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ABSTRACT

Verification was performed on ensemble forecasts of 2009 Northern Hemisphere summer tropical cyclones

(TCs) from two experimental global numerical weather prediction ensemble prediction systems (EPSs). The

first model was a high-resolution version (T382L64) of the National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS). The second model was a 30-km version of the experimental NOAA/

Earth System Research Laboratory’s Flow-following finite-volume Icosahedral Model (FIM). Both models

were initialized with the first 20 members of a 60-member ensemble Kalman filter (EnKF) using the T382L64

GFS. The GFS–EnKF assimilated the full observational data stream that was normally assimilated into the

NCEP operational Global Statistical Interpolation (GSI) data assimilation, plus human-synthesized ‘‘ob-

servations’’ of tropical cyclone central pressure and position produced at the National Hurricane Center and

the Joint Typhoon Warning Center. The forecasts from the two experimental ensembles were compared

against four operational EPSs from the European Centre for Medium-Range Weather Forecasts (ECMWF),

NCEP, the Canadian Meteorological Centre (CMC), and the Met Office (UKMO).

The errors of GFS–EnKF ensemble track forecasts were competitive with those from the ECMWF en-

semble system, and the overall spread of the ensemble tracks was consistent in magnitude with the track error.

Both experimental EPSs had much lower errors than the operational NCEP, UKMO, and CMC EPSs, but the

FIM–EnKF tracks were somewhat less accurate than the GFS–EnKF. The ensemble forecasts were often

stretched in particular directions, and not necessarily along or across track. The better-performing EPSs

provided useful information on potential track error anisotropy. While the GFS–EnKF initialized relatively

deep vortices by assimilating the TC central pressure estimate, the model storms filled during the subsequent

24 h. Other forecast models also systematically underestimated TC intensity (e.g., maximum forecast surface

wind speed). The higher-resolution models generally had less bias.

Analyses were conducted to try to understand whether the additional central pressure observation, the

EnKF, or the extra resolution was most responsible for the decrease in track error of the experimental Global

Ensemble Forecast System (GEFS)–EnKF over the operational NCEP. The assimilation of the additional TC

observations produced only a small change in deterministic track forecasts initialized with the GSI. The

T382L64 GFS–EnKF ensemble was used to initialize a T126L28 ensemble forecast to facilitate a comparison

with the operational NCEP system. The T126L28 GFS–EnKF EPS track forecasts were dramatically better than

the NCEP operational, suggesting the positive impact of the EnKF, perhaps through improved steering flow.

1. Introduction

The accuracy of official National Hurricane Center

tropical cyclone (TC) track forecasts has improved over

the past several decades (Rappaport et al. 2009). In part,

this can be attributed to the general improvements in

numerical weather prediction (NWP) models, such as

increased resolution, improved methods of initialization,

more realistic physical parameterizations, and the avail-

ability of a greater number of skillful models for gener-

ating consensus forecasts. Meanwhile, improving the

accuracy of intensity forecasts has proven much more

difficult (Bender and Ginis 2000; Krishnamurti et al. 2005;

Rogers et al. 2006; Li and Pu 2008; Rappaport et al. 2009).
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The National Oceanic and Atmospheric Administra-

tion (NOAA) Hurricane Forecast Improvement Project

(HFIP; see online at www.nrc.noaa.gov/plans_docs/

HFIP_Plan_073108.pdf) was initiated to 1) improve the

accuracy and reliability of hurricane forecasts, 2) extend

the forecast lead time for hurricane forecasts with in-

creased certainty, and 3) increase confidence in hurri-

cane forecasts. HFIP has a specific objective to reduce

track and intensity errors by 50% by 2019 relative to the

2009 baseline.

An important component of HFIP is the development

of improved methods for global ensemble prediction

systems (EPSs).1 Suppose that all sources of forecast error

such as chaotic growth of initial-condition errors and the

cumulative effects of model uncertainty and sampling

error could be properly addressed in an ensemble pre-

diction system. Then, the actual hurricane and the forecast

ensemble members could be considered random draws

from the same underlying probability distribution (Hamill

2001). As ensemble systems are improved and begin to

approach this ideal, the utility of hurricane forecast prod-

ucts could also be improved dramatically. For example, the

mean or median of the track of the ensemble distribution

will then provide on average a more accurate forecast than

any individual member, especially at longer leads, thus

contributing to the HFIP goal of a reduction in track error.

The diversity of track forecasts and maximum surface wind

speed forecasts (TC intensity) could be used to quantita-

tively assess risk and make more appropriate and earlier

decisions about coastal evacuations. The current state of

the art of TC forecasts from global operational ensemble

systems was recently described in Majumdar and Finocchio

(2010).

Two technological improvements that may contribute

to improved global ensemble predictions are the use of

higher-resolution global models and the use of advanced

methods for data assimilation and ensemble initializa-

tion. Regarding the former, many experiments in global

and regional forecast models have shown that the re-

alism of tropical cyclones in models is improved as

the horizontal and vertical resolutions are refined (e.g.,

Krishnamurti et al. 1989; Lam 2001; Zhang and Wang

2003; Bender et al. 2007; Davis et al. 2008; Fiorino 2009;

Gentry and Lackmann 2010). Since the mean radius

of maximum winds in tropical cyclones is ;55 km

(Kimball and Mulekar 2004) and that ;4 (Grasso 2000) to

7–10 grid points (Skamarock 2004; Fiorino and Elsberry

1989a,b) per wavelength are needed to resolve a feature

minimally, this suggests that a model with a 143-km grid

spacing (at 258N) such as the 2009 version of the National

Centers for Environmental Prediction (NCEP) Global

Ensemble Forecast System (GEFS) will not be able

resolve the important tropical cyclone dynamics.2 Even

a global model with 45-km grid spacing cannot be ex-

pected to produce realistic tropical cyclone vortices, and

this grid spacing was the approximate state of the art in

2009 global ensemble prediction systems.3 Still, some im-

provement in tropical cyclone representation in the models

as well as the accuracy of track forecasts may be possible as

resolution is increased to from ;143 to ;45 km; tropical

cyclones may appear more realistic, especially the larger

ones, and the interaction of the vortex with the steering

flow may be handled more accurately.

Concerning advanced data assimilation methods, four-

dimensional variational data assimilation (4D-Var; Le

Dimet and Talagrand 1986; Courtier et al. 1994; Rabier

et al. 2000; Rawlins et al. 2007) has been a standard

method for data assimilation at many operational cen-

ters worldwide. However, the typical 4D-Var does not

directly produce an ensemble of initial conditions that

sample the desired analysis uncertainty, so some other

method is needed for generating an ensemble of initial

conditions. Operational methods in 2009 include adding

perturbations to the control via singular vector techniques

(Barkmeijer et al. 1998, 1999), the ensemble transform

technique (Wei et al. 2008), the ensemble transform

Kalman filter (Bishop et al. 2001; Wang and Bishop

2003), and the local ensemble transform Kalman filter

(Hunt et al. 2007; Bowler et al. 2009).

Recently, another advanced data assimilation and en-

semble initialization technique has emerged: the ensem-

ble Kalman filter (EnKF; Evensen 1994; Houtekamer and

Mitchell 1998; Lorenc 2003; Hamill 2006; Ehrendorfer

2007; Evensen 2009). Ensembles of short-term forecasts

are used to estimate the background-error covariances in

the update step, where forecasts are adjusted to newly

available observations. This update step produces an

ensemble of analyses that are specifically constructed

to sample the analysis uncertainty, and these analyses

are used as initial conditions in subsequent short-range

1 Ensemble predictions from regional models will not be con-

sidered in this article.

2 This resolution model may still be able to effectively steer

whatever TC-like disturbance is there, so such models are far from

being useless.
3 The highest-resolution and most accurate ensemble system (in

most respects) was from the European Centre for Medium-Range

Weather Forecasts (ECMWF), which employed an ensemble pre-

diction system with horizontal T399 resolution, or approximately

45 km at 258N. In early 2010, the resolution was increased to T639,

or ;28 km at 258N. The grid spacing calculation assumes the radius

around the chosen latitude circle is divided by the number of grid

points around the circle, here assumed to be equal to the truncation

wavenumber multiplied by two grid points per wavenumber.
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forecasts for the next update step. Longer-lead ensemble

predictions may be generated directly from these initial

conditions as well.

The NWP community has recently tested the EnKF

and its variants with real data, with many studies showing

positive impact (Whitaker et al. 2004, 2008; Houtekamer

et al. 2005, 2009; Houtekamer and Mitchell 2005; Compo

et al. 2006; Miyoshi and Yamane 2007; Meng and Zhang

2008a,b; Torn and Hakim 2008, 2009; Wang et al. 2008;

Szunyogh et al. 2008; Zhang et al. 2009; Aksoy et al. 2009;

Buehner et al. 2010a,b). Operationally, the Canadian

Meteorological Centre now uses the EnKF to initialize its

ensemble.

Because the EnKF produces flow-dependent estimates

of the background-error covariances, it may be particu-

larly helpful with TC initialization, where the isotropic

background-error covariances that are commonly used

in variational methods are particularly inappropriate.

Figure 1 shows one example, where the adjustment to

a new wind observation in the eyewall 10 m s21 greater

than the background produces a relatively axisymmetric

strengthening of the wind analysis, where a 3-dimensional

variational approach produces a less realistic increment.

Recent studies of the EnKF applied to tropical cyclones

include Chen and Snyder (2007), Zhang et al. (2009), and

Torn and Hakim (2009). The EnKF may have an addi-

tional benefit in that the background-error covariance

model in variational systems may implicitly reflect bal-

ances between the mass and wind fields that are tuned

for the midlatitudes and less appropriate in the tropics.

Mass–wind balances in the EnKF covariances are set

directly by the ensemble-estimated covariances.

To date, however, no experiments have been per-

formed with an EnKF applied in a high-resolution global

forecast model with a full observational dataset. The

combined application of a high-resolution global model

and the EnKF may be particularly beneficial to TC en-

semble forecasting. As model resolution is increased

and the fidelity of TCs in the model is improved, the

error covariances around the hurricane may be more

appropriately estimated in the EnKF; this may produce

reduced-error state estimates and better forecasts for

the next assimilation cycle.

Given the conceptual appeal of a high-resolution EnKF,

an experiment was performed in the summer of 2009 to

run the EnKF with global models at resolutions compa-

rable to ECMWF’s benchmark, in our case with a T382L64

version of the GFS model (;47-km grid spacing at 258N)

and a 30-km implementation of the experimental NOAA/

Earth System Research Laboratory’s Flow-following

finite-volume Icosahedral Model (FIM) model. This pa-

per describes the results of these experiments, and spe-

cifically, the characteristics of ensemble predictions from

this system and how they compare with operational en-

semble predictions from other centers. The operating

hypothesis is that the combination of the EnKF and a

higher-resolution global model will act synergistically to

produce a significant improvement in TC forecast guidance.

Accordingly, the rest of the manuscript is organized as

follows. Section 2 will provide a description of the fore-

cast models tested, the data assimilation scheme used, the

observations that were assimilated, and the methods for

data analysis. Section 3 provides results and section 4

provides concluding remarks.

2. Methods and data

a. Forecast models

The experiments were designed to focus primarily

on the performance of two experimental EPSs, both

FIG. 1. Illustration of the potential of an EnKF for making meteorologically reasonable analysis increments. (a) Mean background

forecast of 850-hPa winds. Assume an observation 10 m s21 greater than the background is available at the black dot. (b) Wind analysis

increment from the assimilation of the single observation when using an EnKF. (c) Wind analysis increment when using an average of

the ensemble covariances over all locations around the hurricane, a surrogate for the increment that may be expected from a three-

dimensional variational data assimilation system.
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initialized by the GFS-based EnKF. The first was the

NCEP Global Forecast System Model (GFS), a global

spectral model with a hybrid sigma-pressure vertical

coordinate. In this experiment the GFS was used at

T382L64 resolution (wavenumber 382 in triangular trun-

cation, or approximately 47 km at 258 latitude, and 64

vertical levels). Hereafter, the GFS initialized with the

EnKF will be called ‘‘GFS–EnKF.’’ Further details on the

model are available in the appendix.

The second experimental EPS used the NOAA/Earth

System Research Laboratory’s FIM model. The main

difference between the FIM and the GFS was the dy-

namical core; otherwise, the physical parameterizations

were adapted from the GFS. The horizontal grid for the

dynamical core was a spherical geodesic grid, and the

Arakawa-A implementation was used (no staggering of

temperature and wind components; Arakawa and Lamb

1977). Further details are provided in the appendix.

The GFS–EnKF and FIM ensembles will also be

compared against the forecasts from other operational

global EPSs. Specifically, the experimental GFS–EnKF

track and intensity forecasts were compared against the

2009 operational EPS forecasts from the Canadian Me-

teorological Centre (CMC), the ECMWF, the Met Office

(UKMO), and the NCEP Global Ensemble Forecast

System (NCEP). Details on each of these are again pro-

vided in the appendix.

b. Data assimilation system and observations used

The primary data assimilation system and method for

initialization of the experimental hurricane ensemble

forecasts was a 60-member ensemble square root filter

(Whitaker and Hamill 2002). This is a deterministic

version of the ensemble Kalman filter (i.e., EnKF) and

used the T382L64 GFS as the forward model. A recent

implementation of the EnKF in the GFS was described

more fully in Whitaker et al. (2008). Several changes were

made to this EnKF algorithm for the 2009 experiment.

Updates to new observations were performed every 6 h

and included data from 3 h before to 3 h after the update

time, so ensemble forecasts were computed to 9-h lead.

The NCEP Gridpoint Statistical Interpolation (GSI)

three-dimensional variational system (3D-Var) (Wu et al.

2002; Kleist et al. 2009) library of forward operators was

used to generate the observation priors for each ensemble

member; the GSI’s full variational minimization was

skipped. An online adaptive radiance bias correction

algorithm developed by T. Miyoshi (2009, personal

communication) was included in the EnKF and used the

same predictors as used in the GSI. Additionally, the fast

parallel algorithm of Anderson and Collins (2007) was

used to calculate the EnKF increment. Covariance lo-

calization was applied in the horizontal that forced in-

crements to 0 at 1500 km from the observation location.

Localization was also applied in the vertical, forcing in-

crements to 0 at 1.5 scale heights (computed as the natural

log of the ratio of the pressure of the model level divided

by the pressure assigned to the observation location). The

reference pressure for radiance observations was set to

the maximum in the weighting function for each instrument

TABLE 1. Availability of 0000 UTC global ensemble forecast data between 31 Jul 2009 and 28 Sep 2009. For a particular date, F indicates

that FIM ensemble data was unavailable for this initial time; E indicates that ECMWF ensemble was unavailable; U indicates UKMO; C

indicates CMC; N indicates NCEP; and G indicates experimental GEFS–EnKF.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

31 Jul: F 1 Aug: F

2 Aug: F,E 3 Aug: F 4 Aug: F 5 Aug: F 6 Aug: F,U 7 Aug: F 8 Aug: F

9 Aug: F 10 Aug: F,G 11 Aug: F 12 Aug: F 13 Aug 14 Aug 15 Aug

16 Aug 17 Aug 18 Aug 19 Aug 20 Aug 21 Aug 22 Aug

23 Aug: U 24 Aug: F 25 Aug 26 Aug: G 27 Aug: F 28 Aug: F 29 Aug: F

30 Aug 31 Aug 1 Sep: G 2 Sep 3 Sep 4 Sep: F 5 Sep

6 Sep 7 Sep: F 8 Sep 9 Sep 10 Sep 11 Sep 12 Sep

13 Sep 14 Sep 15 Sep: C 16 Sep 17 Sep 18 Sep 19 Sep

20 Sep 21 Sep 22 Sep 23 Sep: F,E 24 Sep: F 25 Sep 26 Sep: E

27 Sep: E,U 28 Sep: U

FIG. 2. Tropical cyclones in the Atlantic basin during the period

of the experiment. Storms are not counted if they are not at least

tropical depression in strength.
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and channel. System error (including model error) was

parameterized with a combination of multiplicative and

additive inflation.

Since our version of the EnKF used the GSI’s quality

control algorithms and forward observational operators,

the full observational data stream that was ingested into

the operational GSI was also ingested into the EnKF,

including surface observations, rawinsondes, cloud-track

winds, aircraft observations, satellite-based Global Posi-

tioning System (GPS) radio occultations, and satellite ra-

diances. Satellite radiances were assimilated from the

High Resolution Infrared Radiation Sounder (HIRS),

the Advanced Microwave Sounding Unit (AMSU) A and

B channels, Atmospheric Infrared Sounder (AIRS), Mi-

crowave Humidity Sounder (MHS), Geostationary Oper-

ational Environmental Satellite (GOES) radiances, ozone

retrievals, and Special Sensor Microwave Imager (SSM/I).

Additionally, the operational ‘‘working best track’’ esti-

mates of TC minimum central pressure and position, called

TCVitals, were assimilated (Guard et al. 1992; Rappaport

et al. 2009). Here, unlike Chen and Snyder (2007), we did

not separately assimilate position and central pressure,

but rather simply provided the estimate of minimum

central pressure to the assimilation algorithm as a stan-

dard surface-pressure observation, with an assigned error

of 2 hPa.

In several instances below, EnKF analyses and sub-

sequent forecasts were compared to those provided by an

equivalent resolution version of the operational NCEP

GSI.

c. Configuration of the experimental ensemble
forecasts

The experimental ensemble Kalman filter system was

cycled between 0000 UTC 1 July 2009 and 0000 UTC

28 September 2009. However, allowing for a spinup pe-

riod and because of intermittent outages, experimental

ensemble forecasts were computed only with initial con-

ditions between 31 July 2009 and 28 September 2009,

and only from 0000 UTC initial conditions. Moreover,

both experimental and operational ensembles were not

uniformly available during this period (Table 1). Whereas

60 forecasts were cycled for the data assimilation, only

21 ensemble forecasts were conducted, consisting of the

EnKF-mean analysis and the first 20 perturbed members.

For all experiments below, we will consider the statistics

from 20 of the perturbed members, neglecting the control

forecast so that the ensemble statistics can be computed

with members that are approximately exchangeable in

their statistical properties. Hence, for the larger 51-

member ECMWF system, the control member and the

remaining 30 perturbed members were not used. Forecast

statistics were computed only to 5-day lead time.

d. Methods of data analysis

A set of rules and metrics was established to facilitate

an equitable comparison between the ensemble pre-

diction systems. Unlike operational facilities, our ex-

perimental forecasts were not uniformly available on all

dates during the season, and for most dates the experi-

mental ensemble predictions were generated only from

0000 UTC analyses. Hence, to ensure a fair head-to-

head or ‘‘homogeneous’’ comparison (at the expense of

FIG. 3. As in Fig. 2, but for the eastern Pacific basin. The one unnamed track (northwest of

Kevin) never reached tropical storm strength.

FIG. 4. As in Fig. 2, but for the western Pacific basin.
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limiting the sample size) we established the following

criteria for including a particular tropical cyclone in the

verification sample: (i) in comparisons between two

models, both forecasts must have been available; (ii) the

cyclone must have been of at least tropical depression

strength at the initial time of the forecast, as specified in

the TCVitals working ‘‘best track’’ reports. More specif-

ically, the storm must have been classified as a tropical

cyclone [i.e., a tropical depression (TD), tropical storm

(TS), hurricane (HU), typhoon (TY), supertyphoon (ST),

tropical cyclone (TC), or inland (IN)] at the initial time;

(iii) the observed TC must have continued to be of at least

tropical depression strength at the particular lead time

being evaluated; and (iv) the cyclone must have been

tracked in the ensemble forecasts by at least 40% of the

members for each of the systems. Several of the figures

below will present ‘‘nonhomogeneous’’ data, where re-

striction (i) above was not enforced.

The most commonly used metrics were the average

absolute track error E(t) for time t (i.e., the great circle

distance between forecast and verifying position) and

the average spread S(t) of the track forecasts. Suppose

FIG. 5. Homogeneous comparison of global average absolute track forecast errors and average spread between the

experimental GFS–EnKF and (a) the NCEP operational ensemble system, (b) the ECMWF operational ensemble

system, (c) the CMC operational ensemble system, (d) the Met Office operational ensemble system, and (e) the

experimental FIM–EnKF ensemble system. Numbers in parentheses indicate the sample size at a particular forecast

lead (i.e., the number of matched paired forecasts between the GFS and the model in question). Dashed lines indicate

spread and solid lines indicate error. Error bars indicate the 5th and 95th percentiles of a resampled block bootstrap

distribution as described in section 2d.
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FIG. 6. Ensemble forecasts of Hurricane Bill cyclone positions from global ensembles initialized at

0000 UTC 19 Aug 2009: (a) GFS–EnKF, (b) NCEP, (c) ECMWF, and (d) CMC. The observed track is in

black, with 0000 UTC positions denoted by the ‘‘*’’ symbol. Black colors indicate day 2 0 positions; orange,

day 1 1 positions; purple, day 1 2; red, day 1 3; yellow–green, day 1 4; blue, day 1 5 positions. Small dots

indicate ensemble member positions, large dots indicate ensemble mean. Ellipses generated from bivariate

normal distribution are fitted to the forecast positions; the contour encloses 90% of the probability.

674 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



we have m samples, and the absolute error Ei(t) repre-

sents the absolute error in kilometers of the ensemble-

mean track forecast for the ith of m samples. The average

absolute track error (i.e., ‘‘mean error’’) is thus defined as

E(t) 5

�
m

i51
E

i
(t)

m
. (1)

A calibrated ensemble system should also provide con-

sistency between the error and spread, presuming the

two are measured in similar ways. Accordingly, a con-

sistent way of measuring spread S(t) for the ith sample, is

S
i
(t) 5

�
m

i51
D

i, j

n
, (2)

where Di,j is the distance of the jth of n members from

the ensemble-mean position. The average spread (i.e.,

‘‘spread’’) is defined as

S(t) 5

�
m

i51
S

i
(t)

m
. (3)

Note that model performance will only be evaluated

with statistics across all basins; samples from the west-

ern, central, and eastern Pacific, and the Atlantic will all

be considered together. Because of the limited sample

size, basin-by-basin statistics would have very large un-

certainty.

The statistical significance will be quantified in many

of the plots by including the 5th and 95th percentiles

from a paired block bootstrap algorithm. The algorithm

generally follows Hamill (1999), with the following ex-

ception. Instead of treating every case as an independent

sample, ‘‘blocking’’ is performed by storm name. That is,

all samples from a given named hurricane are not shuffled

independently but instead are shuffled as a block. The

underlying assumption is that errors for a storm from one

FIG. 7. As in Fig. 6, but for ensemble forecasts of Ty-

phoon Morakot cyclone positions from global ensembles

initialized at 0000 UTC 5 Aug 2009. FIM data was

missing on this day.
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initial time to the next may be correlated. This paired

block bootstrap should provide a conservative (wide) es-

timate of the confidence intervals.

3. Results

a. Review of the 2009 Northern Hemisphere
hurricane season

The 2009 hurricane season was relatively quiet in the

Atlantic basin during the period of the experiment, with

no land-falling hurricanes (Fig. 2). The most significant

hurricane of the season was Bill, which reached category

4 on the Saffir–Simpson scale (more information avail-

able online at http://www.nhc.noaa.gov/sshws.shtml) on

19 August 2009, but did not affect the U.S. coastline.

There were several significant storms in the eastern

(Fig. 3) and western Pacific (Fig. 4). In the eastern Pacific,

the compact Hurricane Felicia strengthened to a cate-

gory 4 storm briefly on 5 August 2009, which made it

the strongest storm in the basin since 2006. Hurricane

Jimena made landfall as a weak category 2 hurricane

near Cabo San Lazaro, Mexico, on 2 September 2009.

Long-lived Guillermo was briefly a category 3 hurricane

FIG. 8. As in Fig. 6, but for ensemble forecasts of

Hurricane Jimena cyclone positions from global ensem-

bles initialized at 0000 UTC 30 Aug 2009. FIM–EnKF

data is missing.
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on 15 August 2009. Meanwhile, there were several very

significant typhoons in the western Pacific. In terms

of human impact during the period of the experiment,

the most damaging was Typhoon Morakot, which made

landfall on the northeast coast of Taiwan as an approxi-

mately category 1 storm on 7 August 2009. However, its

immense circulation subsequently created a sustained

period of upslope rainfall in the mountains of southern

Taiwan, with a peak estimated rainfall of 1397 mm (;55 in.;

more information available online at http://disc.sci.gsfc.nasa.

gov/gesNews/typhoon_morakot). This extreme precipi-

tation triggered massive mudslides, including one slide

that buried the entire village of Xiaolin, Taiwan, killing

approximately 500 people. Damages were estimated at

over $3 billion (U.S. dollars). The storm also caused ex-

tensive flooding and damage in China and the Philippines.

Tropical storm Ketsana (called Ondoy in the Philippines)

also produced extreme rainfall. Metro Manila received

341 mm between 0800 and 1400 local time on 26 September

2009 (more information is available online at http://

www.gmanews.tv/story/173229/metro-manila-25-provinces-

placed-under-state-of-calamity).

b. Track comparisons between models

Figure 5 shows mean error and spread statistics from

the experimental GFS–EnKF track forecasts relative to

the experimental FIM–EnKF forecasts, ECMWF, UKMO,

CMC, and NCEP. The GFS–EnKF forecasts greatly out-

performed the NCEP operational system, with its GSI–

ensemble transform (ET) initialization and roughly 3 times

coarser horizontal resolution. The spreads of NCEP oper-

ational forecasts were much smaller than their errors, while

spreads and mean errors were similar in magnitude in the

GEFS–EnKF. The GFS–EnKF forecasts were competitive

with the ECMWF forecasts and smaller in mean error at

the longest lead, though the difference was barely signifi-

cant at the 5% level. The GFS–EnKF produced much

lower track errors than the CMC ensemble, though the

CMC system did exhibit a general consistency of spreads

and mean errors. The UKMO ensemble had higher errors

and much less spread than mean error. Finally, the exper-

imental FIM–EnKF ensemble was not quite as accurate

as the GFS–EnKF, though it outperformed all opera-

tional ensembles except the ECMWF and had a general

FIG. 9. The 3-day forecast spread of cyclone position [calculated according to Eq. (2)] plotted against the absolute error of the ensemble-

mean position for (a)–(f) each of the tested ensemble systems. Spearman rank correlation r and sample size n are also noted. Data is

nonhomogeneous.
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consistency between spreads and mean errors. Taken

together, these results suggest that increased resolution,

the extra TCVitals observations, and/or the advanced

assimilation method could dramatically improve oper-

ational hurricane ensemble track predictions (see sec-

tion 3d below for the relative benefits of observations,

resolution, and the data assimilation).

Consider briefly the track forecasts from some of the

more important storms of 2009. Figure 6 shows ensem-

ble forecasts for Hurricane Bill initialized at 0000 UTC

19 August 2009. The most notable feature in the various

track forecasts is that the ensemble forecasts were slightly

too slow in forecasting the recurvature of Bill to varying

extents, and the CMC and UKMO forecasts exhibited a

westward forecast bias. Figure 7 shows the tracks of Ty-

phoon Morakot initialized at 0000 UTC 5 August 2009.

The experimental GEFS–EnKF cyclone forecast tracks

were quite accurate prior to landfall on Taiwan, though

they exhibit a slight northward bias. The NCEP tracks

were too slow, and most of the tracked forecast cyclones

never made landfall on Taiwan. ECMWF tracks were

also quite skillful leading up to landfall. CMC forecasts

were also reasonable prior to landfall, though CMC fore-

casts had a slight northward bias and very large spread

subsequent to landfall. UKMO forecasts were too far

north and too fast. Finally, Fig. 8 shows Hurricane Jimena

forecasts initialized at 0000 UTC 30 August 2009. The

forecasts generally had a large westward bias, keeping

the predicted cyclones unrealistically offshore. However,

the observed track was generally within the span of the

ensemble in the GFS–EnKF, ECMWF, and CMC en-

semble systems.

Was there any positive relationship between the spread

of the ensemble member positions and the absolute error

of the ensemble-mean positions? Whitaker and Loughe

(1998) showed that potential spread-error correlations

should be larger when there are greater day-to-day and

case-to-case variations in the spread. Accordingly, Fig. 9

shows spread-error relationships for each of the ensem-

ble systems for day 1 3 forecasts. There were very modest

correlations between spread and error, from 0.12 for the

GFS–EnKF to 0.38 for the NCEP system. Was this point-

ing out a deficiency of the ensemble prediction systems,

or was the potential for a spread-error correlation lim-

ited due to the lack of variations in spread? Suppose that

the ensemble system were ‘‘perfect’’ in that true state

was a random draw from one of the tracked forecast

ensemble members (Buizza 1997). How much correlation

FIG. 10. As in Fig. 9, but a perfect-model experiment where the first tracked forecast member is used as a synthetic verification.
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can be expected then? Figure 10 presents spread-error

data under such a construct. As shown, correlations of

;(0.32–0.58) could be expected under perfect-model as-

sumptions; the general lack of correlation was thus likely

to be attributable in part to deficiencies in the ensemble

system design rather than the modest variations in fore-

cast spread.

Figures 6–8 showed that the spread of the ensemble

was often concentrated in one direction more than an-

other, and not necessarily along or across track. We now

consider whether the elliptical nature of the forecast

distributions was realistic. We examined this by consi-

dering the average projections of the forecast errors onto

the eigenvectors of the forecast-error covariance matrix

(Fig. 11) and how this compares to the average pro-

jection of individual forecast members onto the eigen-

vectors. Let us assume that we have a vector of length nt

(the number of ensemble members that tracked the

storm) denoting the scaled ensemble deviations about

the ensemble mean. For longitude l, this vector was

X
l
9 5 [x

l(1)
� x

l
, . . . , x

l(nt)
� x

l
]=(nt� 1)1/2, (4)

where x
l

denotes the ensemble-mean longitude and xl(i)

the longitude of the ith member forecast. Similarly, for

latitude f we had the following vector:

X
f
9 5 [x

f(1)
� x

f
, . . . , x

f(nt)
� x

f
]=(nt� 1)1/2. (5)

Let

X 5
x9

l

x9
f

" #
. (6)

We then formed the sample forecast-error covariance

matrix F and obtained its eigenvalue decomposition as

F 5 XXT 5 SLS�1 5 SLST 5 (SL1/2)(SL1/2)T, (7)

where S denote the eigenvectors of the covariance ma-

trix and L is the associated eigenvalues. Eigenvalues

and eigenvectors were ordered so that the leading ei-

genvector was associated with the larger eigenvalue.

Here S21 5 ST since the covariance matrix was real and

symmetric (Strang 1988, p. 296). The square roots of the

eigenvalues provide one measure of spread (the square

root of variance) along the direction of each of the ei-

genvectors.

For some given case, let E denote the ensemble-mean

forecast error vector, the difference between the en-

semble mean, and the observed positions (see Fig. 11 for

a schematic). Similarly, let the vector Xi� denote the ith

forecast member’s vector deviation from the mean. Let

h�i denote the average over many cases, and let hh�ii
denote the average over many cases and all available

ensemble members. Ideally, the average absolute pro-

jection of the ensemble-mean forecast error vector E

onto the eigenvectors, hjE � S1ji and hjE � S2ji, should be

consistent with the average absolute projections of

any ensemble member’s vector deviation from its mean

onto the eigenvectors, hhjXi� � S1jii and hhj Xi� � S2jii, re-

spectively. Figure 12 indicates the extent to which this

occurred for each forecast ensemble. Consider the GFS–

EnKF forecasts in Fig. 12a. The solid blue line indicates

the average ensemble projection onto the first eigen-

vector hhjXi� � S1jiias forecast lead increased. Consistent

with the general increase of spread with time, the mag-

nitude of this increased from ;60 km at day 0.5 to

220 km at day 5. Meanwhile, the average projection

onto the second eigenvector, hhjXi� � S2jii, the solid red

curve in Fig. 12a, increased from ;40 to ;190 km. Now

consider the projection of the error onto the associated

eigenvectors. For the first eigenvector (the dashed blue

curve), the projection of the error was quite consistent

with the projection of the forecast, though at the lon-

gest leads the projection of error was smaller, indicating

FIG. 11. Schematic illustration of the decomposition of spread

and errors into the eigenspace of the sample forecast-error co-

variance. Small black dots denote ensemble forecast member cy-

clone positions; the large black dot denotes the ensemble-mean

position. Contour indicates shape of bivariate normal distribution

fit to the data. Black arrows S1 and S2 represent the eigenvectors

of the covariance matrix; for illustration purposes here, the ei-

genvectors are scaled by the square root of the eigenvalue. The red

dot indicates the position of the observed cyclone; the red arrow

indicates the ensemble-mean error vector. Dashed red lines in-

dicate the projections of the error vector E onto the eigenvectors

E � S1 and E � S2.
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a deficiency of spread. For the second eigenvector, be-

tween days 2.5 and 4.5, the average projection of error

was slightly larger than the average projection of the

ensemble members, indicating a modest deficiency of

spread in this direction. Together, these suggest that

a more ideal ellipse would have been more isotropic.

However, considering the two dashed curves, there was

somewhat more error in the direction of the leading

eigenvector than in the direction of the trailing, indi-

cating some ability for the ensemble to distinguish the

directions in phase space where errors are more pro-

nounced.

Let us consider the characteristics of some of the other

ensemble systems. For the NCEP system, in both eigen-

directions there was a greater projection of error onto the

eigenvectors, indicating a deficiency of spread. ECMWF

had the best consistency between error and spread, at

least after day 2. The CMC forecasts were only slightly

underspread, with better consistency along the leading

eigenvector than along the trailing one. The Met Office

ensemble, like NCEP, was underspread, and the FIM

ensemble appeared to have good consistency through

about day 3.5.

c. Intensity comparisons

Figure 13 shows that none of the global forecast models

provide realistically strong maximum wind speed fore-

casts, though the finer-resolution models (GFS–EnKF,

FIM, and ECMWF) generally had less unconditional bias

than the coarser models (NCEP, UKMO, and CMC).

While the GFS–EnKF and the FIM–EnKF model started

out with relatively small analysis biases of ensemble-

mean wind speed, during the first 24 h they rapidly

increased their bias. The ECMWF model started with

a larger analysis bias (ECMWF did not assimilate the

TCVitals observations), but unlike the GFS/EnKF, their

biases did not grow during the first day.

What caused the rapid bias change of the GFS–EnKF

during the first day? Was this due to the model, the data

assimilation method, and/or the observations used? To

FIG. 12. Analysis of the sample-average ellipticity of the forecast ensembles and the relative correspondence of forecast error with the

ellipticity. Solid lines indicate the average square roots of the eigenvalues of the forecast-error covariance matrix, blue is for the leading

eigenvector, and red is for the trailing eigenvector. Dashed lines indicate the average projection of the forecast error onto eigenvectors, the

blue dashed line indicates the projection onto the leading eigenvector, and the red dashed line indicates the projection onto the trailing

eigenvector. Data here are nonhomogeneous.
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examine this, we considered day 1 1 deterministic fore-

casts generated from the ensemble-mean initial condition

and compared them against deterministic forecasts gen-

erated from a parallel run of the T382L64 GFS. However,

this time the data assimilation was performed using the

GSI with the full operational data stream, plus TCVitals

(Fig. 14). This will be called GSI-Parallel.

Figure 14a shows that the GFS–EnKF change in wind

speed bias in the first 24 h strongly depended on the

initial intensity of the cyclone; wind speeds in stronger

cyclones generally decreased more. Interestingly, the

GSI-Parallel did not show much if any intensity change

on average between days 0 and 1 (Fig. 14b). This can be

understood by considering the initial analyzed inten-

sities (Figs. 14c,d). Whereas the GFS–EnKF produces

analyses that were similar in intensity to the observed,

the GSI-Parallel analyzed vortices that were much less

intense than observed. Figure 15 shows that in an ex-

ample from Hurricane Ike in 2008, the initialized vortex

in the EnKF was much deeper and narrower than the

vortex from the GSI. We suspect that the T382 GFS was

simply a model with too coarse a resolution to support

such a narrow, deep vortex and consequently filled rap-

idly during the first few hours of the forecast. Imbalances

of the initial condition may also have played a role (Wu

et al. 2010).

d. The relative benefits of observations, resolution,
and the data assimilation

The experimental GFS–EnKF provided a large im-

provement in the skill of track forecasts relative to the

2009 NCEP operational system (Fig. 5a). There were at

least three possible reasons for the improvement: the

threefold increase in model resolution, the additional

TCVitals observations, and the method for initializing

the ensemble. To attempt to quantify the effect of the

data assimilation and the TCVitals observations, Fig. 16a

shows the track mean errors for deterministic forecasts

from the T382 GFS–EnKF initialized from the ensemble-

mean analysis and two versions of the T382 GFS initial-

ized with the GSI. The first version was the GSI parallel,

which included the assimilation of TCVitals,4 and the

second was the GSI operational, which did not. There

was a slight decrease in the mean error of the track

forecasts from the GSI parallel relative to GSI oper-

ational, though the difference was not statistically sig-

nificant. We conclude that the TCVitals observations

did not markedly affect the performance of GSI-based

forecasts, though it is possible that the EnKF, which

adjusted the analyzed central pressures more to the ob-

served pressures (Figs. 14 and 15), would have been more

affected. The GFS–EnKF did have substantially lower

track mean errors, suggesting that the EnKF assimilation

method produced an improvement in the forecast. The

ensemble averaging effect apparently did not reduce the

mean error of the tracks substantially (Fig. 16b), sug-

gesting that much of the track error reduction resulted

from the improved mean analyses rather than the use of

ensemble methods. Another possibility is that for these

cases, the nonlinear averaging effect of the ensemble was

FIG. 13. Wind speed bias (average ensemble-mean forecast 2 observed) for the forecast

models used in this study (UKMO did not report wind speed). Error bars represent the 5th and

95th percentiles of a normal distribution fit to the available samples. Data here are non-

homogeneous.

4 This version became operational in March 2010.
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not especially pronounced. Interestingly, the track mean

errors were only modestly larger when the GFS–EnKF

forecasts were conducted at T126L28 resolution, ini-

tialized from upscaled T382L64 conditions (Fig. 17a).

However, these T126L28 ensemble track forecasts ini-

tialized with the EnKF were much lower in error than

the operational T126L28 ensemble forecasts (Fig. 17b).

This result suggests that even if the additional resolution

were critical to improving the analysis from the EnKF,

thereafter the increased forecast resolution was less

critical to track forecast error. Perhaps the increased

accuracy of EnKF forecasts resulted from an improve-

ment in the analyses and forecasts of tropical steering

winds for the tropical cyclones (Fig. 18; 6-h forecast fit to

observations were similar in character, but were not

shown here).

4. Conclusions

There is an urgent need for improved tropical cyclone

forecasts, both for track and intensity. There are several

possible routes to improve these forecasts, including

assimilating new types of observations, improving the

data assimilation, and increasing the resolution of the

forecast model substantially. In this manuscript we at-

tempt to determine if these three would substantially

improve the ensemble predictions of tropical cyclones

for the 2009 Northern Hemisphere summer. The new

FIG. 14. Scatterplots of analyzed maximum wind speed (abscissa) vs 1-day forecast wind speed (ordinate) for

(a) GFS–EnKF deterministic forecast from ensemble-mean initial condition and (b) GSI-parallel deterministic

forecast. (c) Observed wind speed from TCVitals (abscissa) vs analyzed wind speed (ordinate) for GFS–EnKF, and

(d) GSI-Parallel.
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source of observational data was the human-synthesized

‘‘TCVitals’’ observations of cyclone minimum sea level

pressure and position. The new data assimilation and

ensemble initialization methodology was an EnKF. The

resolution increase was approximately threefold, from

2009 NCEP operational T126L28 (;143 km at 258N)

to an experimental T382L64 (;47 km at 258N). There

was also reason to believe these three improvements

might work synergistically. For example, the poten-

tially more appropriate background-error covariances

from the EnKF may permit a more appropriate use

of TCVitals observations than the current operational

3D-Var scheme at NCEP. Also, the higher resolution

might result in an ensemble that generated more ap-

propriate background-error covariances in the EnKF,

improving the assimilations.

As benchmarks, we obtained the operational ensem-

ble forecasts from several operational centers. These in-

cluded NCEP, ECMWF, the Met Office, and the CMC.

Additionally, we produced another set of experimental

forecasts, this time with a 30-km implementation of

NOAA’s global FIM model, which utilized an icosahe-

dral horizontal grid. The FIM ensemble was initialized

from the GFS–EnKF initial conditions as well.

The experimental track forecasts from the T382 GFS

with the EnKF and TCVitals observations were mark-

edly lower in mean error than the NCEP operational

forecasts. They were competitive in mean error with the

ECMWF ensemble forecasts and substantially lower in

mean error than the ensemble forecasts of CMC and

UKMO. The FIM–EnKF ensemble forecasts were not

as skillful as the GFS–EnKF or ECMWF forecasts, but

were more skillful than those from other models. The

FIM–EnKF was the only ensemble using different dy-

namic cores for assimilating model versus forecast model.

GFS–EnKF track forecast spreads were generally con-

sistent in magnitude with the ensemble-mean errors.

There were generally small correlations in the ensemble

systems between the day-3 forecast spread and the day-3

ensemble-mean error, though a perfect-model analysis

showed that there was a relatively modest upper bound

of about 0.5 to correlations between spread and error.

An analysis was performed that showed that the en-

semble forecasts did tend to stretch out preferentially in

certain directions. Bivariate normal ellipses were fit to

the forecast ensemble, and mean position errors and

member deviations from the mean position were pro-

jected onto the primary and secondary eigenvectors

of these ellipses. There was some useful information

in the forecast ellipticity of the better ensemble sys-

tems (ECMWF, GFS–EnKF, and FIM). Forecast errors

were larger in magnitude along the primary eigenvector

of the fitted forecast ellipses and smaller along the sec-

ondary eigenvectors. The better systems also had some

consistency between the magnitude of the projection of

mean error onto the eigenvectors and the magnitude

of the projection of member differences from the mean,

a proxy for spread. However, the inconsistency between

mean error projection and spread projection was some-

what larger in general along the secondary eigendirec-

tion, indicating that the ensemble forecast distribution of

positions should have been more isotropically distributed

about the mean position (i.e., less elliptical and more

circular).

Hurricane intensity forecasts remained problematic

in our study. Though the experimental GFS–EnKF ini-

tialized relatively more intense vortices, they filled dur-

ing the first day and produced wind speed forecasts that

were biased too low. Other forecast models did little

better. It may be unrealistic to expect that global models

FIG. 15. Background forecast (black contours; interval 1 hPa) of sea level pressure and mean analysis increment

(dashed lines and colors) for Hurricane Ike at 0000 UTC 4 Sep 2008. (a) Parallel run of T382 GSI and (b) T382 EnKF.
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with resolutions of 45 km and above will be able to

produce realistic hurricane-like structures and asso-

ciated wind forecasts, given that the radius of maxi-

mum winds is ;55 km on average.

We attempted to try to isolate whether the new

TCVitals data, the assimilation method, or the increase

in resolution were most responsible for the improve-

ment in forecasts. Our analysis was inconclusive. In a

comparison of the 3D-Var GSI assimilation systems

and subsequent deterministic T382 forecasts with the

GFS, the assimilation of TCVitals observations pro-

duced only a small improvement. The T382 GFS–EnKF

ensemble was used to initialize a T126 ensemble forecast;

this facilitated a comparison with the operational NCEP

system at the same resolution. The T126 GFS–EnKF

forecasts produced dramatically better track forecasts

than operational, suggesting the importance of the data

assimilation with the high-resolution EnKF.

The tests shown here indicate that the combination

of EnKF and the high-resolution forecast models can

potentially have a large positive impact on operational

tropical cyclone track forecasts. These results should

be regarded as preliminary, given that only part of one

hurricane season was tested. Will the results be im-

proved even more if the forecast model resolution is

refined further, so that the global model produces more

realistic hurricane vortices? That is our operating hy-

pothesis for future work. There are other aspects of the

EnKF that we hope to address in future tests. It is known

that if the observed position of a vortex is not within the

span of the background ensemble, then the quality of the

analysis may be rather poor (Chen and Snyder 2007).

Perhaps separate position and intensity assimilation (ibid)

or the vortex relocation technology of the GSI (Liu et al.

2000) can be incorporated into our EnKF, so that the en-

semble of positions does span the observed position and

FIG. 16. (a) Homogeneous track error comparison for de-

terministic forecasts initialized from the GFS–EnKF ensemble-

mean initial condition (blue), the GSI-parallel (yellow–green), and

the GSI operational (red). Error bars represent the 95th percentiles

of a paired block bootstrap distribution between GSI operational

and GSI parallel. (b) Homogeneous track error comparison for

deterministic forecasts initialized from the GFS–EnKF ensemble-

mean initial condition (blue) vs the mean of the ensemble-forecasts

positions from the experimental GFS–EnKF (red).

FIG. 17. Track error and spread, as in Fig. 5, but for (a) com-

parison of experimental GFS–EnKF with ensemble forecasts

conducted at T382L64 resolution vs experimental GFS–EnKF with

ensemble forecasts conducted at the resolution of the 2009 oper-

ational system T126L28 (though initial conditions from T382L64

EnKF). (b) Comparison of operational T126L28 NCEP ensemble

forecast system track errors to the experimental GFS–EnKF at the

same resolution.
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analysis quality is improved. Other major questions are

how we can improve the treatment of the model-related

uncertainty, including uncertainty effects specific to TCs,

and whether regional models with EnKF initialization

can be nested within the global EnKFs and provide de-

tails on the hurricane structure and intensity not yet

possible with global models.
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APPENDIX

Additional Details on the Forecast Models Used
in this Experiment

a. GFS model

The GFS (Global Climate and Weather Modeling

Branch 2003) was used at T382L64 resolution. The treat-

ment of vertical mixing, including the planetary boundary

layer, was based on Hong and Pan (1996) and Troen and

Mahrt (1986). Shortwave radiation followed Chou (1992),

Chou and Lee (1996), Chou et al. (1998), while long-

wave radiation implements the Rapid Radiative Trans-

fer Model (RRTM) of Mlawer et al. (1997). Penetrative

convection was developed by Pan and Wu (1994), based

on a Grell (1993) implementation of Arakawa and

Schubert (1974). The effect of nonprecipitating shallow

clouds is incorporated following Tiedtke (1983). Cloud

formation on resolved scales was treated according to

Zhao and Carr’s (1997) modification of Sundqvist et al.

(1989). Attenuation of gravity waves propagating into

the mesosphere was accomplished with Rayleigh drag.

[A description of the GFS model is available from

the NCEP Environmental Modeling Center (EMC),

with changes as of 2003 described online at www.emc.

ncep.noaa.gov/gmb/moorthi/gam.html.] The operational

NCEP global ensemble system in 2009 utilized the GFS

forecast model at T126L28, a grid spacing of ;143 km at

258 latitude. The control initial condition was produced

by the T382 GSI analysis, which included a procedure for

the relocation of vortices (Liu et al. 2000). The analysis

was then degraded to T126L28 resolution. Perturbed

initial conditions were generated with the ensemble

transform technique of Wei et al. (2008). The 2009 im-

plementation did not include any parameterizations of

model uncertainty.

b. FIM model

With the icosahedral-grid FIM model, the vertical co-

ordinate was hybrid sigma-isentropic, and finite-volume

FIG. 18. Anomaly correlation of tropical (equatorward of 208) 250-hPa zonal wind from

deterministic 72-h T382L64 GFS forecasts from the operational GSI analysis (blue) and the

experimental GFS–EnKF analysis (red).
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horizontal transport was used. The primary prognostic

variables were pressure, potential temperature, u- and

y-wind components, water vapor mixing ratio, and using

GFS physics cloud condensate. [Further information on

the FIM model can be found in Lee and MacDonald

(2009), Bleck et al. (2010), and online at http://fim.

noaa.gov.] The FIM ensemble forecasts in this study

were conducted at G8 resolution, or ;30-km grid spac-

ing uniform globally, and 64 vertical levels were used,

the same as the GFS. The FIM ensemble forecasts were

initialized with the GFS–EnKF, just as were the GFS

T382 ensemble forecasts.

c. Canadian Meteorological Centre

The CMC EPS used the Global Environmental Mul-

tiscale Model (GEM), a hydrostatic primitive equation

model with a terrain-following pressure vertical coor-

dinate. [Further documentation on the GEM model

can be found online at http://collaboration.cmc.ec.gc.ca/

science/rpn/gef_html_public/DOCUMENTATION/

GENERAL/general.html and in Charron et al. (2010).]

The CMC ensemble system used a horizontal compu-

tational grid of 400 3 200 grid points, or approximately

0.98, and 28 vertical levels. The ensemble was initialized

using an EnKF, following Charron et al. (2010) and

Houtekamer et al. (2009) and references therein. The 20

forecast ensemble members used a variety of perturbed

physics; changing gravity wave drag parameters, land

surface process type, condensation scheme type, convec-

tion scheme type, shallow convection scheme type, mix-

ing-length formulation, and turbulent vertical diffusion

parameter. (More details on these are provided online at

http://www.weatheroffice.gc.ca/ensemble/verifs/model_e.

html.)

d. European Centre for Medium-Range
Weather Forecasts

The ECMWF EPS used the ECMWF Integrated

Forecast System (IFS) model, versions 35r2 (prior to

8 September 2009) and 35r3 (after 8 September 2009).

Model resolution was T399L62 for both versions, or

about 45-km grid spacing at 258 latitude (details on

the IFS are provided online at www.ecmwf.int/research/

ifsdocs/). The changes to the ensemble stochastic treat-

ments in the 8 September 2009 implementation are de-

scribed in Palmer et al. (2009). The ensemble was initialized

with a combination of initial-time and evolved total-energy

singular vectors (Buizza and Palmer 1995; Molteni et al.

1996; Barkmeijer et al. 1998, 1999; Leutbecher 2005)

added to a 4D-Var analysis and utilized stochastic per-

turbations to physical tendencies. Singular vectors tar-

geted for tropical cyclones were also used (Barkmeijer

et al. 2001). Recent performance of the ECMWF IFS for

TC prediction was described in Fiorino (2009), and an

overview of the ensemble system was provided in Buizza

et al. (2007) and references therein. For consistency with

the analysis of other EPSs, only the first 20 perturbed

members were used here.

e. Met Office

The Met Office (UKMO) ensemble system was the

Met Office Global and Regional Ensemble Prediction

System (MOGREPS). The TC track forecasts from this

system came from its global component, which was de-

scribed in Bowler et al. (2008, 2009). The global system

was run at a resolution of 1.258 longitude and 0.838 lat-

itude on a regular latitude–longitude grid. In total, 38

vertical levels were employed. Initial-condition pertur-

bations were generated from an implementation of the

ensemble transform Kalman filter (Hunt et al. 2007;

Bowler et al. 2009). The mean initial state was generated

from the UKMO 4D-Var system (Rawlins et al. 2007).

The model included a parameterization of one type of

model uncertainty via its stochastic kinetic energy back-

scatter scheme, following Shutts (2005).
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