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ABSTRACT

Characteristics of precipitation estimates for rate and amount from three

global High-resolution precipitation products (HRPPs), four global Climate

Data Records, and four reanalyses are compared here. All data sets consid-

ered have at least daily temporal resolution. Estimates of global precipitation

differ widely from one product to the next, with some differences likely due to

differing goals in producing the estimates. HRPPs are intended to produce the

best instantaneous precipitation estimate locally. Climate data records of pre-

cipitation emphasize homogeneity over instantaneous accuracy. Precipitation

estimates from global reanalyses are dynamically consistent with the large

scale circulation but tend to compare poorly to rain gauge estimates as they

are forecast by the reanalysis system and precipitation is not assimilated. As

expected, variance and the average spread among data sets are highest where

the means are large. Regionally, differences in the means and variances are

as large as the means and variances respectively. Temporal correlation, rain

rate and rain amount distributions, and biases in time evolution are explored

using temporal and spatial averaging. It is shown that differences on annual

time scales and continental regions are around 0.8mm/d, which correspond to

23W m−2. These wide variations in the estimates, even for global averages,

highlight the need for better constrained precipitation products in the future.
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1. Introduction32

Gridded estimates of daily (or higher frequency) global precipitation are becoming more and33

more necessary for applications such as model validation, input for land-surface models, or34

extreme-event characterization. Detailed knowledge about current precipitation distributions is35

also necessary to quantify changes in precipitation estimated by global-warming scenarios, which36

tend to be described as changes in the mean and tails of the distribution. All of these applications37

assume that an accurate or at least adequate estimate of these distributions is obtainable.38

Because there is a strong connection between temporal and spatial variability of precipitation,39

and variability of precipitation decreases with both longer time and larger spatial averages (Bell40

et al. 1990), what is adequate depends on the application. On monthly scales global precipitation41

estimates have been used to estimate the global water cycle (Trenberth et al. 2007; Rodell et al.42

2015), study the co-variability of precipitation and surface temperature (Trenberth and Shea 2005),43

and to assess the imbalance between global precipitation and evaporation (Schlosser and Houser44

2007; Trenberth and Fasullo 2013). Datasets that are able to resolve monthly variability and45

continental scales are suitable for estimates of the global water cycle. For many other applications,46

higher temporal (sub-monthly) and spatial resolution is needed. Validation of model forecast47

precipitation needs data sets with similar or higher resolution to the model output which can range48

from a few kilometers to 1◦ and 1h to daily depending on the model used (Hamill 2012; Brown49

et al. 2012; Lindvall et al. 2013). For example, hourly resolution sets a good compromise between50

what is meaningful in models and useful for extremes. Station data are also used, but this approach51

depends on a high enough station density in the verification region (Gutowski Jr. et al. 2003). One52

of the major outputs of land-surface models, soil moisture, is highly variable in space and spatial53

patterns depend strongly on the precipitation forcing the model even down to a resolution of 2km54
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(McLaughlin et al. 2006). In general, for land-surface models at coarser resolutions (e.g. T382)55

hourly precipitation data are given as input and interpolated to the model time step of 15 or 2056

minutes (Liu et al. 2011; Meng et al. 2012). Observed extreme precipitation events are usually57

highly localized in space and time, involving scales on the order of minutes to a few hours and58

several kilometers, especially in the tropics and during summer over land. To resolve the more59

extreme precipitation intensity events and accurately estimate the tails of the distribution, data at60

a resolution of ten minute intervals and about 1km thus might be needed (Haerter et al. 2010). To61

accurately identify the mean diurnal cycle, hourly time steps are desirable to resolve the evolution62

of precipitation throughout the day.63

Estimates of precipitation from individual rain-gauges exist in many locations, but these are64

point estimates and apply only for the location they were collected. Gridded rain-gauge based65

analyses of precipitation are available over the global land areas, with the estimates assumed to be66

representative for a given area. However, large land and especially oceanic areas on the globe are67

very sparsely covered with rain gauges. This is problematic, because in sparsely sampled areas,68

interpolation between rain gauge locations to obtain a gridded analysis will introduce errors. In69

addition, rain-gauge estimates are thought to underestimate precipitation rates due to under-catch70

in windy or snow conditions (e.g. Peterson et al. 1998; Adam and Lettenmaier 2003). Another71

issue is that precipitation measurements are usually reported only once or twice a day, which af-72

fects the resolution of both rates and totals, because the longer the precipitation is left in the gauge73

the greater the potential for some of it to evaporate. However, as noted above, resolving the very74

high rates in thunderstorms requires temporal resolution of hours or even minutes. Overall, gauge-75

based analyses are likely to be quite accurate in data-dense areas and questionable in data-sparse76

areas. Other available options for global precipitation estimates, that provide higher spatial and77

temporal resolution, are based on satellite data. The highest resolutions of current global pre-78
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cipitation estimates are 3 hours and 0.25◦. While there are versions of some of these data sets79

available at higher resolutions, on a global scale data handling can become an issue. Data at 380

hours and 0.25◦ is marginally adequate to resolve the diurnal cycle and mesoscale systems but81

is still too coarse to resolve individual convective extreme events. Most satellite based data sets82

have time series of less than 15 years (with one recent exception, see section 2), which is not long83

enough to estimate trends or a robust climatology. Precipitation estimates from satellite retrievals84

are inferred from infrared (IR) or microwave (MW) measurements rather than measured directly.85

IR measurements, which tend to be from geostationary satellites have high spatial and temporal86

resolution, while MW or radar measurements are obtained from polar orbiting satellites with much87

sparser sampling (Wolff and Fisher 2008). Global reanalyses offer another way to estimate global88

precipitation with the advantage that they synthesize many different data sources. However, while89

the underlying dynamical model is dynamically consistent, adjustments to assimilated data result90

in a product that is not necessarily mass or energy conserving. Precipitation in particular is typi-91

cally the preservation of the previous forecast cycle’s guess, which is contaminated by model bias.92

In addition, the spatial resolution is limited to that of the reanalysis.93

There are several important questions users of these data sets need to ask. The most important94

one is obviously, which of these estimates is closest to the truth? There is no clear answer to95

this question. The conclusion of several precipitation inter-comparison projects was that no one96

methodology is superior to the others (Kidd and Huffman 2011). In an early study Smith et al.97

(1998) showed that for regional comparisons, uncertainty in the ground validation data can be98

larger than the passive microwave (PMW) algorithm bias in many cases. They also showed that the99

differences in estimated rain rates are mainly due to how the more intense rain rates are calculated100

and how strict the screen (precipitating versus dry pixels) is.101
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On monthly timescales for global analyses, Adler et al. (2001) show that merged analysis prod-102

ucts, using more than one satellite source and adjusted to rain gauges, are superior to single source103

products. Without the adjustment to rain gauges, large biases exist over the southern Great Plains104

in the US for high resolution precipitation products (Sapiano and Arkin 2009). Even rain gauge-105

only data sets have large differences; in the context of drought, using one or another data set can106

result in an increase or decrease in the determination of drought conditions (Trenberth et al. 2014).107

The main conclusion from these studies is that there is no one best product, there is only the most108

appropriate product for a certain purpose. For example, studies at different locations and different109

seasons will likely benefit from using the product that has been shown to do well under those con-110

ditions. If the emphasis is on consistency of precipitation with circulation patterns, then reanalysis111

products combined with observed precipitation may be the best choice. In addition, several other112

issues are not addressed in these previous studies, such as whether there are systematic biases113

among the high-resolution precipitation estimates on the global scale? In all cases it is important114

for the user to know how the products differ systematically in their precipitation estimates. In order115

to answer this question it is necessary to first quantify the differences among the data sets and the116

different estimation approaches. Are there biases particular to a certain approach to precipitation117

estimation? How do the distributions differ? And, given all the different estimates, is there a way118

to quantify the uncertainty associated with them? In terms of length of time series, studies that119

deal with multi-annual assessment of precipitation are rare (Prat and Nelson 2015), which is why120

we focus on data sets with more than 10 years of overlap. And while there are plenty of local and121

regional comparisons between and validation of data sets (e.g. Gutowski Jr. et al. 2003; Sohn et al.122

2010; Kidd et al. 2012), here we focus on global products.123

The aim of this study, is not to determine which data set is closest to the absolute truth, since124

that is impossible, but rather to identify strengths and shortcomings of the data sets, and to provide125
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some guidance as to which data sets are likely to perform better in certain situations. We are126

interested in global precipitation data sets with daily or higher resolution. Since distributions127

of precipitation are highly dependent on the resolution of the data used to compute them, daily128

or higher temporal resolution is better suited for estimating distributions than monthly resolution.129

The larger sample size and range of precipitation rates resolved by daily data lead to more accurate130

representation of the distributions.131

Section 2 introduces the data sets used in this study. Section 3 has the details of the statistics used132

to compare the precipitation estimates and how the distributions are computed. Section 4 evaluates133

the statistics and distributions, mostly on the example of North America, but other continental134

regions are mentioned to highlight stark differences or close similarities. Figures for all other135

continental regions are included in the supplementary material. Lastly, section 5 summarizes and136

discusses the implications of the results presented in this study.137

2. Data Sets138

The lowest native resolution of all precipitation data sets under consideration here is daily on a139

1◦ grid. Therefore, all data sets were interpolated from their original grids to a grid with 1◦ spatial140

and daily temporal resolution using conservative averaging. This was done to facilitate comparison141

of distributions and variability, to ensure that the precipitation estimates are comparable and to142

minimize differences among the data sets due to differing resolutions. As temporal averaging is143

done to daily resolution, differences in the diurnal cycle phase and amplitude will not be resolved;144

the resolved time scales that will be considered are daily to interannual. The seasonal cycle has a145

large effect on precipitation, so all analyses are performed for each month of the year separately.146

Our criteria (global data, daily resolution) exclude several well established precipitation esti-147

mates from this study, for reasons related to either their temporal resolution or their regional cover-148
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age. These include PRISM (Daly et al. 1994), the North American regional reanalysis (Mesinger149

et al. 2006), stage IV radar data (Lin and Mitchell 2005), and Asian Precipitation - Highly Re-150

solved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE,151

Yatagai et al. 2012), because they are regional products, and the Global Precipitation Climatology152

Centre (GPCC, Becker et al. 2013) , GPCP monthly estimates (Huffman et al. 1997), CPC merged153

analysis of precipitation (CMAP, Xie and Arkin 1997) and CRU precipitation (Harris et al. 2014),154

because of their monthly resolution.155

a. High-resolution precipitation products156

High-resolution precipitation products (HRPPs) aim to provide the best instantaneous precipi-157

tation estimates at high spatial and temporal resolution. Commonly, high-resolution infrared (IR)158

brightness temperatures from geostationary satellites are related to precipitation rates using the159

more accurate passive microwave (PMW) estimates from the polar-orbiting satellites. How these160

measurements are related, how the IR is calibrated, and whether the monthly means are scaled to161

match monthly rain gauge analyses varies between algorithms and constitutes the main sources162

of differences between the estimates; see Kidd and Huffman (2011) for an overview and an in-163

depth description of the various techniques. In general, PMW gives a more accurate estimate of164

precipitation than IR, because of the more direct observation of precipitation. But this accuracy165

deteriorates for time averages due to the lower sampling frequency of PMW compared to IR. The166

combination of PMW and IR measurements includes the different errors inherent in each tech-167

nique (Kidd and Huffman 2011). We note, that there are versions of these precipitation products168

with higher resolutions than used here. However, a higher resolution would not be advantageous169

for the analysis presented here, since all data sets need to be interpolated to match the lowest170

resolution data set available.171
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The Climate Prediction Center morphing method (CMORPHv0.x, Joyce et al. (2004); Joyce172

and Janowiak (2005)) estimates rainfall by combining IR and PMW measurements. High-quality173

PMW rainfall estimates are propagated (using linear interpolation in time) by motion vectors de-174

rived from high frequency IR imagery. CMORPH is available from 2003-2013 at 3-hourly inter-175

vals on a 0.25◦ grid from 60◦S to 60◦N. A bias corrected version (CMORPHCRTv1.0, Joyce et al.176

(2004); CMORPHv1.0 (2015)) is also available on the same grid, from 1998-2013. CMORPHCRT177

uses a constant algorithm and is bias corrected against a rain gauge analysis over land and GPCP178

pentad data over the ocean. Correction over land is done by PDF matching against daily gauge179

analysis using optimal interpolation with orographic correction. The bias correction results in a180

reduction of the spurious trends seen in CMORPH. For better visualization, results are shown for181

CMORPHCRT only and results for CMORPH are mentioned where appropriate. Both products182

are also available at a resolution of 8km and 30min, but the higher resolution is not necessary for183

the analysis presented here.184

The Tropical Rainfall Measuring Mission (TRMM) 3B42v7 product, provides 3-hourly precip-185

itation estimates on a 0.25◦ grid between 50◦S to 50◦N and from 1998 to 2013. The monthly186

means of the 3-hourly microwave-calibrated IR rainfall estimates are combined with the Global187

Precipitation Climatology Centre (GPCC) monthly rain-gauge analysis to generate a monthly188

satellite-gauge combination (TRMM3B43). Each 3-hourly field is then scaled by the correspond-189

ing monthly satellite-gauge field. Like all satellite precipitation estimates, TRMM was previously190

determined to have large relative errors at small precipitation rates, however time/area averaging191

significantly reduces the random error (Huffman et al. 2007, 2012).192

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-193

works (PERSIANN) algorithm merges high-frequency IR images with low frequency rainfall esti-194

mates from the TRMM satellite using artificial neural networks (Hsu et al. 1997; Sorooshian et al.195

9



2000; Braithwaite 2000). The precipitation estimates are based on IR from geostationary satellites,196

and PMW measurements are used to update the algorithm parameters. PERSIANN is available197

from 2001-2013 at 3-hourly intervals on a 0.25◦ grid from 50◦S to 50◦N.198

b. Climate data records of precipitation199

For climate data records homogeneity is emphasized over instantaneous accuracy. The Climate200

Prediction Center (CPC) rain-gauge (GAUGE) data set is based on quality-controlled station data201

from more than 30000 stations. These data are then interpolated to create analyzed fields of daily202

precipitation with bias correction for orographic effects (Xie et al. 2007). The global analysis203

is available daily on a 0.5◦ grid from 1979-2005 (Xie et al. 2007; Chen et al. 2008; Xie 2009).204

The real-time version of the CPC gauge data set (GAUGERT) uses about 17000 stations and is205

available on the same grid at the same time resolution from 2005-2013. Large scale averages206

of long term means and variances are comparable between GAUGE and GAUGERT. Additional207

stations used in the GAUGE estimate are generally located in regions of dense observing networks.208

In regions with sparse observations the number of stations stays about the same from GAUGE to209

GAUGERT. Because of this GAUGE and GAUGERT estimates are combined by extending the210

GAUGE data with the GAUGERT data and the resulting data set is referred to as GAUGE+RT.211

Global Precipitation Climatology Project (GPCP1DD, v1.2) daily, 1◦ precipitation estimates212

between 40◦S-40◦N are computed based on the threshold-matched precipitation index (TMPI)213

(Huffman et al. 2000). Outside of that, the developers use an adjusted Susskind TOVS/AIRS cloud214

volume proxy. For the TMPI, IR temperatures are compared to a threshold, and all cold pixels are215

given the same conditional precipitation rate, with threshold and conditional precipitation rate set216

locally by month. GPCP1DD monthly means are normalized to match the monthly GPCP satellite-217

gauge precipitation estimate version 2.2 (Adler et al. 2003), which is based on satellite data and218
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rain-gauge analysis from the GPCC. The GPCC monthly rain gauge analysis is bias corrected219

to account for systematic errors due to wetting, evaporation, or aerodynamic effects (Huffman220

et al. 1997). The GPCP1DD daily, 1◦ precipitation estimates are available on a global grid from221

1996-present (Bolvin 2001).222

One of the latest climate data records is the Precipitation Estimation from Remotely Sensed223

Information using Artificial Neural Networks - Climate Data Record (PERSICDR, v1r1, Ashouri224

et al. 2015; Sorooshian et al. 2014). This is generated using the PERSIANN algorithm, and ad-225

justed using the GPCP1DD monthly product to match monthly precipitation rates on a 2.5◦ grid226

between the two products. In contrast to the HRPP PERSIANN, the PERSICDR model is pre-227

trained on stage IV hourly precipitation data and the model parameters are then kept fixed for the228

full historical record of IR data. PERSICDR is available on a 0.25◦ grid between 50◦S to 50◦N229

and from 1983 to present day.230

c. Reanalysis precipitation products231

Another way to estimate global precipitation is through short-term forecasts provided by global232

reanalyses. The underlying models assimilate a wide variety of observations, but in general not233

precipitation measurements or analyses. Precipitation is usually provided by a prior short-range234

forecast, and this inherits the systematic errors of the forecast model. The advantage to reanalyses235

is that all variables are somewhat dynamically consistent. While the underlying dynamical model236

is dynamically consistent, adjustments to assimilated data result in a product that is not necessarily237

mass or energy conserving. However, as precipitation data are not typically constrained by the238

analysis procedure, reanalyzed precipitation is highly model dependent (Trenberth et al. 2011).239

This is particularly true in the tropics and over continents during the summer, when convective240

precipitation dominates. This leads to the well-known problem with precipitation estimates from241
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general circulation models (GCMs) of raining too frequently, with an over-abundance of light242

rainfall and too infrequent extreme precipitation (e.g. Trenberth et al. 2003; Wilcox and Donner243

2007; Stephens et al. 2010). As global reanalyses are based on similar GCMs they tend to have244

the same short-comings in this respect. One exception is the North American Regional Reanalysis245

(Mesinger et al. 2006), which does assimilate precipitation. And there is evidence that assimilation246

of precipitation significantly improves precipitation estimates and the atmospheric moisture budget247

(Ruane 2010a,b; Kennedy et al. 2011) and the forecast of other variables (Lien et al. 2015).248

The decrease of precipitation variability with spatial averaging implies that to facilitate compar-249

ison of reanalyses with the other precipitation estimates, the reanalyses must be generated at as250

high a resolution as the other estimates. Lower-resolution reanalyses previously have been found251

to have lower rain rates and a smaller range of resolved rain rates overall as compared to satellite252

or gauge based estimates, similar to operational forecast models (Janowiak et al. 2010). This is253

valid even when area averaging (and thus decreasing the variability of) the observational estimates254

to the same resolution as the reanalyses. We obtained similar results when applying our analysis255

to lower resolution reanalyses. In addition, reanalyses are based on GCMs and their parameteri-256

zations and therefore have a similar problem as the GCMs which tend to precipitate lightly almost257

constantly. Here we consider the most recent global reanalyses products which have a spatial res-258

olution of smaller than 1◦. They are the European Centre for Medium-Range Weather Forecast-259

ing (ECMWF) ERA-Interim reanalysis (ERAI Dee et al. 2011a,b), the Modern-Era Retrospective260

Analysis for Research and Applications (MERRA Rienecker et al. 2011a,b), MERRA Version 2261

(MERRA2 Bosilovich et al. 2015a,b), the NCEP Climate Forecast System Reanalysis (CFSR Saha262

et al. 2010a,b), and the Japanese 55-year Reanalysis (JRA55 Kobayashi et al. 2015b,a).263
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d. Caveat to independence of precipitation estimates264

None of the above precipitation estimates is independent of all the others, for there is a large265

degree of overlap in the source data that goes into the different estimates (Table 1). PERSIANN266

and CMORPH are the only satellite products without routine inclusion of gauge data. Both TRMM267

and GPCP1DD use the same monthly satellite-gauge combination algorithm (Huffman et al. 1997)268

to constrain their monthly totals. As mentioned above, the GAUGE and GAUGERT estimates are269

for non-overlapping time periods and use a different total number of stations, but the underlying270

algorithm is the same. Their statistics compare very well even though only about half the number271

of stations are available for the real-time product GAUGERT (17000 compared to 30000 for the272

retrospective GAUGE analysis).273

3. Methods274

The first step, before any other analysis is done, is to interpolate all data sets from their original275

grids to a coarser grid with 1◦ spatial and daily temporal resolution using conservative averaging.276

GPCP1DD has the coarsest resolution in both time and space at 1◦, daily resolution, and all other277

data sets are interpolated to the same grid. All results shown and all computations are done on the278

regridded data sets in an attempt to minimize the impacts of differing resolution on the results.279

The methods used to evaluate the precipitation estimates include basic statistical quantities such280

as means and variances, and their differences among products at each grid point (Table 2). We also281

show the mean and variance differences as percentage of the mean and variance respectively to282

compare their relative sizes. In addition we consider temporal averages on time scales of a week,283

a month and a year. Spatial averages are always area averages, taking into account the change in284

grid area with latitude.285
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Frequency distributions of precipitation are highly skewed, with the smallest rain rates being the286

most frequent. In general this makes comparing different distributions difficult, because the tails287

tend to be under-sampled. One way to reduce the discrepancy between the number of samples in288

the lower rain rate bins and the higher rain rate bins is to use logarithmic bin sizes that increase with289

rain rate. Of course, in that case care needs to be taken when computing integrals. In addition to290

frequency distributions of precipitation rate we also compare rain amount by rain rate distributions.291

The integral under the curve is equal to the total precipitation amount. These distributions tend292

to be skewed towards lower precipitation rates with the largest amounts occurring at intermediate293

rain rates. For both types of distributions a logarithmic bin size is used. The number of bins is294

100 with a constant logarithmic (to base 10) bin length. Setting the minimum bin to 10−4 and295

the maximum to 10, the bin length then comes out to 4b =
(
log10 10− log10 10−4)/100 = 0.05.296

The edges of the bins are computed according to bi = 10−410i4b, i = 0, ..,100, which results in297

increasing bin sizes with precipitation rate. Rain rates below the minimum (including zero rain298

rates) are counted in the lowest bin.299

Global maps of the spread among precipitation data sets (Table 2) can be used to identify regions300

with more or less variability among the data sets. First the mean seasonal cycle is removed from301

each data set. The spread is then computed as the standard deviation among data sets at each grid302

point and time and averaged for each month of the year.303

4. Results304

The continental regions used in the analyses are defined as the land areas contained within the305

latitude-longitude areas given in Table 3. All results presented are for data interpolated to match306

the GPCP1DD 1◦, daily resolution.307
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a. Annual cycle308

A summary of the annual cycle is given in Figs. 1 and 2 in form of its amplitude and phase. he309

annual cycle is defined as the first 4 harmonics of the mean daily seasonal cycle. Differences in310

the amplitude are large over equatorial Africa and South America, and the Indian Monsoon region.311

Over North America the amplitude of the annual cycle in the Midwest of the Unites States ranges312

between 3−13mm d−1. The phase is defined as the day of the year the annual cycle is maximized,313

and so does not take into account if a location has multiple maxima in precipitation during the year.314

This is potentially an issue in equatorial South America and Africa, although overall the timing of315

the reported annual maxima in precipitation is captured consistently among the estimates. Regions316

with large discrepancies in timing are northern Africa, parts of Australia (both regions where the317

annual cycle amplitude is very small), and the northwestern United States (Fig. 2).318

b. Differences in means and variances319

To compare patterns of monthly means and variances it was necessary to choose one of the data320

sets to compare with the others. We chose GPCP1DD, not because it is the most accurate daily321

precipitation estimate, but because it is widely used and readers may have more familiarity with322

GPCP1DD than other data sets. GPCP1DD also has the most extensive time coverage except for323

PERSICDR, which is a newer product. In addition, GPCP1DD is the only precipitation estimate324

that is truly global.325

Distinctive differences among data sets of large-scale patterns of means and variances can be326

identified. The climatological mean monthly precipitation for July is shown in Fig. 4. Comparison327

of the mean monthly precipitation across data sets shows large variability (Fig. 4b-d), especially328

in areas like the Intertropical convergence zone (ITCZ). Other regions with large differences in the329

means are continental areas in the summer hemisphere and the western boundary ocean current330
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regions. Because of large spatial gradients in some regions, small variations in the location of331

climatological features like the ITCZ can lead to large local differences in mean precipitation.332

Figures 4c,d and 5c,d show that GPCP1DD mean precipitation exceeds mean precipitation from333

satellite-only product PERSIANN and over the oceans, except in regions with intense convective334

precipitation. The bias corrected CMORPHCRT has small differences to GPCP1DD compara-335

ble to GAUGE+RT. In particular, CMORPHCRT exceeds GPCP1DD over tropical oceans, and336

GPCP1DD exceeds CMORPHCRT over tropical land areas and over the midlatitudes in winter.337

As is to be expected based on previous work, TRMM and GPCP1DD match well over land, but338

TRMM commonly has higher means over tropical oceans and smaller means over midlatitude339

ocean areas (Fig. 4b). The closest match is between GPCP1DD and PERSICDR monthly means340

(Fig. 4f), where any differences are below 0.075mm d−1. This is to be expected based on the341

construction of GPCP1DD and PERSICDR. Satellite-only product PERSIANN has higher means342

over summertime continental regions than the gauge corrected estimates. Over land the main bias343

for gauge-corrected precipitation estimates is due to the bias in the rain gauge analysis used. This344

is visible in the differences between GPCP1DD monthly means and GAUGE+RT monthly means345

(Figs. 4e and 5e), where the rain gauge analysis that contributes to GPCP1DD is bias corrected for346

losses due to wetting, evaporation, or aerodynamic effects, and the CPC GAUGE+RT analysis is347

corrected for orographic effects. Comparing the July estimates to January it becomes clear that and348

PERSIANN tends to underestimate winter precipitation over continents and overestimate summer349

precipitation when compared to GPCP1DD. GAUGE+RT estimates are biased low on average, but350

not everywhere compared to GPCP1DD, and TRMM exceeds GPCP1DD in regions of vigorous351

convection.352

Percentage differences of the monthly means (Fig. 6) show clearly that the differences in the353

means are often as large as the means. This is especially true in areas with small mean values354
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like the subtropical dry zones, where small differences translate into large percentage differences.355

Depending on the data set under consideration, this can also be the case in regions with large mean356

precipitation and large variability like the continental US in the summer and the edge of the ITCZ357

(e.g. GPCP1DD and PERSIANN (Fig. 6d)).358

Monthly mean daily precipitation variance is large where mean precipitation is large (Figs. 4a359

and 7a). The largest variances are in areas with highly variable convective precipitation such as360

the ITCZ, the Indian Ocean, and the Indian Monsoon region. TRMM and CMORPHCRT have the361

largest variance on average (Fig. 7b,c), and differences in variances are as large as the variance362

for most areas of the globe (not shown). This holds even for areas with large variability, like363

the ITCZ. That magnitudes of spread and mean should correlate is to be expected for a positive364

definite quantity like precipitation, but the magnitude of the difference in variance among data sets365

is notable. The combined rain gauge data set GAUGE+RT shows smaller variance than GPCP1DD366

(Fig. 7e and 8e) over boreal winter land areas and the opposite during boreal summer. Results367

are more mixed over South America, Africa and Australia. PERSICDR variance is smaller than368

GPCP1DD variance over land, but exceeds GPCP1DD variance over the ocean. Note, however,369

that differences in variance are smaller between PERSICDR and GPCP1DD than for any other370

data set Fig. 7f and 8f). While small differences between the means of PERSICDR and GPCP1DD371

are to be expected, that expectation does not hold for daily variance. While CMORPHCRT has372

the larger variance for most regions, Figs. 7c and 8c show that GPCP1DD variance is higher in373

the winter hemisphere.374

c. Time Series375

Next, we examine time series at the continental scale for North America, where there is a rela-376

tively dense observing network and so the potential for constraining estimates is high. Time series377
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averaged over North America are also a good example in that they illustrate many of the issues378

also observed in other regions. Other regions (Table 3) are mentioned where results are notable,379

but results are not shown. Figures for all other regions are included in the supplementary material.380

Figure 3 and Table 3 also include the amplitude and phase of the mean seasonal cycle averaged381

over each continental region. The minimum and maximum amplitude estimated by the different382

products in general differ by a factor of 1.5− 3. The timing of the seasonal cycle is estimated383

within 30 days for North America, Asia, Australia and the maritime continent, but for Europe the384

estimates differ by 46 days. Note that the outliers for the timing are not necessarily the reanalyses.385

For North America it is GAUGE+RT and for Europe it is PERSIANN that place the maximum386

of the annual cycle earlier in the year than the other estimates. South America and Africa have387

two maxima in the seasonal cycle, and there is disagreement among data sets on which maximum388

dominates.389

The temporal evolution of global land-averaged precipitation rates on annual and monthly390

timescales are shown in Fig. 9. The interannual variability that can be seen in the annual391

means is somewhat consistent among most data sets, although there appears to be an offset of392

0.5− 1mm d−1 between the estimates (Fig. 9a), this decreases to 0.3mm d−1 when anomalies393

from the seasonal cycle are considered (not shown). The outliers for annual averages are PER-394

SIANN and to a lesser degree MERRA2 and CFSR. CFSR appears to have a positive trend from395

2001 to 2010 not seen in the other estimates; this trend is mostly due to trends over South Amer-396

ica and Africa (not shown) and can be related to the changing observing system (Trenberth et al.397

2011). Previous studies have shown that precipitation from reanalyses that assimilate moisture398

from satellite observations are strongly affected by changes in the observing system and result399

in spurious trends in the precipitation estimates (Trenberth et al. 2011). PERSIANN has anoma-400

lously high rain rates from late 2006 to early 2007 and anomalously low rate in late 2005 and early401
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2008 (Fig. 9b). Over the global ocean the differences among annual averages are larger, up to402

2mm d−1, and the reanalyses have a small but significant upward trend not seen in the GPCP1DD,403

PERSICDR and TRMM estimates (not shown). PERSIANN in contrast has a negative trend over404

the ocean.405

The timing of the seasonal cycle over North America is captured more or less consistently by406

all estimates (Fig. 10b), but the amplitude is not. CMORPHCRT and PERSIANN underestimate407

winter precipitation rates relative to other analyses by up to 1mm d−1 on monthly time scales,408

while ERAI under-estimates summer precipitation rates. On weekly time scales the differences409

can be as large as 3mm d−1 in the winter, with PERSIANN estimating < 0.5mm d−1 and all other410

estimates averaging between 2.5−3mm d−1 (Fig. 10c). This large difference illustrates a known411

issue with PERSIANN and other satellite-only products. Several studies have shown that winter-412

time precipitation is severely underestimated in these products for different regions in the northern413

midlatitudes (Sapiano and Arkin 2009; Sohn et al. 2010; Kidd et al. 2012). Relative differences414

over North America in the summer are of the same order as over the maritime continent, even415

though total amounts are much larger over the maritime continent.416

To assess the consistency of the time evolution among the data sets, we consider correlations on417

annual, monthly and daily time scales with GPCP1DD and GAUGE+RT. One note of caution is418

necessary for interpreting the annual time scale results. The time series of annual means only have419

12 data points from 2001-2012. This severely limits the sample size and leads to unstable estimates420

of the correlations on annual time scales. We show results for correlation with GPCP1DD only,421

but mention how these compare with correlations with GAUGE+RT. Correlations of the time se-422

ries of continental mean precipitation anomalies with GPCP1DD reveal large positive correlations423

on annual, monthly and daily time scales for some data sets, TRMM and PERSICDR in particular424

(Table 4). For other data sets the correlations were generally not significantly different from zero425
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on annual and daily timescales (e.g. PERSIANN), but were on monthly time scales. Low corre-426

lation for annual averages indicate potential long-term differences in the continental scale water427

budgets associated with the different data sets that would need to be balanced by evaporation or428

runoff. Results for reanalyses are mixed. Correlations on annual timescales are not significant for429

3 reanalyses over North America (JRA55,CFSR and ERAI), but > 0.79 for all reanalyses over Eu-430

rope, the maritime continent (except MERRA2) and Australia. Meanwhile, correlations are fairly431

high for both monthly and daily timescales. Comparison of correlations with GAUGE+RT instead432

of GPCP1DD (not shown) reveal that for North America on annual time scales all data sets ex-433

cept PERSIANN have correlations higher than 0.8 with GAUGE+RT. Over Europe data sets with434

higher correlation with GPCP1DD are TRMM, PERSICDR, MERRA and ERAI, data sets with435

higher correlation with GAUGE+RT are CMORPHCRT, MERRA2 and CFSR. On monthly time436

scales both CMORPHCRT and MERRA2 correlate better with GAUGE+RT, while all other data437

sets correlate better with GPCP1DD. For daily data correlations between GPCP1DD and all other438

data sets are higher than for GAUGE+RT, with the exception of the reanalyses over Europe.439

The low correlations of large scale (continental to global) annual averages of precipitation esti-440

mates indicate that the estimates differ in their interannual variability. Imbalances on these scales441

in estimates of an important component of the global water cycle affect our ability to close the442

budget (Trenberth et al. 2007, 2011). Global land differences on annual time scales are about443

0.8mm d−1 for the observational estimates. This translates to differences of up to 23.2W m−2,444

which is very large compared to the global land latent heat flux of 38.5W m−2 estimated by Tren-445

berth et al. (2009). Including the reanalyses increases the offset to 1mm d−1.446

20



d. Distributions447

In this section, we examine area-averaged seasonal distributions. The general behavior of these448

distributions is very similar among the continental areas. When plotted on a log-log scale (not449

shown), the distribution curves have two distinct slopes, positive for low rain rates and negative450

for higher rain rates. The transition between these slopes is more abrupt in the summer and more451

gradual in the winter months for North America. For Africa and the maritime continent, the452

transition is abrupt for all months (not shown). This relationship appears to hold for all continental453

areas during the summer months when precipitation tends to be in a more convective regime,454

which leads us to speculate that the manner of transition between slopes could be related to the455

dominant precipitation regime (large-scale vs. convective). While the location of where the slopes456

in the log-log plot change is around 0.5mm h−1 for all seasons and regions, the slopes are quite457

variable between months, data sets and regions.458

Fig. 11 shows the area-averaged seasonal distributions for North America. At the lowest pre-459

cipitation rates, CMORPHCRT has a positive bias, with lower rain rates being more common than460

in other reanalyses or observational data sets. This is consistent with all other continental areas461

except Africa and Australia. This low precipitation rate bias can also be seen in the older ver-462

sion of CMORPH that has not been bias corrected. Over Australia, ERAI has a high bias at low463

rain rates in austral summer and PERSIANN in austral winter. ERAI distributions over Australia,464

Africa and Asia are bimodal, unlike the other precipitation estimates. The bulk of the distribution465

is between 0.01−1mm h−1, with the peak in the distribution shifting between 0.015mm h−1 in the466

winter and 0.5mm h−1 in the summer for North America (Fig. 11c). In general, reanalyses, and467

ERAI in particular, dominate the distribution at these rates. For midlatitude continental regions,468

CMORPHCRT, and PERSIANN to a lesser degree, are a lot less likely than other products to have469

21



precipitation occur at the intermediate rates 0.01−1mm h−1. Fig. 12 examines the differences in470

the tails of the precipitation distributions. Overall reanalyses tend to not produce very high rain471

rates, with the exception of MERRA2. This could be because of the grid area vs. point estimate,472

the convective parameterizations used, or the relatively large grid size. For North America in the473

winter TRMM has the highest rain rates and highest probability of high rates occurring (Fig. 12a).474

In the summer (Fig. 12c) the satellite-only estimates dominate at the highest rain rates. For other475

regions MERRA2 dominates the tails in in South America, Africa and the maritime continent (not476

shown). The satellite-only product, PERSIANN, tends to accentuate the tail of the distribution477

during summertime convective precipitation regimes. During months when precipitation is dom-478

inated by synoptic systems or when the ground is covered in snow (e.g. Europe in the winter479

months) the tails of the distributions of PERSIANN are even lower than the reanalyses.480

A different way to compare the data sets is through the distribution of the rain amount by rain481

rate (Fig. 13). Precipitation amount distributions tend to be skewed in a logarithmic plot, with a482

long tail towards lower rain rates. Rain rates below 0.01mm h−1 are very common, but the actual483

rain amount from precipitation at these rates does not add up to much. During the winter months484

(Fig. 13a), the distributions for CMORPHCRT and PERSIANN are much flatter, and the mean485

total precipitation amount of CMORPHCRT in DJF is 29mm, whereas it is 56mm for GPCP1DD486

and 66mm for CFSR. That is a difference of more than 200% for the mean seasonal total estimate.487

Excluding CFSR which has been shown to overestimate moisture transport from ocean to land488

and where at least some of the precipitation over land is due to the analysis increment (Trenberth489

et al. 2011), there is still a factor of 2 difference. On the other hand, in summer (Fig. 13c),490

PERSIANN has many high rain rate events compared to the other estimates, and the seasonal491

mean totals are correspondingly higher than the other estimates confirming what was already seen492

in the time series results. One thing to note about the reanalysis estimates is that the rain amount493
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distributions tend to be narrower than the satellite and rain gauge estimates. This is most obvious494

for ERAI (Fig. 13c) and becomes more severe for reanalyses with a coarser spatial resolution (not495

shown), highlighting the fact that reanalyses only resolve a narrow band of rain rates. One notable496

exception to this is MERRA2, which has equally high rain rates as PERSIANN. While this may497

lead to positive results in midlatitude regions, it leads to estimated precipitation totals that are too498

large (compared to the other estimates) by a factor of 2 over the maritime continent.499

5. Summary and Discussion500

A comparison of several global precipitation estimates and reanalyses was performed on a range501

of temporal and spatial scales. Only data sets with daily or higher temporal resolution were con-502

sidered. To minimize differences in the data sets due to resolution, all data sets with higher spatial503

or temporal resolution than 1◦, daily were interpolated to match the GPCP1DD resolution. We504

found that while patterns of means and variance were largely consistent among data sets, the dif-505

ferences in means and variances between the data sets were often as large as the analyzed means506

and variances themselves.507

Correlations among the precipitation estimates averaged over continental areas varied signifi-508

cantly. GPCP1DD, TRMM and PERSICDR were very highly correlated. This was by construc-509

tion on monthly and annual time scales, since all three data sets are bias corrected to monthly510

satellite - rain gauge analyses (which use, and tend to be dominated by, the same GPCC analysis,511

with the same undercatch-correction applied in all cases), but also held for daily averages. Corre-512

lations of the satellite-only product, PERSIANN, with GPCP1DD were generally not significantly513

different from zero on annual and daily timescales, but were on monthly time scales. Reanaly-514

ses had high correlations with GPCP1DD on monthly time scales, but the results were mixed for515

annual averages. Correlations between reanalyses and GPCP1DD were found to be larger than516
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0.8 over Europe and Australia, but results are mixed over North America. This is noteworthy,517

because North America is one of the best observed regions in the world where the potential for518

constraining reanalyses with observations is high. It is also interesting to note that correlations519

with GAUGE+RT were comparable and larger than 0.79 for Europe, Australia and North Amer-520

ica. This difference in the correlations with GPCP1DD versus GAUGERT in data dense regions521

could reflect a difference in the data sources the different products assimilate.522

The different time scale results for the correlations permit interesting speculation on some as-523

pects of these precipitation estimates at different scales. The nature of the correlations (low at an-524

nual and daily, higher at monthly time scales for time series averaged over large regions) could be525

interpreted to suggest that large scale bias differences are large compared to interannual variability526

and random errors are large at daily time scales, but that at intermediate time scales (monthly in527

this case) the signal to noise ratio can be large enough to have high correlations. It would also528

appear that monthly bias corrections increase daily correlations (e.g. PERSICDR and TRMM cor-529

relations with GPCP1DD), possibly suggesting that the low correlations on daily time scales in530

satellite-only products are a result of random errors and monthly bias.531

Distributions of precipitation rates and amounts confirmed a known bias in satellite-only esti-532

mates and showed that PERSIANN underestimated wintertime precipitation in midlatitudes, while533

overestimating summertime precipitation in midlatitudes. Reanalyses tended to precipitate over534

too narrow of a range of rain rates when compared to observational estimates, although some of535

the reanalyses (JRA55 and MERRA2) estimate mean monthly totals in the same range as or even536

above PERSIANN in the summer. The difference (at least for North America) is that the bulk of537

the rain in the satellite-only estimate PERSIANN comes from high rain rates > 2mm h−1, while538

JRA55 overestimation occurred at rain rates around 0.8mm h−1.539
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Average spread among data sets was computed for each grid point, and is defined as the average540

of the standard deviation of anomalies from the seasonal cycle. Spread among data sets differed541

between reanalyses and satellite estimates (Fig. 14). Spread among reanalyses was found to be542

larger in the tropics and smaller in midlatitudes when compared to the spread among satellite esti-543

mates. This is likely related to precipitation in midlatitudes being driven mainly by the large-scale544

flow, while convective precipitation dominates in the tropics. Reanalyses do well in representing545

mid-latitude large-scale circulation patterns and this results in higher consistency across reanaly-546

ses in the mid-latitudes. In the tropics convective parameterizations were likely responsible for the547

bulk of the precipitation in reanalyses; these parameterizations differed widely among reanalyses548

and so did the results.549

Systematic differences were found in the global precipitation estimates considered in this study.550

Users of these estimates need to be aware of these biases and their use as a ground truth should551

be limited to regimes, seasons, or regions the products have been shown to perform well for. For552

example, PERSIANN and CMORPH, designed to represent the instantaneous variability in pre-553

cipitation, performed well in the tropics, but overestimated summertime convective precipitation554

and underestimated wintertime precipitation in midlatitudes. This suggests that the performance555

of CMORPH and PERSIANN in midlatitude regions always needs to be assessed for the region556

and season of interest prior to using these estimates. Reanalyses reflect the systematic errors of557

the global circulation models used to provide the forecast background. There is a clear bias of the558

reanalyses’ annual and monthly means compared to the observational estimates. However, while559

we showed here that large scale (continental to global) annual averages of precipitation estimates560

differ in their interannual variability, variability estimated by reanalyses on monthly timescales561

tends to be consistent with the observational estimates (as seen from the high correlations). This562
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suggests that studies interested mainly in the variability of precipitation may have a more reliable563

foundation in using reanalyses than studies investigating the energy and water budgets.564

In summary, any study using precipitation estimates based on observations or reanalyses should565

take into account the uncertainty associated with the precipitation estimate. There is no one global566

precipitation product that is better than all the others for all applications. The most suitable prod-567

uct changes with intended application, location and season. Therefore, care needs to be taken568

when choosing a product for a specific application, to ensure that the product has the capability569

to yield useful results. Given the uncertainty inherent in any precipitation estimate it is an asset570

to have several products based on different approaches available to compare and estimate that un-571

certainty. In some ways precipitation estimates from satellite and reanalyses have the opposite572

problem. Satellite estimates perform well in regions and seasons with convective precipitation,573

while reanalyses are better at large scale precipitation in the northern midlatitudes. Precipitation574

estimates that incorporate both satellite and ground-based measurements such as GPCP1DD, and575

indirectly TRMM and PERSICDR, tend to lie in between the other estimates both in terms of576

the distributions and the average rain rates. Incorporating ground radar in precipitation estimates577

where available can be expected to have a positive impact on the accuracy of the estimates. In-578

cluding data from diverse sources (multiple satellites and retrieval channels, rain gauge, radar)579

appears to help with reducing errors and enhances reliability. Extending the rain gauge network580

to data sparse regions, in particular over oceans, will likely have a large impact on constraining581

at least global mean precipitation estimates. Unfortunately, this is impractical and costly. A more582

practical approach may be to combine precipitation estimates from several different data sources583

based on their respective strengths.584

26



Acknowledgments. Gehne’s research is sponsored by the NWS Sandy Supplemental grant585

NA14NWS4830003. Hamill’s research was funded by the Disaster Relief Appropriations Act586

of 2013. Trenberth’s research is partially sponsored by DOE grant DE–SC0012711. NCAR is587

sponsored by NSF. We would like to thank two anonymous reviewers for their comments and588

insight. We would like to thank Reviewer 1 for suggesting the particular interpretation of the589

correlation results. ERA-Interim data is provided courtesy of ECMWF and the Research Data590

Archive at the National Center for Atmospheric Research. The CFSR dataset is provided from591

the Climate Forecast System Reanalysis (CFSR) project carried out by the Environmental Model-592

ing Center (EMC), National Centers for Environmental Prediction (NCEP). The (JRA55) dataset593

is provided by the Japanese 55-year Reanalysis project carried out by the Japan Meteorological594

Agency (JMA). MERRA was developed by the Global Modeling and Assimilation Office and595

supported by the NASA Modeling, Analysis and Prediction Program. Source data files can be596

acquired from the Goddard Earth Science Data Information Services Center (GES DISC).597

References598

Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for system-599

atic bias. J. Geophys. Res., 108 (D9), doi:10.1029/2002JD002499.600

Adler, R., and Coauthors, 2003: The version 2 global precipitation climatology project (GPCP)601

monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147–1167.602

Adler, R. F., C. Kidd, G. Petty, M. Morrissey, H. M. Goodman, and F. Einaudi, 2001: Intercompar-603

ison of global precipitation products: The third precipitation intercomparison project (PIP–3).604

Bull. Amer. Meteor. Soc., 82 (7), 1377–1396.605

27



Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson,606

and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatel-607

lite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96 (1), 69–83,608

doi:10.1175/BAMS-D-13-00068.1.609

Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese,610

2013: A description of the global land-surface precipitation data products of the Global Precip-611

itation Climatology Centre with sample applications including centennial (trend) analysis from612

1901-present. Earth Syst. Sci. Data, 5 (1), 71–99, doi:10.5194/essd-5-71-2013.613

Bell, T. L., A. Abdullah, R. L. Martin, and G. R. North, 1990: Sampling errors for satellite-614

derived tropical rainfall: Monte carlo study using a space-time stochastic model. J. Geophys.615

Res.: Atmospheres, 95 (D3), 2195–2205, doi:10.1029/JD095iD03p02195.616

Bolvin, D., 2001: Global Precipitation at One-Degree Daily Resolution from Mul-617

tisatellite Observations, version 1.2. Accessed: 7 August 2014, NASA/GSFC,618

ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2.619

Bosilovich, M. G., and Coauthors, 2015a: MERRA-2: Initial evaluation of the climate. Technical620

Report Series on Global Modeling and Data Assimilation 43, National Aeronautics and Space621

Administration.622

Bosilovich, M. G., and Coauthors, 2015b: Modern-era retrospective analysis for research and623

applications, version 2. Accessed: 9 February 2016, National Aeronautics and Space Adminis-624

tration, http://disc.sci.gsfc.nasa.gov/uui/search/\%22MERRA-2\%22.625

Braithwaite, D., 2000: PERSIANN: Precipitation Estimation from Remote Sensing Information626

using Artificial Neural Networks. Accessed: 4 August 2014, Center for Hydrometeorology and627

28



Remote Sensing, University of California, Irvine, http://chrs.web.uci.edu/persiann/data.html.628

Brown, J. D., D.-J. Seo, and J. Du, 2012: Verification of precipitation forecasts from NCEPs short-629

range ensemble forecast (SREF) system with reference to ensemble streamflow prediction using630

lumped hydrologic models. J. Hydrometeor., 13, 808–836, doi:10.1175/JHM-D-11-036.1.631

Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008:632

Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geo-633

phys. Res., 113, D04 110, doi:10.1029/2007JD009132.634

CMORPHv1.0, 2015: NOAA CPC Morphing Technique (”CMORPH”), Version 1.0, CRT. Ac-635

cessed: 9 February 2016, NOAA Center for Weather and Climate Prediction, Climate Prediction636

Center http://ftp.cpc.ncep.noaa.gov/precip/CMORPH V1.0/CRT/.637

Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping638

climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140–158.639

Dee, D. P., and Coauthors, 2011a: The ERA-Interim reanalysis: configuration and performance of640

the data assimilation system. Quart. J. Roy. Meteor. Soc., 137 (656), 553–597, doi:10.1002/qj.641

828.642

Dee, D. P., and Coauthors, 2011b: The ERA-Interim reanalysis. Accessed: 5 August 2014,643

European Centre for Medium-Range Weather Forecasts, http://www.ecmwf.int/en/research/644

climate-reanalysis/era-interim.645

Gutowski Jr., W. J., S. G. Decker, R. A. Donavon, Z. Pan, R. W. Arritt, and E. S. Takle, 2003: Tem-646

poralspatial scales of observed and simulated precipitation in central U.S. climate. J. Climate,647

16, 3841–3847, doi:10.1175/1520-0442(2003)016〈3841:TSOOAS〉2.0.CO;2.648

29



Haerter, J. O., P. Berg, and S. Hagemann, 2010: Heavy rain intensity distributions on varying649

time scales and at different temperatures. J. Geophys. Res., 115 (D17), D17 102, doi:10.1029/650

2009JD013384.651

Hamill, T. M., 2012: Verification of TIGGE multimodel and ECMWF reforecast-calibrated proba-652

bilistic precipitation forecasts over the contiguous united states. Mon. Wea. Rev., 140 (7), 2232–653

2252, doi:10.1175/MWR-D-11-00220.1.654

Harris, I., P. Jones, T. Osborn, and D. Lister, 2014: Updated high-resolution grids of monthly655

climatic observations - the CRU TS3.10 dataset. Int. J. Climatol., 34 (3), 623–642, doi:10.1002/656

joc.3711.657

Hsu, K.-l., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely658

sensed information using artificial neural networks. J. Appl. Meteor., 36, 1176–1190.659

Huffman, G., E. Stocker, D. Bolvin, E. Nelkin, and R. Adler, 2012: TRMM Ver-660

sion 7 3B42 and 3B43 Data Sets. Accessed: 5 January 2014, NASA/GSFC,661

http://mirador.gsfc.nasa.gov/cgibin/mirador/presentNavigation.pl?tree=project&project=662

TRMM&dataGroup=Gridded&CGISESSID=5d12e2ffa38ca2aac6262202a79d882a.663

Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock,664

and J. Susskind, 2000: Global precipitation at one-degree daily resolution from multisatellite665

observations. J. Hydrometeor., 2, 36–50.666

Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) com-667

bined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5–20.668

30



Huffman, G. J., and Coauthors, 2007: The TRMM multi satellite precipitation analysis (TMPA):669

Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor.,670

8, 38–55, doi:10.1175/JHM560.1.671

Janowiak, J. E., P. Bauer, W. Wang, P. A. Arkin, and J. Gottschalck, 2010: An evaluation of672

precipitation forecasts from operational models and reanalyses including precipitation variations673

associated with MJO activity. Mon. Wea. Rev., 138, 4542–4560, doi:10.1175/2010MWR3436.1.674

Joyce, B., and J. Janowiak, 2005: NOAA CPC Morphing Technique (”CMORPH”). Accessed:675

7 January 2014, NOAA Climate Prediction Center, http://www.cpc.ncep.noaa.gov/products/676

janowiak/cmorph description.html.677

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces678

global precipitation estimates from passive microwave and infrared data at high spatial and679

temporal resolution. J. Hydrometeor., 5, 487–503.680

Kennedy, A. D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A comparison of MERRA681

and NARR reanalyses with the DOE ARM SGP data. J. Climate, 24 (17), 4541–4557, doi:682

10.1175/2011JCLI3978.1.683

Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K. L. Hsu, and D. Braithwaite, 2012: Inter-684

comparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor.,685

13 (1), 67–83, doi:10.1175/JHM-D-11-042.1.686

Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteorol. Appl., 18 (3), 334–687

353, doi:10.1002/met.284.688

31



Kobayashi, S., and Coauthors, 2015a: The JRA-55 reanalysis. Accessed: June 2015, Research689

Data Archive at the National Center for Atmospheric Research, http://rda.ucar.edu/datasets/690

ds628.0/.691

Kobayashi, S., and Coauthors, 2015b: The JRA-55 reanalysis: General specifications and basic692

characteristics. J. Meteor. Soc. Japan, 93 (1), 5–48, doi:10.2151/jmsj.2015-001.693

Lien, G.-Y., T. Miyoshi, and E. Kalnay, 2015: Assimilation of TRMM multisatellite precipitation694

analysis with a low-resolution NCEP global forecasting system. Mon. Wea. Rev., 144, 643–661,695

doi:10.1175/MWR-D-15-0149.1.696

Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Devel-697

opment and applications, pre-prints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor.698

Soc., 1.2. Available online at https://ams.confex.com/ams/pdfpapers/83847.pdf.699

Lindvall, J., G. Svensson, and C. Hannay, 2013: Evaluation of near-surface parameters in the two700

versions of the atmospheric model in CESM1 using flux station observations. J. Climate, 26,701

26–44, doi:10.1175/JCLI-D-12-00020.1.702

Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations703

to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12,704

750–765, doi:10.1175/JHM-D-10-05000.1.705

McLaughlin, D., Y. Zhou, D. Entekhabi, and V. Chatdarong, 2006: Computational issues for706

large-scale land surface data assimilation problems. J. Hydrometeor., 7 (3), 494–510, doi:10.707

1175/JHM493.1.708

32



Meng, J., R. Yang, H. Wei, M. Ek, G. Gayno, P. Xie, and K. Mitchell, 2012: The land surface709

analysis in the NCEP climate forecast system reanalysis. J. Hydrometeor., 13 (5), 1621–1630,710

doi:10.1175/JHM-D-11-090.1.711

Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor.712

Soc., 87 (3), 343–360, doi:10.1175/BAMS-87-3-343.713

Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate714

data: a review. Int. J. Climatol., 18 (13), 1493–1517.715

Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived716

from satellite, radar, and rain gauge data sets at daily to annual scales (20022012). Hydrol. Earth717

Syst. Sci., 19, 2037–2056, doi:10.5194/hess-19-2037-2015,2015.718

Rienecker, M., and Coauthors, 2011a: MERRA: NASA’s modern-era retrospective analysis for719

research and applications. J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1.720

Rienecker, M., and Coauthors, 2011b: MERRA: NASA’s modern-era retrospective analysis for721

research and applications. Accessed: August 2014, National Aeronautics and Space Adminis-722

tration, http://disc.sci.gsfc.nasa.gov/uui/search/%22MERRA%22.723

Rodell, M., and Coauthors, 2015: The observed state of the water cycle in the early twenty-first724

century. J. Climate, 28 (21), 8289–8318, doi:10.1175/JCLI-D-14-00555.1.725

Ruane, A. C., 2010a: NARR’s atmospheric water cycle components. part i: 20-year mean and726

annual interactions. J. Hydrometeor., 11 (6), 1205–1219, doi:10.175/2010JHM1193.1.727

Ruane, A. C., 2010b: NARR’s atmospheric water cycle components. part ii: Summertime mean728

and diurnal interactions. J. Hydrometeor., 11 (6), 1220–1233, doi:10.1175/2010JHM1279.1.729

33



Saha, S., and Coauthors, 2010a: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor.730

Soc., 91 (8), 1015–1057, doi:10.1175/2010BAMS3001.1.731

Saha, S., and Coauthors, 2010b: The NCEP climate forecast system reanalysis. Accessed: August732

2014, Research Data Archive at the National Center for Atmospheric Research, http://rda.ucar.733

edu/datasets/ds093.0/.734

Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution735

satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149–166, doi:736

10.1175/2008JHM1052.1.737

Schlosser, C. A., and P. R. Houser, 2007: Assessing a satellite-era perspective of the global water738

cycle. J. Climate, 20 (7), 1316–1338, doi:10.1175/JCLI4057.1.739

Smith, E. A., J. E. Lamm, and R. Adler, 1998: Results of WetNet PIP-2 project. J. Atmos. Sci., 55,740

1483–1536.741

Sohn, B. J., H.-J. Han, and E.-K. Seo, 2010: Validation of satellite-based high-resolution rainfall742

products over the korean peninsula using data from a dense rain gauge network. J. Appl. Meteor.743

Climatol., 49 (4), 701–714, doi:10.1175/2009JAMC2266.1.744

Sorooshian, S., K. Hsu, D. Braithwaite, H. Ashouri, and N. C. Program, 2014: NOAA Climate745

Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Ar-746

tificial Neural Networks (PERSIANN-CDR), Version 1 Revision 1. Accessed: 28 July 2015,747

NOAA National Climatic Data Center, ftp://data.ncdc.noaa.gov/cdr/persiann/files/.748

Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation749

of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc.,750

81, 2035–2046.751

34



Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys.752

Res., 115 (D24), doi:10.1029/2010JD014532, d24211.753

Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of754

precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217, doi:10.1175/2008BAMS2634.1.755

Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and756

J. Sheffield, 2014: Global warming and changes in drought. Nature Climate Change, 4, 17–757

22, doi:10.1038/NCLIMATE2067.758

Trenberth, K. E., and J. T. Fasullo, 2013: Regional energy and water cycles: Transports from759

ocean to land. J. Climate, 26, 7837–7851, doi:10.1175/JCLI-D-13-00008.1.760

Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer.761

Meteor. Soc., 90, 311–323, doi:10.1175/2008BAMS2634.1.762

Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric Moisture Transports from763

Ocean to Land and Global Energy Flows in Reanalyses. J. Climate, 24 (18), 4907–4924.764

Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface tempera-765

ture. Geophys. Res. Lett., 32 (14), L14 703, doi:10.1029/2005GL022760.766

Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water767

budget and its annual cycle using observational and model data. J. Hydrometeor., 8 (4), 758–769,768

doi:10.1175/JHM600.1.769

Wilcox, E. M., and L. J. Donner, 2007: The frequency of extreme rain events in satellite rain-rate770

estimates and an atmospheric general circulation model. J. Climate, 20, 53–69, doi:10.1175/771

JCLI3987.1.772

35



Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and773

satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 2215–2237,774

doi:10.1175/2008JAMC1875.1.775

Xie, P., 2009: CPC Unified Gauge-Based Analysis of Global Daily Precipitation. Accessed: 5776

August 2014, NOAA Climate Prediction Center, http://ftp.cpc.ncep.noaa.gov/precip/CPC UNI777

PRCP.778

Xie, P., and P. A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based on gauge779

observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78,780

2539–2558.781

Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-782

based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607–627, doi:10.1175/783

JHM583.1.784

Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012:785

APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based786

on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415, doi:10.1175/787

BAMS-D-11-00122.1.788

36



LIST OF TABLES789

Table 1. List of precipitation estimate data sets. Sources are geostationary infrared790

(Geo-IR), microwave (MW), gauges, or reanalyses. Only the main data set791

reference is given for each data set. Additional references and references with792

links to the actual data sets are included with the description of the data sets in793

section 2. . . . . . . . . . . . . . . . . . . . . 38794

Table 2. Description of the metrics used in the analysis. P(x,y,d,m,yr) is precipitation795

at longitude x, latitude y, day d, month m, and year yr. Nm is the total number796

of days in month m, m = 1, ...,12. NA is the number of grid points in region797

A with (xi,y j) ∈ A. w j are the weights that account for changing area of the798

grid box with latitude. P1, ...,PNd are the different data sets, with Nd the total799

number of data sets. M is the mean of all the precipitation data sets. . . . . . 39800

Table 3. Description of continental regions used in the analysis. Only points over land801

inside the domains are used. Also shown are the amplitude (mm d−1) of the802

area averaged mean annual cycle for 2001-2012 and the phase (the day of the803

year the maximum occurs). The annual cycle is defined as the first 4 harmonics804

of the mean daily annual cycle. These are given for all data sets in the order805

(TRMM, GPCP1DD, CMORPHCRT, PERSIANN, PERSICDR, GAUGE+RT,806

JRA55, MERRA2, CFSR, ERAI). The minimum and maximum are highlighted807

in bold. . . . . . . . . . . . . . . . . . . . . . 40808

Table 4. Correlations between GPCP1DD and all other data sets for annual, monthly809

and daily mean time series. Correlations are computed for common time pe-810

riod 2001-2012 (2001-2010 for CFSR) with the annual cycle removed. The811

annual cycle is defined as the first 4 harmonics of the mean daily seasonal cy-812

cle. Correlations significant at the 90% level are bold. . . . . . . . . . 41813

37



TABLE 1. List of precipitation estimate data sets. Sources are geostationary infrared (Geo-IR), microwave

(MW), gauges, or reanalyses. Only the main data set reference is given for each data set. Additional references

and references with links to the actual data sets are included with the description of the data sets in section 2.

814

815

816

Name Source Temporal resolution Spatial resolution Reference

TRMM Geo-IR; MW from SSM/I,TMI, 1998 - 2012, 49◦S - 49◦N Huffman et al. (2007)

(TRMM3B42) AMSU, AMSR; gauges 3 hourly 0.25◦

CMORPH Geo-IR; MW from SSM/I,TMI, 2003 - 2013, 59◦S - 59◦N Joyce et al. (2004)

(V0.x) AMSU, AMSR; 3 hourly 0.25◦

CMORPHCRT Geo-IR; MW from SSM/I,TMI, 1998 - 2013, 59◦S - 59◦N Joyce et al. (2004)

(V1.0) AMSU, AMSR; 3 hourly 0.25◦

PERSIANN Geo-IR; MW from TMI 2001 - 2013, 59◦S - 59◦N Hsu et al. (1997)

3hourly 0.25◦ Sorooshian et al. (2000)

PERSICDR Geo-IR; MW from TMI (for training) 1983 - 2013, 60◦S - 60◦N Ashouri et al. (2015)

(V1.R1) SSM/I; IR; gauges daily 0.25◦

GPCP1DD Geo-IR; AVHRR low-earth-orbit IR, 1997 - 2013, global, 1◦ Huffman et al. (2000)

SSM/I; gauges; daily

TOVS (poleward of 40S-40N)

GAUGE gauges 1979 - 2005, daily global land, 0.5◦ Xie et al. (2007); Chen et al. (2008)

GAUGERT gauges 2006 - 2013, daily global land, 0.5◦ Xie et al. (2007); Chen et al. (2008)

JRA55 Reanalysis 1979 - 2013, 3hourly global, gaussian 0.5625◦ Kobayashi et al. (2015b)

MERRA Reanalysis 1979 - 2013, hourly global, 0.5◦ x 2/3◦ Rienecker et al. (2011a)

MERRA2 Reanalysis 1980 - 2015, hourly global, 0.5◦ x 0.625◦ Bosilovich et al. (2015a)

CFSR Reanalysis 1979 - 2010, 6hourly global, 0.5◦ Saha et al. (2010a)

ERAI Reanalysis 1979 - 2013, 3hourly global, 0.75◦ Dee et al. (2011a)
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TABLE 2. Description of the metrics used in the analysis. P(x,y,d,m,yr) is precipitation at longitude x,

latitude y, day d, month m, and year yr. Nm is the total number of days in month m, m = 1, ...,12. NA is the

number of grid points in region A with (xi,y j) ∈ A. w j are the weights that account for changing area of the grid

box with latitude. P1, ...,PNd are the different data sets, with Nd the total number of data sets. M is the mean of

all the precipitation data sets.

817

818

819

820

821

Metric

Monthly mean P̄(x,y,m) = 1
Nm

∑
N
yr=1 ∑

Nmy
k=1 P(x,y,dk,m,yr)

Monthly variance σ2(x,y,m) = 1
Nm

∑
N
yr=1 ∑

Nmy
k=1(P(x,y,dk,m,yr)− P̄(x,y,m))2

Difference D(x,y,m) = P̄(x,y,m)− Q̄(x,y,m)

Percentage difference D(x,y,m) = P̄(x,y,m)−Q̄(x,y,m)
P̄(x,y,m)

∗100

Spatial average PA(d,m,yr) = 1
NA

∑
NxA
i=1 ∑

NyA
j=1 w jP(xi,y j,d,m,yr)

Spread among data sets σP(x,y) = 1
Nt

∑
Nt
k=1

√
1

Nd
∑

Nd
d=1(Pd(x,y, tk)−M(x,y, tk))2
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TABLE 3. Description of continental regions used in the analysis. Only points over land inside the domains

are used. Also shown are the amplitude (mm d−1) of the area averaged mean annual cycle for 2001-2012 and

the phase (the day of the year the maximum occurs). The annual cycle is defined as the first 4 harmonics of

the mean daily annual cycle. These are given for all data sets in the order (TRMM, GPCP1DD, CMORPHCRT,

PERSIANN, PERSICDR, GAUGE+RT, JRA55, MERRA2, CFSR, ERAI). The minimum and maximum are

highlighted in bold.

822

823

824

825

826

827

Region lon-lat Amplitude Phase

North America 165◦W - 50◦W (1.47,1.19,1.22,1.22,1.19, (270,273,276,256,271,

15◦N - 49◦N 1.38,1.5,1.33,1.37,1.16) 253,266,264,272,272)

South America 90◦W - 30◦W (1.26,1.25,1.08,1.57,1.25, (75,73,73,304,71,

49◦S - 15◦N 3.35,1.2,1.4,1.51,1.01) 59,328,91,84,340)

Europe 15◦W - 50◦E (1.62,1.51,1.12,0.45,1.47, (321,336,310,298,339,

30◦N - 49◦N 0.77,1.21,1.27,1.69,1.02) 321,328,331,344,330)

Africa 20◦W - 50◦E (0.67,0.57,0.56,0.88,0.6, (92,87,96,93,88,

35◦S - 30◦N 0.79,0.77,0.88,0.61,0.74) 228,87,93,92,89)

Asia 50◦E - 150◦E (4.09,3.78,3.54,3.8,3.87, (204,203,206,196,202,

5◦N - 49◦N 2.99,5.12,4.99,4.39,3.38) 202,204,207,203,207)

Maritime Continent 90◦E - 165◦E (3.19,3,3.13,4.56,3.03, (364,4,365,18,5,

10◦S - 5◦N 4.39,4.43,5.15,3.64,3.21) 354,363,366,19,2)

Australia 110◦E - 155◦E (3.05,2.84,2.89,4.02,2.88, (42,43,41,34,43,

49◦S - 10◦S 3.06,3.52,3.46,2.41,2.04) 41,40,42,43,46)
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TABLE 4. Correlations between GPCP1DD and all other data sets for annual, monthly and daily mean time

series. Correlations are computed for common time period 2001-2012 (2001-2010 for CFSR) with the annual

cycle removed. The annual cycle is defined as the first 4 harmonics of the mean daily seasonal cycle. Correlations

significant at the 90% level are bold.

828

829

830

831

GAUGE+RT TRMM CMORPHCRT PERSIANN PERSICDR JRA55 MERRA2 MERRA CFSR ERAI

Annual

North America 0.82 0.97 0.49 0.17 0.99 0.46 0.81 0.83 0.56 0.56

South America 0.25 0.99 0.31 -0.19 1.00 0.66 0.49 0.57 0.44 0.71

Europe 0.81 0.97 0.34 -0.01 0.99 0.92 0.85 0.95 0.79 0.88

Africa 0.56 0.98 0.26 0.69 1.00 0.60 0.22 0.74 0.29 0.55

Asia 0.77 0.95 0.76 0.06 0.99 0.75 0.75 0.46 0.48 0.61

maritime continent 0.94 0.99 0.98 0.14 1.00 0.94 0.14 0.80 0.97 0.91

Australia 0.98 1.00 0.98 0.85 1.00 0.95 0.97 0.95 0.95 0.98

Monthly

North America 0.55 0.92 0.36 0.38 0.98 0.84 0.52 0.87 0.84 0.83

South America 0.25 0.96 0.26 0.20 0.98 0.75 0.29 0.66 0.50 0.70

Europe 0.71 0.95 0.47 0.27 0.99 0.95 0.60 0.95 0.95 0.94

Africa 0.73 0.98 0.39 0.44 1.00 0.67 0.58 0.67 0.67 0.67

Asia 0.88 0.98 0.83 0.29 1.00 0.90 0.86 0.82 0.82 0.89

maritime continent 0.92 0.98 0.94 0.52 1.00 0.87 0.61 0.86 0.92 0.84

Australia 0.99 1.00 0.97 0.78 1.00 0.96 0.97 0.96 0.96 0.98

Daily

North America 0.28 0.75 0.62 0.03 0.91 0.71 0.57 0.60 0.68 0.65

South America 0.23 0.83 0.70 -0.01 0.91 0.71 0.57 0.65 0.63 0.64

Europe 0.48 0.78 0.60 0.02 0.90 0.67 0.55 0.64 0.66 0.64

Africa 0.31 0.87 0.71 -0.02 0.96 0.72 0.63 0.61 0.52 0.63

Asia 0.34 0.86 0.84 -0.06 0.96 0.81 0.79 0.69 0.77 0.75

maritime continent 0.40 0.92 0.91 -0.03 0.99 0.81 0.80 0.76 0.81 0.76

Australia 0.65 0.90 0.89 -0.00 0.97 0.85 0.86 0.80 0.82 0.82
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FIG. 1. Annual cycle amplitude in mm d−1 for the 10 datasets for 2001−2012. The annual cycle is computed

as the first 4 harmonics of the mean daily seasonal cycle. The amplitude is half of the difference between the

minimum and maximum of the annual cycle.
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FIG. 2. Annual cycle phase in day of year for the 10 datasets for 2001−2012. The annual cycle is computed

as the first 4 harmonics of the mean daily seasonal cycle. The phase is the day of the year the maximum of the

annual cycle is achieved.
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FIG. 3. Mean annual cycle for the 10 datasets for 2001− 2012 averaged over the continental regions. The

annual cycle is computed as the first 4 harmonics of the mean daily seasonal cycle at each grid point and then

averaged over the continental regions.
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FIG. 4. Monthly long term means of precipitation for July. a) mean for GPCP1DD. b)-f) the difference

between GPCP1DD mean and the respective data set mean for the period is indicated in shading, contours show

the mean monthly precipitation for the respective data set. Contour levels go from 0 to 0.4 by 0.1mm h−1.
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FIG. 5. Same as in Fig. 4, but for January.
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FIG. 6. Monthly long term means of precipitation and percentage difference for July. a) mean for GPCP1DD.

b)-f) the percentage difference between GPCP1DD mean and the respective data set mean for the period is

indicated in shading, contours show the mean monthly precipitation for the respective data set. Contour levels

as in Fig. 4.
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FIG. 7. Monthly mean variance of precipitation for July. a) mean variance for GPCP1DD. b)-f) the difference

between the GPCP1DD mean variance and the respective data set mean variance for the period is indicated in

shading, contours show the mean monthly precipitation variance for the respective data set. Contour levels are

(0.001,0.002,0.005,0.01,0.1,1,2,10).
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FIG. 8. Same as in Fig. 7, but for January.
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FIG. 9. Time series of rain rates averaged over global land area between 49◦N and 49◦S for a) annual means,

and b) monthly means.
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FIG. 10. Time series of rain rates averaged over North America land area between 15− 49◦N for a) annual

means, b) monthly means, and c) weekly means.

902

903

53



FIG. 11. Percentage distribution of precipitation rate over land area for North America (15◦N - 49◦N, 195◦E

- 310◦E). Panels a)-d) show the climatological distribution for all seasons for 2001 - 2012. Precipitation rates

are binned with logarithmic bin sizes to account for more frequent rain events at low rain rates. The x axis is

plotted on a log-scale and the y axis on a linear scale to compare the bulk of the distribution, not the tails. The

black line shows the size of the bin at each precipitation rate. Distributions are computed for each month and

grid point separately and then averaged over area and season.
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FIG. 12. Percentage distribution of precipitation rate over land area for North America (15◦N - 49◦N, 195◦E -

310◦E). As in Fig. 11, except that the x axis is plotted on a linear scale and the y axis on a log scale to facilitate

comparison of the tails of the distributions.
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FIG. 13. Distribution of precipitation amount by precipitation rate over land area for North America (15◦N

- 49◦N, the same area as is used in Fig. 10). Panels a)-d) show the precipitation amount distribution for all

seasons for 2001 - 2012. The average is computed over the years 2001 - 2012. Insets show average monthly

totals during each season for the different estimates.
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FIG. 14. Spread among precipitation estimates (computed as the mean standard deviation among data sets) for

2001-2010. Top panel: spread among precipitation data sets (including reanalyses). Bottom panel: difference

in spread among observational precipitation data sets and spread among reanalyses. The mean seasonal cycle is

removed from daily data prior to computing the spread.
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