
[bookmark: h.o08a9ljfcdlo]The US National Blend of Models Statistical Post-Processing of 
Probability of Precipitation and Deterministic Precipitation Amount


Thomas M. Hamill

NOAA Earth System Research Lab, Physical Sciences Division, Boulder, Colorado


Eric Engle, David Myrick, and Matthew Peroutka

NOAA/NWS Meteorological Development Lab, Silver Spring, MD


Christina Finan

NCEP Climate Prediction Center, College Park, MD and Innovim LLC, Greenbelt, MD


Michael Scheuerer

Cooperative Institute for Research in the Environmental Sciences
University of Colorado, Boulder, CO


Submitted to Monthly Weather Review

26 August 2016

Corresponding author information:

Dr. Thomas M. Hamill
NOAA/ESRL Physical Sciences Division
R/PSD 1,  325 Broadway
Boulder, CO 80305-3328
tom.hamill@noaa.gov
+1 (303) 497-3060 phone
+1 (303) 497-6449 telefax
ABSTRACT:
The US National Blend of Models provides post-processed, high-resolution multi-model ensemble guidance.   The goal is to provide National Weather Service forecasters with a calibrated starting point for producing digital forecasts.
The algorithms for 12-hourly probability of precipitation (POP12) and the deterministic, 6-hourly quantitative precipitation (QPF06) are described.  The procedure for POP12 is: (1) Populate forecast and analyzed cumulative distribution functions (CDFs) to be used later in quantile mapping.  Were every grid point processed without benefit of data from other points, 60 days of training data would likely be insufficient for estimating CDFs and adjusting the errors in the forecast.  Accordingly, “supplemental” locations were identified for each grid point, and data from the supplemental locations were used to populate the forecast and analyzed CDFs used in the quantile mapping. (2) Load the ensemble from NCEP and Environment Canada deterministic and ensemble forecasts, interpolated to ⅛-degree.  (2) Using CDFs from the past 60 days of data, apply a stochastic quantile mapping procedure to the ensemble forecasts.   (3) Generate probabilities from the ensemble relative frequency. (4) Spatially smooth the forecast using a Savitzky-Golay smoother, applying more smoothing in flatter areas.
The QPF06 algorithm is simpler:  (1) Form a grand ensemble mean, again interpolated to ⅛-degree.  (2) Quantile-map the mean forecast using CDFs of the ensemble mean and analyzed distributions.  (3) Spatially smooth the field, similar to POP12.
Results for spring 2016 are provided demonstrating that the post-processing improves POP12 reliability and skill and the deterministic forecast bias while maintaining sharpness and spatial detail.


1. Introduction.

	The forecast problem to be discussed in this article is the production of skillful, reliable, and geographically detailed precipitation guidance leveraging the numerical guidance from one or more numerical weather prediction (NWP) systems, and post-processed with short training data sets.  Raw NWP precipitation forecasts, deterministic and probabilistic, are often less useful than they could be due to issues with the underlying prediction system.  Forecast guidance may exhibit location-dependent and location-independent biases.   Biases also differ between light and heavy precipitation events, perhaps over-forecasting light and under-forecasting the heavier precipitation.  Ensembles of precipitation predictions may be under-spread and may not offer as much geographic detail as desired by users.   For these reasons, statistical post-processing is often relied on to adjust the current forecast using the discrepancies between past forecast and observations.
	Several articles in the recent past have demonstrated the improvement of probabilistic forecast skill and reliability that results from multi-model ensemble combination of precipitation forecasts (e.g., Hamill 2012, H12 hereafter, Liu and Xie 2014).   Presumably different centers, with different prediction systems, will produce guidance with somewhat different and compensating biases and an overall spread larger than that achieved from any one ensemble prediction system. H12 showed that 24-h accumulated probability of precipitation (POP24) from a multi-model ensemble (MME) formed from European Centre for Medium-Range Weather Forecasts (ECMWF), United Kingdom Met Office (UKMO), Canadian Meteorological Centre (CMC) and US National Centers for Environmental Prediction (NCEP) global ensembles provided reliable and skillful forecasts relative to 1-degree precipitation analyses over the contiguous US. Similar results using MMEs were found by Candille (2009) and Swinbank et al. (2016; and references therein).
Consensus forecasts have long been known to produce a more accurate forecast than any single individual model or forecaster when verified over an extended period of time (e.g., Vislocky et al. 1997). Based on recent studies by NWS Central Region that showed a consensus model blending approach could provide a skillful starting point for NWS digital forecasts (Craven et al. 2013), the US National Weather Service instituted the National Blend of Models project, called simply the "National Blend" hereafter. Under the National Blend, the NWS is generating calibrated, high-resolution forecast guidance from statistically post-processed multi-model ensembles for use in digital forecasting at Weather Forecast Offices and National Centers (Glahn and Ruth 2003).  
	While a straightforward estimation of probabilities from the four-center MME relative frequencies was shown in H12 to provide useful probabilistic precipitation guidance at 1-degree grid spacing, in the National Blend there are less available data (NCEP and CMC global data only, currently) and the final desired output grid spacing over the CONUS is much finer, ~2.5 km.  The hope and expectation is that statistical post-processing can correct systematic errors in the mean and spread and can apply sub-gridscale spatial detail where it is realistic, such as statistically downscaling to introduce terrain-related precipitation variability in the western US.
	Can statistical post-processing realistically improve upon multi-model ensemble precipitation guidance from coarser-resolution forecasts?  Previously, the authors and others have demonstrated that with a long time series of reforecast and high-quality, high-resolution analyzed training data, it is possible to statistically post-process a single model’s output and thus to generate reliable, skillful, and downscaled probabilistic precipitation guidance (Hamill and Whitaker 2006, Hamill et al. 2008, 2013, 2015, Scheuerer and Hamill 2015; see also Roulin and Vannitsem 2012 and Verkade et al. 2013).   However, in the National Blend, a reforecast infrastructure was not yet in place for all available prediction systems, though in the future one or both centers may provide these on a routine basis.  Other recent post-processing approaches have included a Bayesian Model Averaging approach leveraging Gamma kernels (Sloughter et al. 2006), and Gamma and censored Gamma distribution-fitting methods (Bentzien and Friedrichs 2012, Scheuerer 2014).   Generally, these approaches were applied with higher-resolution, limited-area models where downscaling was much less of an issue and assuming identical parameters across the domain was more justified. 
We thus seek a post-processing methodology that is capable of providing realistic adjustments with limited, coarse-resolution training data and implicitly provides a location-dependent statistical downscaling.    To date, there is not publicly available (Fortran) code available that meets these criteria.  Accordingly, this article will describe and verify a somewhat new methodology for 12-hour accumulated probability of precipitation (POP12)  that provides improvement over probabilities estimated directly from MMEs, even with limited training data and coarse-resolution forecasts.   At the heart of the procedure is an established technique known as “quantile mapping” (Hopson and Webster 2010, Voisin et al. 2010, Maraun 2013).   To apply quantile mapping, one generates forecast and analyzed cumulative distribution functions (CDFs) from recently available forecast and analyzed data.   Given today’s precipitation forecast value at a grid point, one can determine the associated quantile from the forecast CDF and then replace the forecast with the analyzed value associated with that same quantile in the analyzed CDF.  Quantile mapping thus adjusts for bias conditioned on the forecast precipitation amount.   To deal with the small training sample size and other issues, the quantile-mapping procedure applied here will include several unconventional elements, including population of CDFs using “supplemental locations,” the quantile mapping of forecast values using surrounding grid points following Scheuerer and Hamill (2015), and the addition of stochastic noise to the quantile-mapped ensemble values, inspired by dressing and kernel-density methods seen in articles such as Roulston and Smith (2003) and Sloughter et al. (2007).   In this article, we will also describe a methodology that renders multi-model ensemble mean deterministic precipitation forecasts somewhat less biased with respect to the observations, ameliorating the tendency of ensemble forecasts to over-forecast light precipitation and under-forecast heavy amounts.   It is based on a quantile mapping of the multi-model ensemble-mean forecast. 
	Below, section 2 will describe the forecast and analyzed precipitation data sets used in version 2.1 of the National Blend, operationally implemented on [insert date when known].  Section 3 reviews the verification methodologies that are used in this article.  Section 4 describes the methodology for increasing the sample size used to populate CDFs through the use of “supplemental” locations.  Section 5 describes the POP12 algorithm, and section 6 describes the QPF06 algorithm.  Section 8 provides objective verification statistics of the forecasts before and after post-processing.  Section 8 provides a discussion and conclusions.

2. Forecast and analyzed precipitation data sets.

For the version 2.1 of POP12 and QPF06 in the National Blend described here, we will examine the skill of raw and post-processed guidance for the 00 UTC cycle forecasts produced during the period of 1 April to 30 June 2016, though forecasts from 22 to 27 June 2016 were not available.  For each day, the previous 60 days of forecasts were used for training.   Forecast data was interpolated to the ⅛-degree grid spacing of the analyzed data.  In the current National Blend product, there is a final step of interpolating the precipitation amount to a 2.5-km grid.   In the future, post-processing may occur directly on the 2.5-km grid, but for present purposes, results are presented only for the ⅛-degree output.

a.  Forecast data.  

The primary data sources in this study were global ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS) and the Canadian Meteorological Center (CMC) Ensemble Global Environmental Prediction Center (GEPS).  Deterministic forecasts from the NCEP Global Forecast System (GFS) and CMC Global Deterministic Prediction System (GDPS) were also used.    In the future, we hope to be able to leverage a greater range of data, including shorter-range forecasts from NWS models and possibly data from other prediction centers.
The version of the NCEP GEFS used in this experiment was described in Zhou et al. (2016), and this version went into operations on 02 Dec 2015.  The GEFS used the NCEP Global Spectral Model (GSM) version 12.0.0, described at http://www.emc.ncep.noaa.gov/GFS/impl.php , and in turn the GSM used the model settings implemented on 14 Jan 2015.    The GEFS horizontal resolution was T574 (spectral with triangular truncation at wavenumber 574) to day +8 and T382 thereafter to day +16, corresponding to respective grid spacings of approximately 27 km and 40 km at 40°N latitude.   The GEFS system used 64 vertical levels with a model top of about 0.27 hPa.  Twenty ensemble members were generated for each cycle.  Model uncertainty was generated through the stochastic total tendency perturbations of Hou et al. (2008).  Initial conditions were generated with ensemble Kalman filter (EnKF) perturbations centered around a control analysis generated with a hybrid EnKF-4D-variational analysis procedure (Kleist and Ide 2015ab).  The hybrid analysis used 75% weighting of EnKF covariance estimates and 25% weighting of static covariances.  Model uncertainty in the data assimilation scheme was treated through a combination of three techniques, Stochastically Perturbed Physical Tendencies (SPPT; Buizza et al. 1999, Palmer et al. 2009), stochastically perturbed boundary-layer relative humidities, and stochastic kinetic-energy backscatter (Shutts 2005, Berner et al. 2009). 
	The deterministic forecasts from the NCEP GFS used the GSM version 12.0.0, which provided forecast data at T1534 resolution on a reduced Gaussian grid with a grid spacing of approximately 10 km at 40°N latitude for forecasts to +240 h lead.  Semi-Lagrangian time-stepping was used.  For forecasts from +240 to +384 h, the horizontal resolution was T574.  64 vertical layers are used, with a model top at 0.3 hPa.  Assimilation was the same as described for the GEFS above.  Other model changes are described at http://www.emc.ncep.noaa.gov/GFS/impl.php. 
	The Canadian Meteorological Center GEPS system data available during the test period was described in Gagnon et al. (2014, 2015).  GEPS system version 4.1.1 was used during this period.  The GEPS used in turn the Canadian Global Environmental Multi-Scale Model (GEM) version 4.6.3, with the basic computational dynamics described in Cote et al. (1998a,b). Data assimilation for defining the GEPS initial conditions used a 256-member EnKF described in Houtekamer et al. (2014).  The horizontal grid for assimilation was 800x400, providing a grid spacing ~38 km at 40°N latitude.  The ensemble forecast system was computed on the same grid with 40 vertical levels and a model top of 1.78 hPa.  Model uncertainty was treated through the use of multiple parameterizations and multiple parameters therein (Gagnon et al. 2014, 2015), a perturbed physical tendency method similar to SPPT (Charron et al. 2010), and stochastic kinetic-energy backscatter (ibid).   
The CMC GDPS changed on 15 Dec 2015 to the use of a “Yin-Yang” grid for the forecast (Environment and Climate Change Canada, 2015).  The data assimilation was performed on the older 0.45° x 0.45° Gaussian grid using a four-dimensional ensemble-variational approach (4D-En-Var).  This combined variational data assimilation with an EnKF (Houtekamer et al. 2014) to provide the background ensemble.   Analysis increments were then applied through a 4D Incremental Analysis Update applied over the 6-h assimilation window.  The GDPS forecasts used the Yin-Yang grid (two grids with 1287 x 417 grid points).  Horizontal resolution was quasi-uniform and varied from a lower bound of 17.2 km to a maximum of 25 km.  80 staggered hybrid levels were used, plus two diagnostic levels at 10 and 1.5 m for near-surface winds and temperature/dewpoint.  The model lid was at 0.1 hPa.  Time integration used a new implicit semi-Lagrangian, 2-time level methodology with 12 minutes per time step.
A model change log for the Canadian prediction systems is available at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/changes_e.html 

b. Analyzed precipitation data.  

	Precipitation analyses were obtained from the Climatology-Calibrated Precipitation Analysis (CCPA) data set described in Hou et al. (2014).  This study produced 12-hourly probability of precipitation forecasts and 6-hourly accumulated deterministic precipitation forecasts, both in accordance with requirements set for the National Blend project.  Accordingly, we extracted both 6- and 12-hourly accumulated precipitation from the CCPA data set.  For this study, precipitation was extracted, processed, and validated on an ⅛-degree grid over the contiguous US (CONUS).  Only grid points inside the CONUS or over the Columbia River Basin in Canada and a few other small basins north of the US-Canadian border were considered here.
	In the definition of “supplemental locations” discussed in the next section, a more full time series of CCPA data was used, spanning 2002-2015, as opposed to the prior 60 days used for the quantile mapping conditional bias correction procedure to be described.

3.  Verification methodologies.

a. Probabilistic forecast verification.

A common way to evaluate probabilistic predictions from ensembles is through the use of reliability diagrams (Wilks 2011, section 8.4.4).  The reliability diagrams assigns the probabilistic forecasts that were issued into 21 bins between 0 and 100 percent.  The analyzed relative frequency associated with each sorted bin is then reported.    Along with reliability curves, inset histograms are included that provide the frequency with which forecasts of various probabilities were issued.   The inset histograms provide information on how “sharp” the forecasts were, i.e., the extent to which they were more binary in character.
Additionally, Brier Skill Scores (BSS) for the POP12 event (≥ 0.4 mm in the 12-h period) are provided.  The BSS is calculated relative to climatology, where climatology is determined uniquely for each month of the year and each ⅛-degree grid point inside the CONUS from 2002-2015 CCPA data.  BSS is calculated here in a rather conventional way (Wilks 2011, section 8.4.2), rather than more involved methods such as Hamill and Juras (2006) that guard against falsely attributing skill due to geographic variations in climatological event frequency.  
The conventional way of BSS calculation as follows.  For a particular forecast lead time, let P(l,c) be the forecast of POP12 at location l (a tuple of the i and j indices) and the case day c, 0 ≤ P(l,c) ≤ 1.  There are L overall locations in the CONUS and C case days, and associated with each location l is a latitude ϕ(l), which is used to provide a weight to the sample proportional to the grid box area.  The analyzed event O(l,c) is set to 1.0 if the analyzed precipitation is ≥ 0.4 mm, and it is set to 0.0 if the analyzed precipitation is < 0.4 mm.  The Brier Score of the forecast BSf is then calculated as a grid-box size weighted sum of the average squared error of the probability forecast:

					(1)

The Brier Score of climatology BSc is calculated similarly.  We define Pc(l,c) as the climatological event probability of ≥ 0.4 mm in the 12-h period, as determined from 2002-2015 CCPA data.  This climatology is determined separately for each grid point l and for each month of the year.  Pc(l,c) then replaces P(l,c) in eq. (1) when calculating BSc .  The BSS is then calculated as 

		.								(2)

A perfect probability forecast has a value of 1.0, and a forecast of 0.0 has the same skill as climatology.  Some studies also provide a decomposition of the BSf into components of reliability, resolution, and uncertainty (Wilks 2011, section 8.4.2).  However, since this decomposition is only strictly valid when samples are drawn from a population with the same underlying distribution (Hamill and Juras 2006), this decomposition is omitted.

b. Deterministic forecast verification.

	Equitable threat scores (ETS) and bias (BIA) are determined in standard fashion following Wilks (2011, eqs. 8.18 and 8.10 respectively), though again they may over-estimate the magnitude of actual skill by neglecting variations in climatological event probabilities (Hamill and Juras 2006).  These scores are generated by populating a contingency table with bins for (forecast, event) pairs.  Let F(l,c) denote the ensemble-mean forecast at location l and case day c, and O(l,c) is the analyzed value.   The event threshold T = 0.4 mm.   Now, define an indicator variable for the event of the forecast and analyzed being greater than or equal to the threshold amount:
		if  F(l,c) ≥ T						(3)
			    =  0		if  F(l,c) < T.	

We then denote a as the grid-box size weighted number of samples associated with both the forecast and analyzed exceeding a particular event threshold:

						(4)

Similarly, b is defined as the grid-box size weighted number of samples when the forecast was equal to or exceeded T but the analyzed did not.   c is the weighted number of samples when the forecast did not exceed T but the analyzed equalled or exceeded T, and d is the weighted number of samples when both forecast and analyzed were below T. Then the ETS is calculated as

   , 							(5)

where aref = (a+b)(a+c) / (a+b+c+d).    If all samples are drawn from a population with the same underlying climatology, then ETS = 1 for a perfect forecast and 0 for a forecast with the skill of climatology.  In this situation, we are computing ETS using samples from locations with wide variations in their climatologies, and hence positive ETS may be reported even when skill is zero (ibid).
	Bias is also calculated using contingency table elements.  Bias is defined as follows:
	.									(6)

An unbiased forecast has a value of 1.0; bias exceeding 1.0 indicates the events are over-forecast on average, and bias below 1.0 indicates the events are under-forecast on average.

4.  Augmenting training sample size with supplemental locations.

	Before describing the supplemental location methodology, we start with developing a rationale for doing so.  Suppose we had a practically infinite time series of reforecasts and associated high-quality analyses, say four or more decades of daily gridded forecast and analysis data, and with the underlying observing system stable during the period.  Were we to examine the systematic errors for a particular member of that prediction system, we’d notice biases that were both location-dependent and location-independent.  Biases may be location dependent, related to the particular local climatology and terrain elevation and aspect. For precipitation, likely the biases have some seasonality, varying from winter to summer and were also conditional upon the forecast amount, i.e., they were different for 1-mm and 10-mm forecasts.  With additional exploratory data analysis, we might discover further conditional biases; perhaps the model over-forecasts precipitation on a westerly wind and under-forecasts precipitation on an easterly wind.  Perhaps biases differed with the phase of El Niño/La Niña or with other low-frequency modes of oscillation.  Additionally, the forecast guidance may exhibit biases that are independent of location.  It has previously been noted (e.g., Hamill 2012) that forecast models often systematically over-forecast the occurrence of light precipitation amounts.   These may be due to, say, deficiencies in the model numerics or parameterization suite.
We are presented with a practical problem in statistical post-processing, the challenge of providing meaningful statistical adjustment to the raw guidance with limited training data.  In this application, a practical constraint was to provide as much improvement as possible using only the last 60 days of forecasts.  The presumption was that modeling systems would change on a timescale of a year or so, and with model changes come the strong likelihood of changes in forecast bias, obviating the use of the previous year’s forecasts.    While the use of longer training data sets such as reforecasts is preferable, in their absence we aim to still be able to make meaningful statistical adjustments.
	What from the above list of potential biases is practical to estimate with the most recent 60 days’ data?  What from the above list is important to estimate with 60 days of data?  Limited to only the most recent data, estimating bias conditional upon low-frequency phenomena like El Niño and La Niña isn’t practical, and probably there is not enough data to estimate possible dependencies on weather aspects like wind direction.   It is clearly important to correct for widespread systematic biases.   Arguably, too, it is important to try to correctly estimate location-dependent biases.  To illustrate that this can have a first-order effect on bias, let’s examine CDFs for two nearby locations (Fig. 1).  The CDF of the forecast at a particular grid point location (i,j) is defined as

		,							(7)

where is a particular precipitation amount, and is a random variable for the forecast and analyzed amount.  The CDFs are estimated from long-term event relative frequency.   A CDF for the analyzed amount  is defined similarly.  The percentile associated with a particular precipitation amount is commonly known as a “quantile.”   Figure 1 shows forecast and analyzed CDFs for two nearby points in southern Oregon, developed with a relatively large sample, 14 winter seasons of GEFS reforecast data (Hamill et al. 2013) and accumulated precipitation analyses for +24 to +48 h forecasts.  As noted by the large differences in analyzed and forecast CDFs at the two locations, these two points have greatly different biases conditional upon forecast amount.  For example, for the western point in Fig. 1(a), the quantile associated with the 15-mm forecasts is associated with ~23 mm analyzed.  In the eastern point in Fig. 1(b), the quantile associated with the forecast value of 15 mm is associated with ~10 mm analyzed.  That is, the western grid point has a dry bias for this forecast amount, the eastern grid point a wet bias.   Perhaps the smoothed terrain representation in the GEFS system was partly responsible.  In any case, this is the sort of repeatable first-order bias that a human forecaster would prefer to see automatically corrected.   Without this correction, the resulting POP12 forecasts would not have appropriate terrain-related variability, and a forecaster would likely feel compelled to reintroduce it through manual modification.  
In summary, with a short training data set we would like at least to be able to correct for gross systematic biases and location-dependent bias.  The potential location-dependence of bias would suggest performing statistical corrections on a grid-point by grid-point basis, not using data from other points.  Consistency of forecast biases due to endemic model problems argues for the pooling of training data across broader sets of locations to minimize sampling error.   Pooling of training data (e.g., Charba and Samplatsky 2011ab, Hamill et al. 2008, 2015) may also be a practical necessity when the training sample size is small, as it is in this application. 
We now discuss the details of the “supplemental location” methodology, first briefly below and then in more detail in online appendix A.   The presumption underlying the methodology is that biases can be identified that have commonalities related to terrain elevation, terrain orientation, and to some extent on the climatological distribution of precipitation.   If these assumptions are met, then for a given grid point, it will be possible to identify supplemental locations with similar precipitation climatologies and terrain characteristics, and augmenting the training data with information from these locations will result in reduced sampling error for the resultant CDFs with minimal diminution of the capacity to correctly infer location-dependent bias.   Presumably, the population of CDFs using the forecast and analyzed data at additional supplemental locations will help ameliorate sampling error while still preserving the ability to correctly estimate location-dependent biases.  It is also hoped that the resulting CDFs will span a larger range of weather conditions despite the use of a short training sample. 
 Hamill et al. (2015) described an earlier version of an algorithm to determine the supplemental locations tailored toward larger samples.  In that application, post-processing at a particular forecast was based on the training data not only from the forecast grid point but also using data from 20 other supplemental locations.    For the current application, where much less training data is available (again, only the last 60 days), a modified algorithm is presented that specifies a greater number of supplemental locations. It is similar in concept to the methodology in the paper above, but different in a few details; the specific algorithmic details of the supplemental locations is described in full in online appendix A.   
As was illustrated in Fig. 1, indiscriminate use, say, of other surrounding data points based merely on nearness can provide sub-standard adjustments for conditional bias.  In the current procedure, for each “target” grid point where a post-processed forecast was produced, a set of supplemental locations was defined based on similarity of terrain characteristics, analyzed precipitation climatologies, and horizontal distance.  Supplemental locations were also required to be spaced some minimum distance from the target point and from each other to provide more independent samples.   The selection of supplemental locations was based on minimization of a penalty function.  The first supplemental location was defined as the location with the smallest penalty, i.e., the smallest weighted difference in precipitation climatology, terrain characteristics, and distance, while maintaining a minimum distance from the original grid point. The second supplemental location was similarly defined, but it was also required to be a minimum distance from both the target and the first supplemental location.  Definition of the third, fourth, and subsequent locations proceeded similarly in an iterative manner.   Each grid point in the contiguous US had a minimum of 50 supplemental locations defined, though for regions where a larger number could be found with relatively small penalty functions, up to 100 supplemental locations were defined.  This typically increased the number of supplemental locations in flatter, drier areas.
Figure 2 illustrates supplemental locations that were defined for several pre-selected grid points for the month of April; separate supplemental locations are calculated for each month. The 95th percentile of the 24-h accumulated precipitation climatology determined from 2002-2015 CCPA data is underlaid for reference.  As shown in Fig. 2, the supplemental locations are prevented from being too close to each other by design so as to potentially provide a more independent set of samples spanning a larger range of weather conditions.  The algorithm, as intended, exhibits the tendency to define the supplemental locations based on precipitation climatology.  Notice, for example, that supplemental locations for Omaha NE and Portland OR tend to occur more preferentially at locations with similar 95th percentiles of climatology.   Though not shown, terrain height and orientation (facet) also were factors in the selection of the particular locations.  Similar plots for different months are shown in online appendix A.
Supplemental locations are not a panacea for all of the problems of precipitation bias correction.  The current algorithm may still not provide realistic estimates in situations where the recent past has encountered unusually widespread dry or wet weather.  For example, should the region surrounding a grid point of interest be experiencing a large-scale extended drought, the CDFs populated with the last 60 days of data and supplemental locations will not resemble the CDFs that would be generated with multiple decades of data.  Consequently, the accuracy of the subsequent quantile mapping should be considered suspect if today’s weather is unlike anything that has occurred in the area in the past 60 days.  Another problem is that the CDFs implicitly reflect the forecast bias of the previous 60 days, which may or may not reflect the current forecast bias; after all, precipitation biases may change with seasons, from winter seasons over the CONUS dominated by non-convective rainfall to summer seasons more affected by convective rainfall.   Such challenges are largely unavoidable when post-processing with a short training data set.

5.  The 12-hourly probability of precipitation algorithm.

	The general process for generating a gridded POP12 forecast is as follows:  (a) Populate the CDFs for the forecast and analyzed data using the past 60 days and the supplemental location data. (b) Read in most recent deterministic and ensemble forecasts from the NCEP and CMC systems, and interpolate them to the ⅛-degree grid of the precipitation analyses.  (c) Perform a stochastic quantile mapping procedure to correct for the conditional biases of each member, and to introduce some additional ensemble spread. (d) Form an initial POP12 forecast from the ensemble relative frequency. (e) Perform a Savitzky-Golay smoothing of the POP12 forecast, applying more smoothing in flatter regions.  We now describe each of the steps in more detail.

a. Populate CDFs.

	The first step, updating of CDFs, is typically performed prior to the arrival of the most recent forecast data.  The updating is dependent on the arrival of the most recent CCPA analysis estimates, which of course arrive after the forecast data for the same time period.  A rolling archive is maintained of the last 60 days of paired forecast and precipitation analysis data; when a new day’s data are ready, the oldest data are discarded.  Separate archives are maintained for each forecast system and each member to permit the possibility, as with the CMC ensemble, of differing error characteristics due to the use of different parameterizations or parameters for individual members.  Similarly, separate archives of forecast-observation pairs are maintained for each forecast lead time in question, e.g., 12 h, 24 h, 36 h, and so forth to permit estimation of lead-time dependent CDFs, since biases may vary with forecast lead or over the diurnal cycle.  With the last 60 days of valid data and with the supplemental locations predetermined, CDFs can now be generated.  For a particular lead time, the last 60 days of forecast and analyzed data are input, as are the file of supplemental locations.  For each ⅛-degree grid point determined to be inside the CONUS (or Columbia Basin), a CDF is populated separately for interpolated forecast and the analyzed data, using data from that grid point and from the predefined supplemental locations.  The resulting CDF data for each grid point consists of a pair of vectors, one denoting ordered accumulated precipitation amounts, the other indicating the cumulative non-exceedance probability, i.e., the probability that the analyzed or forecast is lower to or equal to the amount, i.e., eq. (3).  This is based simply on the relative frequency in the training data.   

b. Interpolation of forecast data to ⅛-degree grid.

The second step, the input of forecast data and interpolation to the ⅛-degree grid of the CCPA, is rather straightforward.  “Budget” interpolation is used (Accadia et al. 2003).   

c. Stochastic quantile mapping of each member.

	The third step, a stochastic quantile mapping procedure, is more involved.  First, we review the concept of quantile mapping, as this lies at the heart of the algorithm.  Equation (3) provided a definition of the CDF.  There is also an inverse distribution function, also known as the quantile function, which maps from a given cumulative probability back to a precipitation amount.  For example, for a precipitation forecast, the quantile function is

 .							(8)

Quantile mapping to generate a conditional bias corrected precipitation amount can thus be expressed as 

									(9)

This indicates that the quantile of the CDF associated with today’s forecast amount is identified, and the forecast amount is replaced with the analyzed amount associated with the same quantile.  In this application, the quantile mapping procedure is repeated for every member of the multi-model, multi-center forecast ensemble.  Again, separate CDFs are maintained for every member of the MME, permitting the possibility of different biases for different members.
	For POP12, we introduce some modifications to the basic quantile mapping procedure implied in eq. (3).  A first modification is introduced to deal with the potential for large sampling variability of quantiles at the extremes.   In situations where the quantile associated with forecast value today is greater than 0.95, quantile mapping is performed with a regression analysis modification following Scheuerer and Hamill (2015, Appendix A, eqs. 1-2).
	Another modification is the synthetic enlargement of ensemble size.  When processing a given grid point (i,j), quantile mapping uses not only data at (i,j) but forecast data at eight surrounding grid points as well (Fig. 3).  Forecast CDFs and precipitation forecast amounts are used from each of the locations in the 3 ✕ 3 array, but the quantile mapping only uses the analyzed CDF from the center grid point, thereby attempting to make the 3 ✕ 3 array of forecasts be consistent in their climatology with the central point’s climatology.   A related application of this underlying technology was first described in Scheuerer and Hamill (2015; see Fig. 2 and associated text). Some underlying rationales for the use of the 3 ✕ 3 array in this application are that: (1) ensemble size is limited, and methods for realistically increasing ensemble size may ameliorate sampling error, and (2) ensembles frequently have small to moderate position errors, and quantile mapping using forecasts from other nearby positions allows provides some robustness against position errors.  In the National Blend version 2.1 described here, the 3 ✕ 3 array array of points were spaced ⅜ degree apart from each other.  Ideally, the optimal grid spacing would be identified through testing of multiple separation values, which might be permitted to vary with forecast lead time (presumably larger for longer-lead forecasts).  Such extensive tests were not performed here.
Using this 3 ✕ 3 array array of data points, one can imagine very different resulting quantile-mapped ensembles and POP12s for differing weather scenarios.  Consider first a situation with a widespread area of moderate precipitation.  In this case, a higher forecast quantile will be identified for each of the nine locations, with presumably moderate or higher quantile-mapped analyzed amounts across the 3 ✕ 3 set of points, and thus a higher resulting POP12 formed from the ensemble relative frequency.  In a second scenario, forecast precipitation is spatially scattered, perhaps a high amount at the original (i,j) location but zero at several other surrounding points.  Quantile mapping using the 3 ✕ 3 array array of forecast values will thus produce a larger ensemble with many zero quantile-mapped values and hence a lower POP12 generated from the ensemble relative frequency.   In this way, the spatial consistency of the quantiles associated with the forecast precipitation becomes an implicit predictor of POP12.
	A third modification to the basic quantile mapping of eq. (3) is the introduction of “stochastic” quantile mapping, illustrated in Fig. 4.  The CDFs in Fig. 4 replicate the data from panel (e) of Fig. 3.  As opposed to a deterministic quantile mapping of a member forecast implied in eq. (3), instead a random quantile mapping is performed, and a synthetic adjusted ensemble is drawn from a normal distribution whose mean is the quantile-mapped value and whose standard deviation is 0.15 x the quantile-mapped value, i.e.,  .  Figure 4 shows the shifts in mean position due to the quantile mapping for several forecast values and the implied pdf of the distribution from which various forecasts are sampled.   The stochastic aspect of the quantile mapping is inspired by the “best-member” ensemble dressing concepts of Roulston and Smith (2003) and the kernel fitting in the precipitation BMA algorithm of Sloughter et al. (2007).  The underlying rationale is that because of sampling error and possible remaining conditional biases even after a deterministic quantile mapping, the range of the ensemble is still inappropriately too narrow.  By adding noise to each forecast member consistent with the statistics of errors of the member that is closest to the verification will improve the ensemble.  See Roulston and Smith (2003) for further justification.

d. Estimating POP12 from ensemble relative frequency.

	The fourth step is simple.  Estimate the POP12 from the ensemble relative frequency.  The US NWS threshold for POP12 is 0.01 inches, or ~0.4 mm.  Hence, the POP12 is determined by counting the number of (stochastic quantile-mapped) ensemble members equal to or exceeding 0.4 mm and dividing by the total number of members.  With the use of 8 surrounding data points, the effective ensemble size is now nine times larger than the size of the original MME.

e. Location-dependent Savitzky-Golay smoothing.

	The fifth step, a location-dependent Savitzky-Golay smoothing, is conceptually relatively simple but algorithmically more complicated.    With a few modifications, the algorithm follows the procedure outlined in Hamill et al. (2015, appendix A).  The underlying premise is this:  probabilities estimated from the ensemble are subject to sampling error, and this may result in POP12 forecasts that emerge from step (d) above to have small-scale noisiness that is distracting and meteorologically unmeaningful.  An exception to this may be in mountainous regions such as the western US, where there could be realistic and small-scale geographic variations of POP12 related to terrain features.    Hence, it would be desirable to provide some smoothing of the POP12 forecasts, with more smoothing applied in the flatter central and eastern US than in the mountainous western US.  The smoothing should also preserve the character of coherent maxima.
	Savitzky-Golay (S-G) smoothing, described and justified in Press et al. (1992), is a suitable algorithm for smoothing.  As opposed to boxcar smoothers (taking the arithmetic average of surrounding grid points), the S-G smoothing fits a local polynomial, and if higher-order polynomials are chosen by the user, then the S-G smoother can preserve much of the amplitude of even small-scale coherent features while smoothing incoherent ones.  For this application, the S-G smoothing was applied to the 2-D POP12 forecasts fitting a third-order polynomial using data in a region +/- four grid points around the grid point of interest.  More details on the algorithmic specifics are provided in online appendix B.  
	With the raw POP12 field and the S-G smoothed field, the final POP12 is generated from a linear combination of the two, with more weight applied to the S-G smoothed field in regions with flatter terrain.  Again, more details are presented in online appendix B.
	Figure 5 presents a case study that illustrates each major step of the postprocessing.  Data shown is for +120 to +132 h forecasts initialized at 00 UTC 6 April 2016.   Figs. 5(a) and 5(b) show the POP12 forecasts from the NCEP GEFS and CMC systems respectively, determined from ensemble relative frequency.  Both the NCEP and CMC ensembles, even at this advanced lead time, have high POP12 probabilities covering much of the country, including the inter-mountain west.  The deterministic forecasts from each center are not shown. Figure 5(c) next shows the MME POP12, combining the data from the raw ensembles.  Probabilities are not as sharp, for the areas where the NCEP and CMC systems have their highest probabilities differ somewhat.  For example, the NCEP system has 100% probabilities over much of Texas while the CMC system does not.   As will be shown later in the results section, however, POP12’s from the raw MME are still too sharp.  Figure 5(d) illustrates the output after applications of the stochastic quantile mapping.  Notice the general diminishment of POPs over the inter-mountain west, though POP12s remain elevated somewhat over regions with high terrain such as the Sierra Nevada mountains of California.  Figure 5(e) shows the final, S-G smoothed product; notice the less aggressive smoothing in the western US and the more aggressive smoothing in the eastern US.  Finally, for comparison, the verifying precipitation analysis is shown in Fig. 5(f).

6.  The 6-hourly quantitative precipitation forecast algorithm.

	Before providing a description of the details of QPF06, it’s worth considering the characteristics we can expect from ensemble averaging, as the ensemble mean might be considered as a surrogate deterministic forecast.  Figure 6(a), inspired by a similar figure in Ravela et al. (2007), shows a synthetic ensemble of precipitation forecasts with different east-west positions and slightly different amplitudes, as well as the mean of the ensemble forecasts.  Presumably this at least bears some resemblance to what forecasters might see in a typical medium-range ensemble forecast.   Let’s assume the truth could just as well be any one of these ensemble members; in this case the ensemble and truth are assumed exchangeable.   Due to the diversity of ensemble positions, the mean forecast under-estimates the amplitudes of the maximum relative to individual members and the potential truth, and the distribution of light precipitation in the ensemble mean is broader in scale.  Hence, while in ideal situations the ensemble-mean forecast will minimize root-mean-square (RMS) error, tallied over many cases it does not provide the forecaster with a reasonable estimate of the magnitude of the heaviest precipitation, and it forecasts too wide a region with nonzero precipitation.
Underlying the QPF methodology developed here is the assumption that a forecaster instead seeks from deterministic guidance: (a) some estimate of the most likely position of a precipitation maximum, and (b) an accurate estimate of the maximum precipitation possible.  Further, we assume that a forecaster implicitly understands the potential for some position error and is able to convey the spatial uncertainty in associated worded discussions.  In a statistical sense, the forecaster is assumed to prefer deterministic guidance that is unbiased (Wilks 2011, eq. 8.10); that is, for any particular precipitation amount, the expected areal coverage of the forecast exceeding that amount is equal to the areal coverage of the analyzed exceeding that amount.  
A relatively simple method is now described that leverages the POP12 technology, in particular the deterministic quantile mapping of eq. (3).   Rather than quantile mapping an individual ensemble member using CDFs populated with member forecast data and analyzed data, we simply quantile map from the ensemble-mean state to the analyzed state.  Figure 6(b) illustrates what might occur with such a quantile mapping, giving the characteristics of the ensemble mean noted in Fig. 6(a).  Notice that there are fewer zero-precipitation events in the ensemble mean and also fewer heavier-precipitation events.  Consequently, a relatively light ensemble-mean amount may be quantile-mapped to a zero precipitation, and a moderate ensemble-mean amount may be mapped to a much heavier amount.
The QPF06 algorithm is thus as follows: (a) Populate the CDFs for the ensemble-mean forecast and analyzed data using the past 60 days and the supplemental location data.  (b) At each grid point, quantile map the current ensemble-mean forecast values using the forecast and analyzed CDFs generated in (a).  (c) Apply the same S-G smoothing procedure is applied to the ensemble-mean forecast as was applied to the POP12s, providing more smoothing in areas of flatter terrain.
An example of the process is shown in Fig. 7.  Panel (a) shows the ensemble-mean forecast, here for +126 to +132 h forecasts initialized at 00 UTC on 6 April 2016.  Heavier ensemble-mean precipitation amounts are forecast in north central Colorado and southeastern Kansas, but these mean forecasts are 7-10 mm.  The northwestern US is covered with a broad shield of lighter ensemble-mean precipitation amounts.  After quantile mapping of the mean forecast, the maximum in northern Colorado is increased to 20-30 mm, and the maximum in southeast Kansas is increased to 10-15 mm.  The area with nonzero precipitation in the northwest US is substantially decreased.  The subsequent smoothing of the features in Fig. 7(c) does not greatly change the look of the forecast product.  Finally, comparing against the verification in Fig. 7(d), we see that the quantile-mapped forecasts incorrectly place the maximum in northern Colorado; the closest associated analyzed maximum was ~ 20 mm in southeast Colorado.  Precipitation in excess of 50 mm was analyzed in northeast Oklahoma, close to the quantile-mapped maximum in southeast Kansas.  Quantile mapping increased amounts by 50 percent or more in the region, yet this was not enough.   The less widespread precipitation in the northwest US produced a better correspondence with the analyses.  Overall, there appears to be a greater similarity of the quantile-mapped and smoothed forecasts to the analyzed data than for the ensemble mean.  We also note that deterministic precipitation forecasting for such long leads is notoriously difficult; probabilistic methods at these advanced leads is preferable, given the substantial growth of chaotic errors in numerical precipitation forecasts.

7.  Objective forecast verification.

	We first perform a basic verification of the POP12 forecasts using reliability diagrams and BSS.  Figures 8-10 provide reliability diagrams and BSS for forecasts of leads +12 to +24, +84 to +96, and +156 to +168 hours, respectively.  The top panels show raw the reliability of multi-model guidance verified against the ⅛-degree analyses.  The bottom panels show reliability after post-processing, before and after smoothing.  The general unreliability of the raw guidance is quite evident, and the multi-model combination only provides an improvement over the better of the two systems at the longest leads.  After post-processing, both reliability and skill is much improved, with forecasts quite reliable at all leads through perhaps 50% probability, and with some over-forecast tendency at higher probabilities.  We note that these results represent the verification against the ⅛-degree CCPA analyses.  Results of verification against station observations were also performed (not shown), and there was slightly less reliability against these point measurements.
	Why the slight lack of reliability at high forecast probabilities?  We cannot be sure, but there was minimal sensitivity of resulting skill and reliability to variations in system parameters such as the amount of stochastic noise added and the separation distance between the elements in the array of the 3 x 3 grid points.  This suggests that there is a remaining conditional bias even after the quantile mapping that manifests itself in some forecast overconfidence of the probabilities.  We hypothesize but cannot confirm that this may be a consequence of quantile mapping using the last 60 days of training data in the presence of seasonally depending model biases.
	Now consider the verification of deterministic forecasts (Fig. 11).   Equitable threat scores are improved slightly with the post-processing for higher precipitation amounts, though there is a slight diminishment, for example, with lighter precipitation at moderate leads (Fig. 11b).  We note that the ETS has a tendency to reward skill for over-forecasting of events, presuming there is some relationship of observed to forecast position (Hamill 1999).  In some sense, the post-processed guidance represents a good-faith effort to adjust the deterministic ensemble-mean forecast so its expected bias is near 1.0 regardless of the event.  As can be seen, this appears to increase its ETS slightly for the higher precipitation amounts.  Biases are not exactly 1.0 for all events in part due to the smoothing of the forecasts, and in part due to the regression quantile mapping at extreme high terciles of the forecast, as described in section 5.c.
 
8.  Discussion and conclusions.

	The NOAA NWS National Blend of Models project is intended to provide objective, nationally consistent post-processed guidance for key weather elements in the NWS National Digital Forecast Database.  This article described the post-processing methodologies for 12-hourly probability of precipitation (POP12) and 6-hourly deterministic quantitative precipitation (QPF06).  Model guidance from global deterministic and ensemble prediction systems from the US National Weather Service and Environment Canada were used.  The forecasts from these systems were post-processed through a procedure known as quantile mapping, a procedure that permits amount-dependent bias corrections based on the differences between forecast and analyzed cumulative precipitation distributions.  Because of the limited training data available due to possibly frequent model changes (training data was limited to the previous 60 days in this application), the underlying cumulative distribution functions (CDFs) would be highly noisy if CDFs populated using data independently at each grid point.  Accordingly, one novel approach demonstrated here was the definition of “supplemental locations.”   These are lists of other grid points that were expected to have similar forecast bias characteristics due to similarity of precipitation climatology and terrain features.  Other somewhat novel features of the POP12 algorithm included: (a) the use of data from surrounding grid points; (b) the application of “stochastic quantile mapping” procedures to increase the spread of the ensemble, and (c) a location-dependent smoothing of the POP12 field, with more smoothing applied in regions of flat terrain.   
The QPF06 procedure also leveraged the supplemental locations and the location-dependent smoothing, but its quantile mapping (using the ensemble-mean and analyzed CDFs) was deterministic rather than stochastic.
A few case studies and objective verification results were presented.  These showed that the post-processing produces much more skillful POP12 guidance and much improved reliability.  The forecasts commonly retained some geographic detail, such as the accentuation of forecast precipitation amounts in the high terrain of the western US.  QPF06 forecasts were much less biased with respect to the analyzed data, with similar or slightly improved threat score.
The National Blend of Models developers intend to continue to attempt to improve upon the POP12 and QPF06 guidance.  For example, the algorithm described here did not yet leverage shorter-range, higher-resolution forecasts from prediction systems such as NOAA’s High-Resolution Rapid Refresh (Benjamin et al. 2016).  In the future, inclusion of this data is anticipated, either using  the methodologies described here, or indirectly (post-processed in some other way, and then combined with precipitation estimates through this system).  It is also anticipated that guidance will expand to cover other US areas of interest such as Alaska, Hawaii, and Puerto Rico in the next year or so.  Temporal resolution may increase over the CONUS as well.
	We are cognizant of the lack of an experimental control here, another post-processing methodology to use as a standard for comparison.  In large part this is because of the relatively unique nature of this work, which intended to produce national guidance at high spatial resolution using only a limited amount of training data from coarser-resolution models.  In part it is due to the lack of publicly available algorithms in our software language (Fortran).   Pending future funding, we do hope to adapt other advanced methodologies such as the one described in Scheuerer and Hamill (2015) and compare forecasts from these systems.
	Another drawback is that, for brevity, probabilistic forecasts were not generated nor verified for events other than POP12.  We presented no evidence here that this methodology is suitable for, say, predicting events such as ≥ 25 mm / 12 h.  Past experience has shown that it is much more challenging to post-process the more extreme events with small training sample size (ibid).  
	Finally, we acknowledge that there are adjustable parameters in this post-processing method that were set in a trial-and-error approach.  These include the spacing between grid points of the 3 x 3 array of data used to augment sample size (see Fig. 3 and section 5.c) and the magnitude of the stochastic noise added (Fig. 4).  In the future, it may be possible to use technologies such as feature calibration and alignment (Nehrkorn et al. 2014) to estimate the typical magnitude of the displacement of forecast features, and how they vary with forecast lead time.  This could be used to set the spacing parameter in this methodology.
	In the longer term, NOAA intends to regularly produce reforecast data sets for its global ensemble prediction system, and we hope to leverage similar data sets from international partners.  With these data sets, we expect to be able to improve upon features of this algorithm, such as defining the CDFs more precisely, or to leverage or design more sophisticated post-processing algorithms that exploit the rich reforecast data to improve skill and reliability.

Acknowledgments:

[bookmark: _GoBack]The authors thank Chris Daly of Oregon State University for his advice on aspects such as the use of terrain facets.  Jeff Craven (NWS Central Region) provided extensive case studies of early versions of this algorithm that were helpful in detecting and correcting problems.  This work was supported by funding provided to NOAA/OAR via the High-Impact Weather Prediction Project and to NOAA/NWS via the Sandy Supplemental, both under the Disaster Relief Appropriations Act of 2013 (the latter with grant number NA14NWS4830005).  M. Scheuerer’s participation was supported by NOAA Next-Generation Global Prediction System grant N8MWQNG. 



References

Accadia, C., S. Mariani, M. Casaioli, and A. Lavagnin, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids.  Wea. Forecasting, 18, 918-932.
Benjamin, S. G., and others, 2016: A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 1669-1694.
Bentzien, S., and P. Friederichs, 2012:  Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP Model COSMO-DE. Wea. Forecasting,  27, 988-1002.
Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009:  A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system.  J. Atmos. Sci., 66, 603–626.
Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System, Quart. J. Royal Meteor. Soc., 125, 2887–2908.
Candille, G., 2009:  The multiensemble approach: the NAEFS example.  Mon. Wea. Rev., 137, 1655-1665.
Charba, J.P., and F. G. Samplatsky, 2011a:  Regionalization in fine-grid GFS MOS 6-h quantitative precipitation forecasts.  Mon.  Wea. Rev., 139, 24-38.
Charba, J.P., and F. G. Samplatsky, 2011b:  High-resolution GFS-based MOS quantitative precipitation forecasts on a 4-km grid.  Mon. Wea. Rev., 139, 39-68.
Charron, M., G. Pellerin, L. Spacek, N. Gagnon,  H. L. Mitchell, and L. Michelin, 2010: Toward Random Sampling of Model Error in the Canadian Ensemble Prediction System. Mon. Wea. Rev., 138, 1877-1901.
Coté, J.,  S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998a: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 1373–1395.
——, J.-G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998b: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126, 1397–1418.
Craven, J. P., J. Wiedenfeld, J. Gagan, P. Browning, A. Just, and C. Grief, 2013: The NWS Central Region extended forecast process. Preprints, 38th Annual Meeting, Charleston, SC, Natl. Wea. Assoc., 5 pp. [Available online at http://www.nwas.org/meetings/nwa2013/extendedabstracts/NWA2013_P2.38_Craven_etal.pdf.]
Environment and Climate Change Canada, 2015:  The Global Deterministic Prediction System (GDPS) Version 5.0.0 (Yin-yang) of the Meteorological Service (MSC) of Canada.  Environment and Climate Change Canada Tech Specification. Available at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/tech_specifications/tech_specifications_GDPS_5.0.0_e.pdf
Gagnon, N., X. Deng, P.L. Houtekamer, S. Beauregard, A. Erfani, M. Charron, R. Lahlo, and J. Marcoux 2014: Improvements to the Global Ensemble Prediction System (GEPS) from version 3.1.0 to version 4.0.0.  Environment Canada Tech Note, available at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_geps-400_20141118_e.pdf
——, X. Deng, P. L. Houtekamer, A. Erfani, M. Charron, S. Beauregard, R. Frenette, D. Racette, and R. Lahlou, 2015:  Improvements to the Global Ensemble Prediction System from version 4.0.1 to version 4.1.1.  Environment Canada Tech Note, available at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_geps-411_20151215_e.pdf
Glahn, H. R., and D. P. Ruth, 2003: The New Digital Forecast Database of the National Weather Service. Bull. Amer. Meteor. Soc., 84, 195–201, doi: 10.1175/BAMS-84-2-195.
Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155-167. 
——, and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: theory and application Mon. Wea. Rev., 134, 3209-3229.
——, and J. Juras, 2006: Measuring forecast skill: is it real skill or is it the varying climatology? Quart. J. Royal Meteor. Soc., 132, 2905-2923.
——, R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts.  Part II: precipitation.  Mon. Wea. Rev., 136, 2620-2632.
——, 2012: Verification of TIGGE Multi-model and ECMWF Reforecast-Calibrated Probabilistic Precipitation Forecasts over the Conterminous US. Mon. Wea. Rev., 140, 2232-2252.  
——, G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Jr., Y. Zhu, and W. Lapenta, 2013:  NOAA's second-generation global medium-range ensemble reforecast data set. Bull Amer. Meteor. Soc., 94, 1553-1565.
——, M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS Reforecasts and Climatology-Calibrated Precipitation Analyses.  Mon. Wea. Rev., 143, 3300-3309.  Also: online appendix A and appendix B.
Hopson, T. M., and P. J. Webster, 2010: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. J. Hydrometeor.,11, 618–641, doi:10.1175/2009JHM1006.1.
Hou, D., Z. Toth, Y. Zhu, and W. Yang, 2008: Impact of a stochastic perturbation scheme on global ensemble forecast. Proc. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 1.1. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm.]
——, D., M. Charles, Y. Luo, Z. Toth, Y. Zhu, R. Krzysztofowicz, Y. Lin, P. Xie, D.-J. Seo, M. Pena, and B. Cui, 2014: Climatology-Calibrated Precipitation Analysis at Fine Scales: Statistical Adjustment of Stage IV toward CPC Gauge-Based Analysis. J. Hydrometeor., 15, 2542–2557, doi: 10.1175/JHM-D-11-0140.1.
Houtekamer, P. L., B., He, and H. L. Mitchell, 2014: Parallel implementation of an ensemble Kalman filter.  Mon. Wea. Rev., 142, 1163-1182. DOI: http://dx.doi.org/10.1175/MWR-D-13-00011.1
Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS, Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433-451.
——, and ——, 2015b: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS, Part II: 4D EnVar and hybrid variants. Mon. Wea. Rev., 143, 452-470 (doi: http://dx.doi.org/10.1175/MWR-D-13-00350.1).
Liu, J., and Z. Xie, 2014:  BMA probabilistic quantitative precipitation forecasting over the Huaihe Basin using TIGGE multimodel ensemble forecasts. Mon. Wea. Rev. 142, 1542-1555. 
Maraun, D., 2013:  Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J. Climate, 26, 2137- http://dx.doi.org/10.1175/JCLI-D-12-00821.1
Nehrkorn, T., B. Woods, T. Auligné, and R. N. Hoffman, 2014: Application of Feature Calibration and Alignment to High-Resolution Analysis: Examples Using Observations Sensitive to Cloud and Water Vapor. Mon. Wea. Rev., 142, 686–702, doi: 10.1175/MWR-D-13-00164.1.
Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009:  Stochastic Parametrization and Model Uncertainty.  ECMWF Tech Memo 598, 42 pp.  Available from http://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in Fortran (2nd Ed.). Cambridge Press, 963 pp.
Ravela, S., K. Emanuel, and D. McLaughlin, 2007: Data assimilation by field alignment. Physica D, 230, 127–145.
Roulin, E., and S. Vannitsem, 2012:  Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Wea. Rev., 140, 874-888.
Roulson, M., and L. A. Smith, 2003:  Combining dynamical and statistical ensembles.  Tellus, 55A, 16–30.
Scheuerer, M., 2014:  Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics. Quart. J. Royal Meteor. Soc., 140, 1086-1096.
——, and T. M. Hamill, 2015: Statistical post-processing of ensemble precipitation forecasts by fitting censored, shifted Gamma distributions.  Mon. Wea. Rev., 143, 4578-4596.  Also appendix A and appendix B and appendix C.
Shutts, G. J., 2005:  A kinetic energy backscatter algorithm for use in ensemble prediction systems.  Quart. J. Royal Meteor. Soc., 131, 3079–3102.
Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007:  Probabilistic quantitative precipitation forecasting using Bayesian Model Averaging.  Mon. Wea. Rev., 135, 3209-3220. DOI: http://dx.doi.org/10.1175/MWR3441.1
Swinbank, R., and others, 2016:  The TIGGE project and its achievements.  Bull. Amer. Meteor. Soc., 97, 49-67.  http://dx.doi.org/10.1175/BAMS-D-13-00191.1
Verkade, J. S., J. D. Brown, P. Reggiani, and A. H. Weerts, 2013:  Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrology, 501, 73-91. 
Vislocky, R. L., and J. M. Fritsch, 1997: Performance of an Advanced MOS System in the 1996–97 National Collegiate Weather Forecasting Contest. Bull. Amer. Meteor. Soc., 78, 2851–2857.
Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010:  Calibration and Downscaling Methods for Quantitative Ensemble Precipitation Forecasts. Wea. Forecasting, 25, 1603-1627.
Wilks, D. S., 2011:   Statistical Methods in the Atmospheric Sciences (3rd edition).  Academic Press, 676 pp.
Zhou, X., Y. Zhu, Y. Luo, J. Peng and R. Wobus, 2016: The NCEP Global Ensemble Forecast System with EnKF.  Mon. Wea. Rev., submitted.  Available from xiaqiong.zhou@noaa.gov.



Figure captions
Figure 1:  Illustration of cumulative distribution functions for Dec-Jan-Feb 2002-2015 using CCPA analysis data (blue) and GEFS reforecast data (red; see Hamill et al. 2013 for more on reforecasts).  (a) CDFs for 124°W, 42°N. (b) CDFs for 123°W, 42°N.  Locations are denoted by the red dots on the inset maps.
Figure 2:  Illustration of supplemental locations for the month of April.  Larger symbols denote the locations for which supplemental locations were calculated (roughly Portland, OR; Phoenix, AZ; Boulder, CO; Omaha, NE, Cincinnati, OH, and New York City, NY).  Smaller symbols indicate the supplemental locations.  Darker symbols indicate a better match, lighter symbols a poorer match.  The colors on the map denote the 95th percentile of the 24-h accumulated precipitation amounts for the month, determined from 2002-2015 CCPA data.
Figure 3:  Illustration of the quantile mapping of data from multiple locations surrounding a grid point of interest, here in the Olympic mountains of Washington State.  In this case we are producing a quantile-mapping adjustment to ensemble members for the center grid point of the nine red dots shown in the inset map.  CDF data is for +120 to +132 h forecasts from the NCEP GEFS system initialized at 00 UTC 6 April 2016.  Rather than quantile mapping the 20 GEFS members only at the center point (panel e), we quantile map the 20 GEFS forecasts at each of the nine locations with red dots. The quantile mapping uses the CDF of the forecast at each of the nine grid points [red curves in panels (a) to (i)] and the analyzed data at the center grid point in panel (e).
Figure 4:  Illustration of the stochastic quantile mapping procedure.  CDFs are shown for CCPA analyses (blue) and for NCEP ensemble precipitation forecasts (red).  Here, the forecasts were for +120 to +132 h lead, for 123.75° W longitude, 47.75° N latitude, initialized 00 UTC 6 April 2016.  For initial precipitation amounts of 3, 6, 10, 15, and 20 mm, the underlying pdfs for the stochastic quantile mapping are shown in the black curves.  The pdfs normal distributions with means centered on the quantile-mapped mean values.  Per the article text, the standard deviations for the stochastic noise are set to 0.15 ✕ the quantile-mapped values.  
Figure 5.  Case study illustrating the steps of the POP12 algorithm, here for +120 to +132 h forecasts initialized at 00 UTC on 6 April 2016.  Panels (a) and (b) show the POP12 derived from ensemble relative frequency from the NCEP and CMC systems respectively.  Panel (c) shows the combined NCEP+CMC raw multi-model ensemble POP.  Panel (d) shows the POP12 after the application of stochastic quantile mapping.  Panel (e) shows the final smoothed POP12 product, and panel (f) shows the corresponding verifying precipitation analysis, with the 0.4 mm POP12 contour in black.
Figure 6:  (a) Illustration of an ensemble synthetic precipitation amounts along a segment of a latitude circle that spans a forecast heavy-precipitation event.  Ensemble members (solid colored curves) differ somewhat in position and amplitude.  The ensemble-mean amount is also shown in the heavier dashed black curve.  (b) Illustration of the shapes typical of CDFs from ensemble-mean forecasts and analyzed states.
Figure 7:  An example illustrating the steps in the production of a quantile-mapped deterministic +126 to +132 hour forecast of the 6-hourly quantitative precipitation.  (a) Raw, multi-model ensemble-mean forecast.  (b) Quantile mapping of the ensemble mean. (c) After spatial smoothing of the quantile-mapped forecast, and (d) the verifying analysis, for comparison.
Figure 8: Reliability diagrams for +12 to +24 hour forecasts over the CONUS.  Inset histograms show overall frequency with which forecasts are issued, and Brier Skill Scores are noted.   (a) Raw NCEP ensemble forecasts, (b) Raw CMC ensemble forecasts, (c) Raw multi-model ensemble forecasts, (d) Post-processed guidance after stochastic quantile mapping, but before smoothing, and (e) post-processed guidance after stochastic quantile mapping and smoothing.  Error bars represent the 5th and 95th percentiles of from a 1000- sample bootstrap distribution generated by sampling case days with replacement.
Figure 9:  As in Fig. 8, but for +84 to +96 hour forecasts.
Figure 10:  As in Fig. 8, but for +156 to +168 hour forecasts.
Figure 11:  Equitable threat scores (ETS) and biases (BIA) from the raw multi-model ensemble (red) and quantile-mapped and smoothed forecasts (blue).  Panels (a) - (c) provide ETS for the +18 to +24 h forecast, the +66 to +72 h forecast, and the +114 to +120 h forecast respectively.  Panels (d) - (f) provide BIA for the +18 to +24 h forecast, the +66 to +72 h forecast, and the +114 to +120 h forecast respectively.    Error bars represent the 5th and 95th percentiles of a 1000-replication paired block bootstrap (blocking on daily data), following Hamill (1999).
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Figure 1:  Illustration of cumulative distribution functions for Dec-Jan-Feb 2002-2015 using CCPA analysis data (blue) and GEFS reforecast data (red; see Hamill et al. 2013 for more on reforecasts).  (a) CDFs for 124°W, 42°N. (b) CDFs for 123°W, 42°N.  Locations are denoted by the red dots on the inset maps.
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Figure 2:  Illustration of supplemental locations for the month of April.  Larger symbols denote the locations for which supplemental locations were calculated (roughly Portland, OR; Phoenix, AZ; Boulder, CO; Omaha, NE, Cincinnati, OH, and New York City, NY).  Smaller symbols indicate the supplemental locations.  Darker symbols indicate a better match, lighter symbols a poorer match.  The colors on the map denote the 95th percentile of the 24-h accumulated precipitation amounts for the month, determined from 2002-2015 CCPA data.
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Figure 3:  Illustration of the quantile mapping of data from multiple locations surrounding a grid point of interest, here in the Olympic mountains of Washington State.  In this case we are producing a quantile-mapping adjustment to ensemble members for the center grid point of the nine red dots shown in the inset map.  CDF data is for +120 to +132 h forecasts from the NCEP GEFS system initialized at 00 UTC 6 April 2016.  Rather than quantile mapping the 20 GEFS members only at the center point (panel e), we quantile map the 20 GEFS forecasts at each of the nine locations with red dots. The quantile mapping uses the CDF of the forecast at each of the nine grid points [red curves in panels (a) to (i)] and the analyzed data at the center grid point in panel (e).
[image: stochastic_quantile_mapping_demo.png]
Figure 4:  Illustration of the stochastic quantile mapping procedure.  CDFs are shown for CCPA analyses (blue) and for NCEP ensemble precipitation forecasts (red).  Here, the forecasts were for +120 to +132 h lead, for 123.75° W longitude, 47.75° N latitude, initialized 00 UTC 6 April 2016.  For initial precipitation amounts of 3, 6, 10, 15, and 20 mm, the underlying pdfs for the stochastic quantile mapping are shown in the black curves.  The pdfs normal distributions with means centered on the quantile-mapped mean values.  Per the article text, the standard deviations for the stochastic noise are set to 0.15 ✕ the quantile-mapped values.  
[image: sixpanel_POP12_demo.png]
Figure 5.  Case study illustrating the steps of the POP12 algorithm, here for +120 to +132 h forecasts initialized at 00 UTC on 6 April 2016.  Panels (a) and (b) show the POP12 derived from ensemble relative frequency from the NCEP and CMC systems respectively.  Panel (c) shows the combined NCEP+CMC raw multi-model ensemble POP.  Panel (d) shows the POP12 after the application of stochastic quantile mapping.  Panel (e) shows the final smoothed POP12 product, and panel (f) shows the corresponding verifying precipitation analysis, with the 0.4 mm POP12 contour in black.

[image: members_vs_mean.png]
Figure 6:  (a) Illustration of an ensemble synthetic precipitation amounts along a segment of a latitude circle that spans a forecast heavy-precipitation event.  Ensemble members (solid colored curves) differ somewhat in position and amplitude.  The ensemble-mean amount is also shown in the heavier dashed black curve.  (b) Illustration of the shapes typical of CDFs from ensemble-mean forecasts and analyzed states.  
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Figure 7:  An example illustrating the steps in the production of a quantile-mapped deterministic +126 to +132 hour forecast of the 6-hourly quantitative precipitation.  (a) Raw, multi-model ensemble-mean forecast.  (b) Quantile mapping of the ensemble mean. (c) After spatial smoothing of the quantile-mapped forecast, and (d) the verifying analysis, for comparison.
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Figure 8: Reliability diagrams for +12 to +24 hour forecasts over the CONUS.  Inset histograms show overall frequency with which forecasts are issued, and Brier Skill Scores are noted.   (a) Raw NCEP ensemble forecasts, (b) Raw CMC ensemble forecasts, (c) Raw multi-model ensemble forecasts, (d) Post-processed guidance after stochastic quantile mapping, but before smoothing, and (e) post-processed guidance after stochastic quantile mapping and smoothing.  Error bars represent the 5th and 95th percentiles of from a 1000- sample bootstrap distribution generated by sampling case days with replacement.
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Figure 9:  As in Fig. 8, but for +84 to +96 hour forecasts.
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Figure 10:  As in Fig. 8, but for +156 to +168 hour forecasts.
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Figure 11:  Equitable threat scores (ETS) and biases (BIA) from the raw multi-model ensemble (red) and quantile-mapped and smoothed forecasts (blue).  Panels (a) - (c) provide ETS for the +18 to +24 h forecast, the +66 to +72 h forecast, and the +114 to +120 h forecast respectively.  Panels (d) - (f) provide BIA for the +18 to +24 h forecast, the +66 to +72 h forecast, and the +114 to +120 h forecast respectively.    Error bars represent the 5th and 95th percentiles of a 1000-replication paired block bootstrap (blocking on daily data), following Hamill (1999).
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