependent estimate of the error covariance by the en-
semble.

Further examination of Table 2 indicates that, the
forecast error was less sensitive to the ensemble covari-
ance localization scales when the static covariance was
included in addition to the ensemble covariance, as in
Part I’s OSSE. For example, the range of the tempera-
ture forecast error as the localization scale varied was
0.15 K when 1/�1 � 0, but only about 0.01–0.02 K when
1/�1 � 0.2, 0.5, 0.8.

2) FURTHER COMPARISON OF FORECAST AND

ANALYSIS FIT WITH OBSERVATIONS BETWEEN

HYBRID AND 3DVAR

Next we further compare forecast errors and analysis
fit with observations between the hybrid and 3DVAR.
We chose the hybrid with 1/�1 � 0.5 and Se � 2828 km
and compared it with the 3DVAR. Hereinafter we will
term forecasts from hybrid analyses as “hybrid fore-
casts” and correspondingly “3DVAR forecasts” for
forecasts from 3DVAR analyses. Figure 1 shows the
time series of the rms 12-h forecast fit to observations
and the rms analysis fit to observations in the verifica-

tion domain. Note that assimilated observations were
used in the verification, so the analysis fit to observa-
tions is not a measure of analysis errors, rather it is
measure of how much each scheme draws to the obser-
vation during the assimilation. The forecast fit to ob-
servations, however, is a measure of forecast errors and

FIG. 1. Time series of the rms fit of the 12-h forecasts to the
radiosonde observations (thin lines) and the rms fit of the analysis
to the radiosonde observations (thick lines) over the verification
domain for 3DVAR (dotted) and the hybrid with 1/�1 � 0.5 and
Se � 2828 km (solid): (a) wind and (b) temperature (T ).
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thus was used to evaluate the performance of the hy-
brid and the 3DVAR. Figure 1 shows that the 3DVAR
draws closer to the observation during the assimilation.
However, for most of the time the hybrid forecasts were
more accurate than the 3DVAR forecasts. At day 9, the
hybrid was dramatically better, which will be explored
in section 3c.

Figure 2 shows the vertical profile of the biases of the
12-h forecast and analysis fits to observations and the
rms 12-h forecast and analysis fits to the observations.
The bias for wind was calculated as the square root of
the sum of the squared zonal wind bias and the squared
meridional wind bias. The value for each pressure level
was calculated by averaging errors collected within a
layer 50 hPa above and below that pressure level. For
the wind forecast, the hybrid 12-h forecast fit the ob-
servations better than 3DVAR for all levels. The larg-

est improvement of the hybrid over 3DVAR was lo-
cated 	200–300 hPa. For the temperature forecast, the
hybrid 12-h forecast fit the observations better than
3DVAR above 900 hPa. Below 900 hPa, the hybrid
showed no improvement relative to the 3DVAR. Fig-
ure 2 also shows there was significant bias in the 12-h
temperature forecast at the lower troposphere below
900 hPa for both the hybrid and 3DVAR. This bias
accounted for a significant fraction of the rms forecast
fit to the observations [similar results were documented
in Whitaker et al. (2008) comparing the NCEP 3DVAR
with an ensemble filter using the Global Forecast Sys-
tem model]. We speculate that this is because of the
systematic errors in the boundary layer, surface layer,
and land surface parameterizations in WRF. Also con-
sistent with Fig. 1, the 3DVAR draws more close to
observations during the assimilation.

The OSSE results in Part I demonstrated that the
improvement of the hybrid over 3DVAR was more
pronounced in the western part than the eastern part of
the continent. Table 3 summarizes the rms 12-h forecast
fit to the observations for the western and the eastern
parts of the verification region for this real-observation
experiment. The western and eastern regions were di-
vided by the central longitude of the WRF domain.
Consistent with the results of the OSSE, the hybrid
forecast improved upon the 3DVAR forecast in the
western part of the verification region more than the
eastern part. Vertical profiles of the rms 12-h forecast
fit to observations plotted for the western and eastern
domains separately showed the same results (not
shown). As discussed in Part I, one reason may be that
the hybrid improved the analysis more upstream over
the data-sparse eastern Pacific. In section 3c, we con-
sider a period of January 2003 when the hybrid had a
dramatically smaller forecast error than the 3DVAR,
which will demonstrate how the hybrid can correctly
extrapolate the land-based observations into the data-
sparse ocean region and thus improve the forecast
downstream.

FIG. 2. Vertical profiles of the rms fits of the 12-h forecasts (red
thin line) and analysis (blue thin line) to the radiosonde observa-
tions and biases of the 12-h forecasts (thick red line) and analysis
(thick blue line) fits to the radiosonde observations for 3DVAR
(dotted) and hybrid with 1/�1 � 0.5 and Se � 2828km (solid): (a)
wind and (b) T.

TABLE 3. The rms fit of the 12-h forecasts to the radiosonde
observations for the 3DVAR and the hybrid (1/�1 � 0.5, Se �
2828 km) over the western and eastern verification regions. The
last column is the absolute and percentage (in parentheses) im-
provement of the hybrid relative to the 3DVAR.

Wind (m s�1) 3DVAR Hybrid Improvement

West 7.143 6.567 0.576 (8.1)
East 5.713 5.423 0.290 (5.1)

T (K) 3DVAR Hybrid Improvement

West 2.008 1.929 0.079 (3.9)
East 1.763 1.735 0.028 (1.6)
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Figure 3 shows the rms analysis and forecast fits to
the observations as a function of forecast lead times up
to 48 h averaged over the verification domain. The fore-
casts initialized from the hybrid analysis were more ac-
curate. The hybrid improved wind forecast more than
the temperature forecast. As discussed in section 4b of
Part I, since the same LBCs were used to run the fore-
casts for both the hybrid and the 3DVAR, the influence

of the LBCs becomes more dominant over the verifi-
cation region with increasing forecast lead times.
Therefore, the impact of the hybrid analysis should be
better indicated by forecasts with relatively short lead
times.

3) HYBRID SENSITIVITY TO LBC ENSEMBLE

PERTURBATIONS

As stated in section 2a, the LBC ensemble perturba-
tions for all previous experiments were generated by
drawing random perturbations from the default
3DVAR static covariance. Figure 3 of Part I shows typi-
cal values of the spread of 50 such random perturba-
tions at the lateral boundaries. We performed extra
experiments to see if the 12-h forecast error from the
hybrid would vary significantly if the magnitude and the
length scale of the perturbations were changed. In one
experiment, we multiplied the perturbations generated
by the default 3DVAR by 1.5. In the other experiment,
we retuned the horizontal length scale of the static co-
variance so that the scale of the perturbation was com-
parable to synoptic scales, following the LBC en-
sembles used in the real-time WRF EnKF system (Torn
and Hakim 2008) at the University of Washington (R.
Torn 2007, personal communication). For both experi-
ments, we used 1/�1 � 0.5 and Se � 2828 km.

Table 4 shows the rms 12-h forecast fit to the obser-
vations over the verification domain for the two new
experiments along with the hybrid whose LBC en-
semble perturbations were generated by the default
3DVAR covariance. The performance of the hybrid
was not sensitive to the chosen magnitude and length
scale of the perturbations. This could be because, as
suggested by the OSSE experiment by Torn et al.
(2006), the verification region was in the inner quarter
of the domain, which was less affected by the LBCs
than the outer region. This could also be because all
three choices of the LBC perturbations were crude
ways to model the LBC uncertainty.

FIG. 3. The rms fit of the forecast to observations as a function
of forecast lead times up to 48 h for the hybrid (solid line) and the
3DVAR (dotted line) for (a) wind and (b) T.

TABLE 4. Sensitivity of the rms 12-h hybrid forecast fit to ob-
servations to the magnitude and the scale of the LBC ensemble
perturbations generated by the static covariance. The hybrid cor-
responds to 1/�1 � 0.5 and Se� 2828 km. The first row shows the
rms forecast fit to observations for the LBC ensemble perturba-
tions generated by the default 3DVAR. The second row is for
increasing the magnitude of the perturbations generated in row 1
by a factor of 1.5. The third row is for retuning the length scale of
the perturbation to be comparable to the synoptic scales.

Wind (m s�1) T(K)

Default 3DVAR 5.960 1.818
Magnitude multiplied by 1.5 6.005 1.819
Retuned length scale 5.956 1.816
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b. Verification of the ensemble spread

In this section, we measure the relationship of the
ETKF 12-h ensemble spread to the 12-h background
forecast error to evaluate how well the spread esti-
mated the background forecast error.

As mentioned in section 2c and section 2b of Part I,
there are two tunable coefficients in the ETKF, the
inflation factor (�) and the factor (�) that estimate the
fraction of the background error variance projected
onto the ensemble subspace. In the real-data experi-
ment, these factors were intended to ameliorate the
systematic underestimate on the error variance by the
ETKF not only due to the limited ensemble size but
also due to other misrepresented error sources such as
the model error. Both factors were determined adap-
tively in the ETKF. Figure 4 shows the factors � and �
during the 4-week data assimilation period. The factors
started to converge to constant values after 5 days (10
cycles). The average values after day 5 for � and � were
8.6% and 11%, respectively. As expected, the inflation
factor � was larger and the factor � was smaller than
those in Part I’s OSSE, due to other sources of system
errors such as the model error in the real-data experi-
ments. The inflation factors in Parts I and II were both
smaller than the inflation factor used by the previous
ETKF experiment in Wang and Bishop (2003) and
were both larger than that used in Wang et al. (2007b).
In both Parts I and II we used an improved formula of
the ETKF as introduced in the appendix A of Wang et
al. (2007b). The improved formula requires smaller in-

flation factor than the old formula (Wang and Bishop
2003; Wang et al. 2004) as discussed in Wang et al.
(2007b). In general, the magnitude of the inflation fac-
tor depends on the ensemble size, the model dynamics,
the observation network, and the errors in the model.

Next we define the metric to verify the ETKF en-
semble spread. If the ensemble performs optimally, the
innovation covariance should satisfy


�yo � Hxb��yo � Hxb�T
 � R � HPeHT, �1�

[e.g., Gelb 1974, Eqs. (9.1)–(15); Houtekamer et al.
2005]. In Eq. (1), Pe is the background-error covariance
estimated from the ensemble, H is the observation op-
erator, R is the observation-error covariance matrix, yo

is a vector of observations, and xb is the ensemble-mean
forecast. The expression 
 
 represents expectation.
Therefore, examining the diagonal elements of the ma-
trices on the left- and right-hand sides of (1) provides a
measure on the skill of the ensemble spread. If the
magnitude of the diagonal elements on the right and
left sides of Eq. (1) are similar, then ensemble spread is
said to be consistent with the background error at the
observation locations. In the following calculation, the
expectation was estimated by an average over many
observation times and locations.

Figure 5 shows the vertical profile of the 12-h en-
semble spread [square root of the diagonal elements of
the right side of Eq. (1) averaged for each level] versus
the square root of the 12-h innovation variance minus
the observation error variance [square root of the di-
agonal elements of the left side of Eq. (1) averaged for
each level] for the wind and temperature. The hybrid
shown in Fig. 5 corresponded to the weighting factor
1/�1 � 0.5 and the localization scale Se � 2828 km. The
value at each pressure level was calculated by averaging
the data collected within a layer that was 50 hPa above
and below that level. As stated above, the statistics
were collected over all observation sites within the veri-
fication domain over the verification period. Measured
under the norm that defined the inflation factor [Wang
and Bishop 2003; Eq. (10) in Part I], the overall spread
matched the overall first-guess error by construction.
Checking wind and temperature individually in Fig. 5,
the overall spread of the wind was overdispersive and
the temperature spread was underdispersive. Further
examining individual levels, we found that, for both the
wind and the temperature, the ensemble spread was
underdispersive in the lower and upper levels and over-
dispersive in between.

When compared with the OSSE results of Part I, the
ensemble spread in the real-observation experiment
was less representative of the background forecast er-

FIG. 4. The inflation factor (�) and the factor (�) of percentage
projection of the first-guess error variance onto the ensemble sub-
space for the ETKF in the hybrid experiment with 1/�1 � 0.5 and
Se � 2828 km.
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ror. For example, as shown on Fig. 5, the ensemble
spread of the temperature near the surface was much
smaller than the background forecast error. This was
consistent with the systematic model bias presumably
due to the deficiency in parameterizing the boundary
layer, surface layer, and the land surface processes.
Since all 50-member ensembles were run with the same
set of physics schemes, such an error was not properly
represented in the ensemble. In addition, the initial
state uncertainty for the land surface was not per-
turbed, which could also lead to spread deficiency at

low levels (Sutton et al. 2006). The lack of ensemble
spread due to misrepresentation of these additional er-
ror sources can be spatially inhomogeneous, an effect
that was not captured by an inflation that was calcu-
lated based on innovation variances summed over all
variables and the entire domain.

It is possible that the spread-skill consistency may be
improved if we explore other methods to account for
these error sources. An inflation factor that is not only
adaptive in time but also adaptive in space (J. L.
Anderson 2008, unpublished manuscript) can be used
to account for the inhomogeneity of the spread defi-
ciency. Alternatively, one can employ different physical
parameterizations for different members (e.g., Fujita et
al. 2007; Houtekamer et al. 1996) or using additive
noise method (e.g., Whitaker et al. 2008; Hamill 2006;
Houtekamer et al. 2005; Mitchell et al. 2002). To per-
turb the land surface state, one can use land surface
state analyses from different sources or include the land
surface state in the ensemble update.

c. Case study

Previous studies have shown that flow-dependent es-
timates of background-error covariances are particu-
larly helpful in the data-sparse regions and in the analy-
sis of unobserved variables (Hamill and Snyder 2000;
Snyder and Zhang 2003; Whitaker et al. 2008; Part I).
Part I concluded that ensemble-based estimate of back-
ground errors provided varying, flow-dependent adjust-
ments to the observations. Sometimes the ensemble co-
variance produced large increments in data-void re-
gions because of the diagnosed strong correlation of the
background errors in these regions with those in the
data-dense region. In comparison, the 3DVAR used a
fixed, isotropic background error covariance model and
the update for the data-void region was constrained by
the fixed length scale in the static covariance. The im-
proved analysis from the ensemble-based methods in
data-sparse regions subsequently improved the forecast
downstream.

Another potential benefit of the ensemble-based co-
variance estimates is a more explicit coupling of the
moisture to other state variables. In the WRF 3DVAR
system, the humidity is weakly coupled with tempera-
ture field since the static covariance model does not
explicitly include cross covariances between humidity
and other state variables. In contrast, the flow-
dependent dynamical relationship between the mois-
ture field and other fields is easily represented by the
cross-variable covariances of the ensemble. We hypoth-
esize that the hybrid system may be able to benefit from
all these advantages of the ensemble covariance. In this

FIG. 5. Vertical profiles of the ETKF ensemble spread (dotted
line) vs the square root of the innovation variance � observation
error variance (solid line) for (a) wind and (b) T.
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section, we discuss such potential advantages of the hy-
brid over the 3DVAR through a case study.

We chose to understand why the hybrid improved
the 12-h forecast valid at 1200 UTC 9 January 2003 (day
9), a date when the hybrid suddenly began to produce
forecasts that were dramatically lower in error than the
3DVAR (Fig. 1). In the following diagnostics, we fo-
cused on determining the factors that contributed to the
improvement of the wind forecast by the hybrid.

We first plot the difference of the 12-h wind forecasts
between the 3DVAR and the hybrid valid at 1200 UTC
9 January 2003. Figure 6 (solid and dotted lines) shows
the vertical profile of the 12-h wind forecast fit to ob-
servations averaged over the verification domain. The
improvement of the hybrid over the 3DVAR peaked at
300 hPa.

A spatial map of the difference of the 12-h wind fore-
cast between the hybrid and the 3DVAR at 300 hPa is
shown in Fig. 7. The largest difference was in the east-
ern Pacific and southwest of California. Relative to the
hybrid, the 3DVAR wind forecast showed an anticy-
clonic anomaly in the eastern Pacific. (Hereinafter, we
call the difference of the 3DVAR and hybrid forecasts
or analyses, defined as 3DVAR minus hybrid, the
anomaly.) This wind forecast anomaly penetrated into
the verification domain, extending from southern Cali-
fornia to the northern Mexico. At the radiosonde sites,
3DVAR showed the largest westerly anomaly at Van-

denberg AFB, California, and the largest northerly
anomaly at El Paso, Texas, at 300 hPa.

We further verified the forecasts over this region by
comparing the 12-h wind forecasts at 1200 UTC 9 Janu-
ary 2003 with the soundings at Vandenburg and El
Paso. Figure 8 shows that while the 3DVAR wind fore-
cast deviated from the sounding by as much as 37 m s�1,
the hybrid fit the sounding closely. Thus, the 3DVAR
anticyclonic anomaly shown in Fig. 7 was largely asso-
ciated with errors in the forecast from the 3DVAR
analysis.

To understand these dramatic differences, we looked
back a few data assimilation and forecast cycles prior to
find the original source of the 3DVAR anomaly in the
300-hPa wind. Figure 9 shows the evolution of the
3DVAR anomaly in 300-hPa height over the 24-h pe-
riod between 1200 UTC 8 January and 1200 UTC 9
January 2003. Note that the positive 300-hPa geopoten-
tial anomaly in Fig. 9e corresponds to the anticyclonic
wind anomaly in Fig. 7. Collectively, Fig. 9 indicates
that the ridge anomaly in 3DVAR started to appear at
the analysis time at 1200 UTC 8 January 2003, when it
was centered at about 22°N, 127°W (Fig. 9b). This
anomaly grew during the subsequent 12-h forecast (Fig.
9c). It became stronger after the analysis at 0000 UTC
9 January 2003 (Fig. 9d), and was further intensified
during the next 12-h forecast, leading to the ridge
anomaly (Fig. 9e), and the wind forecast anomaly (Fig.
7) in 3DVAR at 1200 UTC 9 January 2003.

To understand the original difference in the 300-hPa
height analyses shown in Fig. 9b, we examined the 300-
hPa height increments at 1200 UTC 8 January 2003 for
both the hybrid and the 3DVAR. It was found that the
hybrid, through utilizing ensemble-based covariances,
updated the geopotential height over the eastern Pa-
cific more extensively than the 3DVAR (not shown).

Next we conducted a series of diagnostics to under-
stand the growth of the geopotential anomaly (Fig. 9c)
and its impact on the 12-h forecast valid at 1200 UTC 9
January 2003. Examination of the forecast from 1200
UTC 8 January 2003 every 3 h to 0000 UTC 9 January
2003 confirmed that the region of the geopotential
anomaly at about 22°N, 127°W in Fig. 9b grew quickly
and formed the ridge anomaly in Fig. 9c. A further
examination of the accumulated precipitation during
the 12-h forecast period ending at 0000 UTC 9 January
2003, showed that the 3DVAR was raining heavily dur-
ing this period in this region (Fig. 10a) while the hybrid
was not (Fig. 10b).

The additional precipitation and diabatic heating in
the forecast from the 3DVAR analysis might be ex-
pected to produce ridging, consistent with the positive
3DVAR geopotential anomaly. To confirm this hy-

FIG. 6. Vertical profiles of the rms fit of the 12-h wind forecast
valid at 1200 UTC 9 Jan 2003 to the radiosonde observations over
the verification domain for hybrid with 1/�1 � 0.5 and Se � 2828
km (solid line), 3DVAR (dotted line), and 3DVAR whose water
vapor mixing ratio analysis was replaced by that of the hybrid at
1200 UTC 8 Jan 2003 (dash–dotted line).
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pothesis, we removed the rain in the 3DVAR by re-
placing the water vapor mixing ratio in the 3DVAR
analysis at 1200 UTC 8 January 2003 with that from the
hybrid analysis. A revised 3DVAR 12-h forecast was
then generated. The resulting accumulated precipita-
tion ending at 0000 UTC 9 January 2003 is shown in
Fig. 11a and the corresponding 12-h 300-hPa height
anomaly forecast valid at 0000 UTC 9 January 2003 is
shown in Fig. 11b. The precipitation in the revised fore-
cast, especially in the region where the ridge anomaly
grew rapidly, was significantly reduced, as was the cor-
responding geopotential anomaly.

To see if these apparent improvements in the mois-
ture analysis would also benefit subsequent 3DVAR
analyses and forecasts, we then continued the 3DVAR

data assimilation cycle through 1200 UTC 9 January
2003. Figure 6 (dash–dotted line) shows the fit of the
corresponding wind forecast to the observations in the
verification domain. The advantage of the hybrid over
3DVAR at 300 hPa was reduced by 73%, through the
improvements in the earlier moisture analysis in
3DVAR.

The above diagnostics suggest that the difference in
the water vapor mixing ratio analyses at 1200 UTC 8
January 2003 over the eastern Pacific was a main factor
that led to the ridge anomaly in the 3DVAR forecast on
1200 UTC 9 January 2003. To understand how the hy-
brid adjusted the moisture field over the data-void east-
ern Pacific using the observations over the west coast,
Fig. 12a shows the 700-hPa water vapor mixing ratio

FIG. 7. The difference of the 12-h wind forecast between the 3DVAR and the hybrid with
1/�1 � 0.5 and Se � 2828 km valid at 1200 UTC 9 Jan 2003. Solid lines are the 12-h 300-hPa
height forecast of the hybrid (m). Vectors are the wind forecast difference (3DVAR �
hybrid). The shades are the magnitude of the wind forecast difference.
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increment by the hybrid after assimilating all observa-
tions at 1200 UTC 8 January 2003. In the background
forecast, the moisture gradient extending from the cen-
ter of the domain to the southwest of the domain was
associated with a warm front. A positive increment was
associated with the moist air penetrating from the
southeast corner, while negative increments appeared
along the warm front and in the warm moist air mass. In
other words, the hybrid extrapolated information from

the wind and temperature observations over land in
order to dry the troposphere along the warm front. The
drying along the warm front reached the data-void east-
ern Pacific where the 3DVAR forecast produced spu-
rious rain. Further diagnostics (not shown) also re-
vealed that the hybrid dried all of the lowest 12 model
levels in the same region, with increments up to 1 g
kg�1.

As an additional demonstration of the flow-depen-
dent update by the hybrid, Fig. 12b shows the low-level
moisture increment for another case at 1200 UTC 6
January 2003. The increment of the mixing ratio again
aligns with the moisture gradient. In this case, there was
negative increment at the moisture bulge at the south-
west corner and positive increment downstream. Simi-
lar plots for both cases (not shown) for the 3DVAR
analysis showed negligible moisture increment and in-
crements for the wind and temperature were also local-
ized as was defined by the static correlation length
scale.

4. Conclusions and discussion

As a follow-up to the OSSEs of Part I, this paper has
presented further tests of the hybrid ETKF–3DVAR
data assimilation system developed for WRF by assimi-
lating real observations. The experiments were con-
ducted in a region surrounding North America. A
coarse resolution of 200-km horizontal grid spacing was
used. Radiosonde wind and temperature observations
for a 4-week period starting 1200 UTC 1 January 2003
were assimilated.

Our results showed that the hybrid analyses pro-
duced more accurate 12-h forecasts than the 3DVAR.
The improvements from the hybrid were larger over
western North America than eastern North America.
Vertical profiles of the 12-h forecast error showed that,
for the wind, the hybrid produced the largest improve-
ment by 	9%–11% relative to the 3DVAR at 200–300
hPa. For the temperature, the hybrid improved upon
the 3DVAR by 3% on average at all layers except in
the lower troposphere, where both the hybrid and the
3DVAR showed large systematic errors. The perfor-
mance of the hybrid was generally not sensitive to the
magnitude and the scale of LBC ensemble perturba-
tions generated by the static covariance, perhaps be-
cause of the large domain used.

Using the inflation and subspace projection factors of
Wang et al. (2007b), the overall ensemble spread was
tuned to agree in magnitude with the overall 12-h fore-
cast error. For individual variables and layers, the con-
sistency between spread and error was less than that in
the OSSE. As discussed in section 3b, this suggested

FIG. 8. Fit of the 12-h wind forecast to the soundings valid at
1200 UTC 9 Jan 2003 for the 3DVAR (dotted line) and hybrid
with 1/�1 � 0.5 and Se � 2828 km (solid line). (a) Zonal wind fit
to the sounding at Vandenburg, CA. (b) Meridional wind fit to the
sounding at El Paso, TX.
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more sophisticated methods other than a global infla-
tion are needed to account for the system errors.

A case study was performed to understand a particu-
lar situation when the hybrid system outperformed the
3DVAR. The hybrid was able to make significant ad-
justments to the background over the data-void eastern
Pacific using the observations over land according to
the background flow. Although only wind and tempera-

ture observations were assimilated, the hybrid success-
fully updated the moisture field flow dependently
through cross-variable covariances defined by the en-
semble. The changes in the moisture analysis improved
the subsequent wind and temperature analyses and
forecasts downstream in the verification region.

In this pilot study, we employed a coarse resolution
model and a relatively sparse observation network. Fu-

FIG. 9. The difference of the analysis and the first guess for the 300-hPa geopotential height
between the 3DVAR and the hybrid from 1200 UTC 8 Jan to 1200 UTC 9 Jan 2003 every 12
h. Difference of the (a) background and (b) analysis at 1200 UTC 8 Jan 2003, the (c) back-
ground and (d) analysis at 0000 UTC 9 Jan 2003, and the (e) difference of the 12-h forecast
at 1200 UTC 9 Jan 2003. Black contours are the 300-hPa geopotential height (m) for the
hybrid. Color shades are the difference (3DVAR minus hybrid) of the 300-hPa geopotential
height (m).
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ture work should explore the effectiveness of the hybrid
in a configuration closer to real-world regional scale
implementation, using a higher-resolution model and
dense observations. In general, the benefits of the hy-
brid over 3DVAR may diminish when the model error
is large and when the observation network becomes
more uniform and denser (e.g., Hamill and Snyder
2000; Whitaker et al. 2004, 2008).

As discussed in Part I, our choice of a coarse resolu-
tion in this study emphasized the synoptic scales. The
real-world regional-scale applications use a much
higher resolution. The mesoscale features that appear
at higher resolution are known to be sensitive to the
details of imperfect model parameterizations, and thus
the hybrid, whose covariance estimates partially de-

pend on the accuracy of the forecast model, may not
perform significantly better than 3DVAR. On the other
hand, increasing the model resolution might be ex-
pected to reduce model errors at synoptic scales and
thus improve the quality of the ensemble-estimated co-
variances and thus the analyses from the hybrid. Also
note that the mesoscale is more poorly observed than
larger scales, and does not exhibit as strongly the bal-
ances assumed by the 3DVAR covariance model, in
which case the hybrid’s ensemble covariances may pro-
vide a further advantage.

FIG. 10. The 12-h forecasts of the accumulated precipitation
valid at 0000 UTC 9 Jan 2003 for (a) 3DVAR and (b) hybrid.

FIG. 11. (a) As in Fig. 10a, and (b) as in Fig. 9c, but the plots
represent the forecast simulations in which the 3DVAR water
vapor mixing ratio analysis at 0000 UTC 9 Jan 2003 was replaced
with that of the hybrid.
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Given the limitation of our experiment design, our
result in this study thus is not a direct analog to the
real-world applications. Parameters such as weighting
coefficients and localization length scales that are opti-
mal for this study may not be optimal if the system were
run at a higher resolution and with more observations
and thus likely need to be retuned.

Note also that results of Buehner (2005) for a similar
hybrid assimilation system applied to global analyses
were less encouraging in terms of the relative perfor-
mance of 3DVAR and hybrid. Since there were many
differences between those experiments and ours in
terms of numerical models, ensemble generation meth-
ods, ensemble size, observation networks, and verifica-
tion regions, it is unclear which of these explain the
relative performance difference.

Further development and tests of the hybrid system
are warranted given the encouraging results in this
study and its appealing characteristics, such as its
straightforward implementation within existing varia-
tional schemes and the efficient update of the ensemble
perturbations by the ETKF. Besides, with further de-
velopment of the ensemble, the benefit of the hybrid
may also improve. For example, using multiple physics
or stochastic physics to account for model errors may
provide flow-dependent representation of the model
error, which may improve the skill of the ensemble to
estimate the background forecast error. The perfor-
mance of the ensemble may also improve if we use
short-range ensemble forecasts from a global ensemble
data assimilation system to generate the LBC ensembles,
instead of using the random perturbations drawn from
a static covariance.

As an initial effort to test and understand the newly
developed hybrid system, we compare the hybrid with
the 3DVAR. We recommend direct and thorough com-
parisons with other data assimilation techniques such as
the EnKF and the 4DVAR so as to understand the
relative advantages and disadvantages of different tech-
niques in realistic NWP settings.
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