_ NOAA Earth System
e . Research Laboratory
LY -

Common verification methods
for ensemble forecasts, and
how to apply them properly

Tom Hamill
NOAA Earth System Research Lab,
Physical Sciences Division, Boulder, CO
tom.hamill@noaa.gov 1



Part 1: two desirable properties of
ensembles, and the challenges of
evaluating these properties

* Property 1: Reliability, no matter how
you slice and dice your ensemble data.

* Property 2: Specificity, i.e., sharpness.



Unreliable ensemble?
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Here, the observed is outside of the range of the ensemble,
which was sampled from the pdf shown. Is this a sign of
a poor ensemble forecast?



Unreliable ensemble?
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Here, the observed is outside of the range of the ensemble,
which was sampled from the pdf shown. Is this a sign of
a poor ensemble forecast?
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“Rank histograms,” aka “Talagrand diagrams”

With lots of samples from many situations, can evaluate the characteristics of the ensemble.
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ref: Hamill, MWR, March 2001



Underlying mathematics

n-member sorted ensemble at

X:(Xla sy xn) < somepoint

l probability the truth V is less than the
E[P(V <X, )] — 1 < ith sorted member if V and X’s
n-+ members sample the same distribution

1
E[P(x_ <V<ux)|=s —

<—— ... equivalently

R = (I’l o see s Fn+1) <—— our rank histogram vector

. p overbar denotes the sample average
7‘]. R P(xj—l sV< xj) over many (hopefully independent)

samples

ref: ibid.



Rank histograms of Z;,, Teso, T

2m

(from 1998 reforecast version of NCEP GFS)
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Ref: Hamill and Whitaker, MWR, Sep 2007.
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Rank histograms
are particularly
U-shaped for T2M.



Rank histograms...
pretty simple, right?

Let’'s consider some of the issues
involved with this one seemingly
simple verification metric.



Issues In using rank histograms

(1) Flat rank histograms can be created from
combinations of uncalibrated ensembles.
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Lesson: you only be confident you have reliability if you see flatness of
rank histogram having sliced the data many different ways. 10

Ref: Hamill, MWR, Mar 2001



Issues In using rank histograms

(2) Same rank histogram shape may result from
ensembles with different deficiencies

Here, half of 0-60¢
ensemble %%
members I
from low-biased = °*°|
distribution, 0201
half from o107
high-biased o
distribution

Ref: ibid
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Issues In using rank histograms

(3) Evaluating ensemble relative to observations with errors
distorts shape of rank histograms.

X ~ N(0,1), X ~ N(0,1), X ~ N(0,1),
V ~ N(0,1) + N{0,0.33) vV ~ N(0,1) * N{0,0.67) V ~ N(0,1) (§ N%O,l.OO)
0.20 020 T [ 0207 T
{ (a) small obs error E ' (b) medium : I (c) large obs error |
0.15 t 0.15 - obs error - 0.5+ F
x . : ) ]
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A solution of sorts is to dress every ensemble member with
a random sample of noise, consistent with the observation errors.

12
Ref: ibid.



Rank histogram shapes under
“location” and “scale” errors
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Caren Marzban’s question:
what if we did have correlations
between members, and w. truth?

Truth y;, ensemble (xl, e xn)
(. xsx,) ~ MVN((0, 11, 1) X)

Il Ro, Ro, .. Ro, r is correlation between
Gi rai ”Gi ensemble members
— 2 2 . .
2= o. .. ro. R is correlation between

ensemble member and
the observation

14
Ref: Marzban et al., MWR 2010, in press.



Rank histograms, r= R =0.9

Marzban’s rank
histograms include
box & whiskers to
quantify sampling
variability (nice!).
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Fi1c. 5. Rank Histograms for different values of the common forecast mean p (along x-axis)

and variance within ensemble member ¢ (along y-axis), when there is a strong correlation
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between ensemble members and an equally strong correlation between the ensemble members
and the observation (i.e., R =r = 0.9).



Rank histograms, r= R =0.9
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Dan Wilks’ insight into this
curious phenomenon...

Property of multivariate Gaussian distribution:

GX

Gx
aLLny — JLLx T R
0)

(y_'l#y):'ux_l_RG

(= 0, since in this case
assumed y~ N(0,1))

Y

Y Y

When p,= 0 (unbiased forecast), and given o, =1, expected
value for ensemble member is Ro,y, which will be more
extreme (further from origin) than y for relatively large o.,.

17
Ref: Wilks, 2010 MWR, submitted.



Forecast x,

lllustration, u, =0

Verification y

Many realizations of truth
and synthetic 1-member
ensemble were created,
u,=0,0,=2,r=R=0.9

Here, for a 1-member
ensemble, that forecast
member x,tends to be further
from the origin than the
verification y. If we generated
another ensemble member, it
would tend to be further from
the origin in the same
manner. Hence, you have an
ensemble clustered together,
away from the origin, and the
verification near the origin,
l.e., at extreme ranks relative

to the sorted ensemble. 18



Rank histograms in higher dimensions: the
"minimum spanning tree” histogram
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Fic. 1. Hypothetical example MSTs in K = 2 dimensions. The n_, = 10 ensemble members are labeled A-J, and the corresponding
observation is O. Solid lines indicate MSTs for the ensemble as forecast, and dashed lines indicate MSTs that result from the observation
being substituted for ensemble member D. (a) A configuration that could result from an overdispersed ensemble, where the observation is
interior to the point cloud of the ensemble. (b) A configuration that could result from an underdispersed ensemble and/or a substantial
ensemble mean error.

Solid lines: minimum spanning tree (MST) between 10-member forecasts
Dashed line: MST when observed O is substituted for member D

Calculate MST’s sum of line segments for all forecasts, and observed replacing each forecast

member. Tally rank of pure forecast sum relative to sum where observed replaced a
member.

Repeat for independent samples, build up a histogram

19

Ref: Wilks, MWR, June 2004. See also Smith and Hansen, MWR, June 2004



Rank histograms in higher dimensions: the
"minimum spanning tree” histogram

(underdispersed
ensembles)

Bias (Mahalanobis Distance)

(overdispersed

ensembles)
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Fic. 2. Behaviors of MST histograms for n,,, = 10 in K = 10 dimensions, as functions of ensemble bias (vertical)
and ensemble underdispersion (horizontal), from independent samples of size n = 1000. Vertical scales on each histogram
have been varied for clarity of presentation, with the level of the expected number per bin under uniformity (1000/11
= 91) indicated in each case by the dashed line.

Ref: Wilks, MWR, June 2004. See also Smith and Hansen, MWR, June 2004

 Graphical interpretation of
MST is different and
perhaps less intuitive than
it is for uni-dimensional
rank histogram.

20



Wind Speed (m s™")

Multi-variate rank histogram
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Standardize and rotate using Mahalanobis transformation (see Wilks 2006 text).

For each of n members of forecast and observed, define “pre-rank” as the number of
vectors to its lower left (a number between 1 and n+1)

The multi-variate rank is the rank of the observation pre-rank, with ties resolved at
random

Composite multi-variate ranks over many independent samples and plot rank histogram.
Same interpretation as scalar rank histogram (e.g., U-shape = under-dispersive).

based on Tilmann Gneiting’s presentation at Probability and Statistics, 2008 AMS Annual Conf., New Orleans.21
and http://www.springerlink.com/content/q58j4167355611g1/



Multi-variate rank histogram calculation
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based on Tilmann Gneiting’s presentation at Probability and Statistics, 2008 AMS Annual Conf., New Orleans

F., F,, Fs3, Fy4, F5, O pre-ranks: [1, 5, 3, 1, 4, 1]; sorted: obs = either rank 1, 2, or 3 with p=1/3.
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Observed Frequency (%)

Reliability diagrams

Raw Ensemble

Reliability, Day 2 Precip. at 2.5 mm
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Observed Frequency (%)

Reliability diagrams

Raw Ensemble

Reliability, Day 2 Precip. at 2.5 mm
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Ref: Wilks text, Statistical Methods in the Atmospheric Sciences



Observed Frequency (%)
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Reliability diagrams
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Ref: Wilks text, Statistical Methods in the Atmospheric Sciences



Observed Frequency (%)

Reliability diagrams

Raw Ensemble
Reliability, Day 2 Precip. at 2.5 mm
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Ref: Wilks text, Statistical Methods in the Atmospheric Sciences



Brier score

* Define an event, e.g., precip > 2.5 mm.

* Let y. be the forecast probability for the ith
forecast case.

* Let o, be the observed probability (1 or 0).
Then

2

BS==Y" (v -0

n

(So the Brier score is the averaged squared error of
the probabilistic forecast)

27

Ref: Wilks 2006 text



Brier score decomposition

BS="3" (3 -o)

n
Suppose I allowable forecast values, e.g., =10 for

(5%, 15%, ... ,95%). Frequency of usage V..

Suppose overall climatological probability o, and

2

conditional average observed probability o, for /th value.

1 1
BS = lzN,. (v,-3,) - lzNi (0,-0) +o(1-0)
n -y n -

("reliability") ("resolution")  ("uncertainty")

28
Ref: 2006 Wilks text



Brier score decomposition

R.S’:lvn (v, —n.\z

"

~

Decomposition only makes sense when every sample

Is drawn from a distribution with an overall climatology
of o . For example, don't use if your forecast sample
mixes together data from both desert and rainforest
locations. For more, see Hamill and Juras, Oct 2006 QJ

)

("reliability") ("resolution")  ("uncertainty")
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Observed Frequency (%)

Perfectly Sharp, Perfect Reliability:
Is BSS 1.0 or 0.07
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“Attributes diagram”
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www.bom.gov.au/bmrc/wefor/staff/eee/verif/ReliabilityDiagram.qif,

from Beth Ebert’s verification web page,
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif web page.html

based on Hsu and Murphy, 1986, Int’| Journal of Forecasting

“Resolution” - “Reliability”

BSS = ,
“Uncertainty”™

Uncertainty term always positive, so
probability forecasts will exhibit positive skill if
resolution term is larger in absolute value
than reliability term.  Geometrically, this
corresponds to points on the attributes
diagram being closer to 1:1 perfect reliability
line than horizontal no-resolution line (from
Wilks text, 2006, chapter 7)

Again, this geometric interpretation of the
attributes diagram makes sense only if all
samples used to populate the diagram are
drawn from the same climatological
distribution.If you are mixing samples from
locations with different climatologies, this
interpretation is no longer correct! (Hamill and
Juras, Oct 2006 QJRMS)
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Observed Frequency (%)

40

N
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Proposed modifications to
standard reliablility diagrams

(a) Day 1, Multi—Model
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(b) Day 3, Multi—Model
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(¢) Day 5, Multi—Model
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(1) Block-bootstrap techniques (perhaps each forecast day is a block) to provide

(2) BSS calculated in a way that does not attribute false skill to varying climatology

(talk later this morning)

(3) Distribution of climatological forecasts plotted as horizontal bars on the inset
histogram. Helps explain why there is small skill for a forecast that appears so 32
reliable (figure from Hamill et al., MWR, 2008).

100

confidence intervals. See Hamill, WAF, April 1999, and Brocker and Smith, WAF,
June 2007.



When does reliability # reliability?

a) 10 members b) 50 members
1 1
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Figure 3. Reliability diagrams for theoretical ensemble forecasts for (a) a 10-member ensemble prediction
system (EPS) and (b) a 50-member EPS. Distribution of underlying forecast probabilities is completely reliable
and specified by a beta distribution with r = s = 3. See text for details and explanation of symbols.

Probabilities directly estimated from a “reliable” ensemble system

with only a few members may not produce diagonal reliability curves

due to sampling variability. 33

ref: Richardson 2001 QJRMS



Probability Density

Sharpness also important

0.30 f
0.25¢

0.20

0.15

0.10

0.05

0.00

Sharpness

LI I B B BN L S B B B B B B | L AL B | LA AL B | LA AL B B | L

____ Best
_____ Better

- — Nearly Useless -

40 20 60 70 80
Temperature (°F)

“Sharpness”
measures the
specificity of

the probabilistic
forecast. Given

two reliable forecast
systems, the one
producing the
sharper forecasts

is preferable.

But: don’t want
sharp if not reliable.
Implies unrealistic
confidence.



Sharpness # resolution

* Sharpness is a property of the forecasts
alone; a measure of sharpness in Brier
score decomposition would be how
populated the extreme N.’s are is.

1

BS = — ZN —0,) —lZNi(EZ.—5)2+5(1—5)

n.—

("rehab1hty") ("resolution")  ("uncertainty")

35



"Spread-error” relationships are
important, too.

Small-spread ensemble forecasts should have less ensemble-mean error
than large-spread forecasts, in some sense a conditional reliability
dependent upon amount of sharpness.

Sharpness
O.BO:HHI """"" rrrTT T T T ,,...:

! Best ] ensemble-mean
0.25 7] error from a sample

T Setter ;/ of this pdf on avg.
0.20 — early Useless / should be low.

ensemble-mean
error should be
moderate on avg.

o
o

Probability Density
o
%,

ensemble-mean
error should be
large on avg.

0.05¢

0.00 k

40 20 60 70 80
Temperature (°F) 36



Why would you expect
spread-error relationship?

 Ensemble-mean error ought to be the same
expected value as ensemble spread.

* If V, x, are sampled from the same
distribution, then

E(x,-X) =E(V-X)
(spread)? (ens. mean error)?

« Sometimes quantified with a correlation
between spread and error.

37



Spread-error correlations
with 1990’s NCEP GFS

0.30

d

At a given grid point, spread
S'is assumed to be a random
variable with a lognormal
distribution

InS ~N(InS,,p)

where S, is the mean spread
and S is its standard deviation.

L 0.27
L 0.24
- 0.21

- 0.18 As B increases, there is a

wider range of spreads
in the sample. One would
expect then the possibility for

a larger spread-skill correlation.

correlation of S and |E|

— 0.15

(SUT JO UOTIRTASD pPIRPURIS)

0.12

forecast day
Lesson: spread-error correlations inherently limited by amount of variation in spread

38
Ref: Whitaker and Loughe, Dec. 1998 MWR



Spread-error relationships and
precipitation forecasts

Spread for tw

o precipitation
0.7 ' I B

05E ____ 0 =0.70
___.. o =6.93

Probability Density

o
N
ARRRRRRRRRY

o
[

o
o

forecast PDFs

0 S 10 15 20
Precipitation (mm)

Ref & possible solution: Hamill and Colucci, MWR, Mar. 1998

True spread-skill relationships
harder to diagnose if forecast
PDF is non-normally distributed,
as they are typically for
precipitation forecasts.

Commonly, spread is no longer
independent of the mean value;
it's larger when the amount is
larger.

Hence, you may get an apparent
spread-error relationship, but
this may reflect variations in the
mean forecast rather than

real spread-skill.

39



800 T T
600 b
~~ ] °
E soof -
N~ Y °
'g 400 .o h
2 300, e . 1
7] [ ] ... ". ... [ ] °
2001 4 420, 0, o
By 1}
100 .- r b
0 a 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
Absolute Error (km)
(d) CM
800 T T T T T T T
700} r= 0%26, n = 114 1
[ ] ® -
600 hd e ® -
~ ° °
Esoof o0 o . -
o o I
gaoop el ey ’. oo ]
g _oo.o ..."'0.:.(‘ o o. *
A 300 o " ° o
.’: ..A" LY a [ ] L |
200 L’ 7
100 b
0 . 1 1 1 1 1 1 1

|s the spread-error correlation as
high as it could be?

(a) GFS/EnKF

0 100 200 300 400 500 600 700 800

Absolute Error (km)

(b) NCEP

800 T T T T T T T

700} r= 0.38, n= 81 ]

600 | -
3 e
£ s00r . - R
° - L -
g 400 o o
a 300t ‘o .
0 . ..'-.. ..‘ ° o

®
100 3" % % ° -
0 . 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
Absolute Error (km)
(e) UKMO
800 T T T T T T T
700} r= 0.18, n= 78 ]
[ ]

600 .
c [ ]
£ soo0r . 1
~ . .
T 400} . ° ® .
E_ ° . ° i
& 300F o, ety L]

e -
200 o % 0200’:. .. : o*
L
100} 2 et ole .
0 . 1 1 1 1 1 1 1
0 100 200 300 400 S00 600 700 800

Absolute Error (km)

Ref: Hamill et al., MWR 2010 conditionally accepted.
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(c) ECMWF
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...use one member as synthetic verification to
gauge potential spread-error correlation
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(b) NCEP [perfect—model]
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Spread vs. error in
more than one
dimension:
verification
of ellipse

eccentricity

Hurricane Bill, initialized
00 UTC 19 August 20009.

Fitted bi-variate normal
to each ensemble’s
forecast track positions.
Ellipse encloses 90% of
the fitted probability.

Ref: Hamill et al., MWR 2010 conditionally accepted.
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Ellipse eccentricity analysis

Question: are errors projections larger along the direction
where the ellipse is stretched out?

' — _ 1/2
Xl:(xl(l)—x;t, cee ,Xl(m)—x;t)/(nl‘_l)

X, = ( Xy = Xgs - ,x¢(m)—)_c¢)/(nt—1)

A = longitude, ¢ = latitude, nt = #tracked

1/2

F=XX"=SAS'=SAST=(SA")(SA")  *

E > should be consistent with <<‘X .S, ‘>>

)

) = average over cases; <<->> = average over cases, members

<
(E+$S,|) should be consistent with ({|X,
S
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(non-homogeneous)
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Ellipse eccentricity analysis
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(non-homogeneous)

Ellipse eccentricity analysis

(a) GFS/EnKF

500

400

W
o
o

Distance (km)

— << | X S, |>>

— << | XS, [>>
ee < |E Sy |>

e < |E-S, |> _,..._

200
100
O 1 1 1 1 1 1
0 1 2 3 4 5
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(d) CMC
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400
0
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[
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S 200
2
=)
100 | g
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Distance (km)

(b) NCEP (c) ECMWF
500 ' - 500 ' ; '
400 s 400
G
300 R X 300
200+ / S onn
Notes for GFS/EnKF:

(1) Along major axis of ellipse, consistent
average projection error of errors and
projection of members; spread well
estimated.

(2) Along minor axis of ellipse, slightly larger
projection of errors than projection of
members. Too little spread.

(3) Together, imply more isotropy needed.

(4) Still (dashed lines) some separation of
projection of error onto ellipses indicates

there is some skill in forecasting ellipticity.

N
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50 '

Another way
of conveying
spread-error
- relationships.

N
)

w
(©)

4]
(&)

[N
()

innovation variance (m/s)?

masked BRED | Averaging the individual
————————- simple BRED

0 ETKF samples into bins, then
I []
0 10 -9 Pplotting a curve.

ensemble variance (m/s)?

FiG. 8. This figure is plotted by first drawing a scatterplot (not
shown) of squared 500-hPa U wind innovation vs 500-hPa U wind
ensemble variance at a particular forecast lead time for each mid-
latitude observation location for all forecasts during boreal summer
of 2000, dividing the points into four equally populated bins, arranged
in order of increasing ensemble variance, and then averaging the
squared innovation and ensemble variance in each bin. What is shown
1s averaged squared innovation vs the averaged ensemble variance 46

Ref: Wang and Bishop,
from 1- to 3-day forecasts. JAS, May 2003.



Part 2. other common (and uncommon)
ensemble-related evaluation tools

What do they tell us about the ensemble?
How are they computed?

* |s there some relation to reliability, sharpness,
or other previously discussed attributes?

What are some issues in their usage?

47



Isla Gilmour’s non-linearity index

how long does a linear regime persist?

ST *.
Ao([]) N
t) .

LS. ¥
67(0)* |

6T (t)+6(2)
ft I

F1G. 2. Defining O: equal and opposite perturbations at t = 0,
0-(0), evolve so as to be no longer symmetric at time ¢. The error
in assuming linear dynamics, |6+ (¢) + 6 (?)||, is scaled by the average
magnitude of the evolved perturbations to give the relative nonlin-

earity ©.

the relative nonlinearity of

evolution O, given by

A lor @) + o~ (@)
O(o, |8], 1 = . . ; (3)
0.5{ll6= @I + llo- @I}
where & is the unit vector and || - || is one of several
possible metrics
48

Ref: Gilmour et al., JAS, Nov. 2001



Power spectra and saturation

GEOPOTENTIAL HEIGHT SPECTRA T106

L | | UL

10000

The 0—curve represents the
power difference between
analyses as a function of
global wavenumber.

PR
_______
e -

.
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* .*
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.
e
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-
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N Other numbered curves
eI 1 indicate the power difference at
different forecast leads, in days.

-
-
-
-
P

LI ALY L

Diagnostics like this can be
useful in evaluating upscale
growth characteristics of
ensemble uncertainty.

T IIIIIHI T TTTIIT
1 lllll||| Lt

0.01 1 l 1 1 i 1.1 ! ! | N |
1 10 40 100

FiG. 8. Same as Fig. 7, but for ensemble dispersion error growth
from errors specified in the initial condition. Gray shading indicates
o difference from total 2o saturation.

49
Ref: Tribbia and Baumhefner, MWR, March 2004



Satterfield and Szunyogh's
"Explained Variance”

i H SEW H i H 5 &N H
ISl Jagh+aev)|

How much of the error ¢ (difference of truth from ens. mean)
lies in the space spanned by the ensemble (||) vs. orthogonal
toit (1)? (calculation is done in a limited-area region).

Would expect that as EV decreases, more U-shaped
multi-dimensional rank histograms would be encountered.

50

Ref: Satterfield and Szunyogh, MWR, March 2010



Example
with
forecasts
from “local
o ETKF”

top: 5x5 degree
boxes
bottom: 10x10
o boxes.
the larger the
=~ W box, the smaller
-\\‘ = the EV, but
\\é_:/%/ | patterns similar.

Fic. 4. Explained variance (shades) and geopotential height control (contours) at the 250-hPa

level shown for the experiment that assimilates conventional observations for a local region size of 51
5x5 (top panels) and 10x10 (bottom panels). Results are shown for the 5-day forecast started on

4 Feb 2004.



Cumulative distribution function
(CDF); used in CRPS

* Fi(x) =Pr{X<=x}
where X is the random variable, x iIs some
specified threshold.

Temperature PDF from Ensemble Temperature CDF from Ensemble

] 1.0 —
0.14F . i A
0.12 ] 0.8 M

.. 0.10F = = . N I B

= i - ] = 0.6F —

2 0.08f m m Vi I

O F e

2 O | I B O T B ] = ! _

2 0.06 ; & 0.41
0.04 - I

N ] 0.2
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0.00t [] HEE 0.0 ol
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Continuous Ranked Probability Score

« Let F’(x)be the forecast probability CDF for the ith forecast case.
* Let F’(x) be the observed probability CDF (Heaviside function).

CRPS = li [ (F - Fl.o(x))zdx

= —00
oy
(a) Forecast PDF and Observed (w) Forecast and Observed CDF
Q4 T T : 1.0 T T
5 obs 5 - /
: ] 0.8 -
_.2\ 0.3 L z -
.6 .G F
c g r
a S 06f ]
Z 0.2 ER
§ % 0.4_- .
o £ _
a 0.1 (&) -
0.2 1
0.0k A ool -~ . 1 .. .
50 65 70 50 55 60 65 70

Temperature (°F) Temperature (°F) 53



Continuous Ranked Probability Score

« Let F’(x)be the forecast probability CDF for the ith forecast case.
* Let F’(x) be the observed probability CDF (Heaviside function)*.

CRPS = — 2 [ (F@- F2(x)) d

X=—o00
(difference
squared)
(a) Forecast PDF and Observed (b) Fyrecast and Observed CDF
04 T T T T T ] 1.0
Obs -
i 0.8 .
> 0.3 7 = r
£ ' = I
s | 5 ol
[ r () 0.6__ T
2z 0.2f R
§ i g 0.4_— / I 7
2 £ I
a 0.1 &) 3
0.2 —
0.0k Y~ oo ) SO 11111111 '
50 55 60 65 70 50 55 60 65 70
Temperature (°F) Temperature (°F) 54

* or incorporate obs error; see Candille and Talagrand, QJRMS,2007



Continuous Ranked Probability
Skill Score (CRPSS)

Like the Brier score, it's common to convert this to
a skill score by normalizing by the skill of a reference
forecast, perhaps climatology.

CRPS( forecast)— CRPS(climo)
CRPS(perfect)— CRPS(climo)

CRPSS =

Danger: can over-estimate forecast skill. See

later presentation on this. o



Decomposition of CRPS

» Like Brier score, there is a
decomposition of CRPS into reliability,

resolution, uncertainty.

» Like Brier score, interpretation of this
decomposition only makes sense if all
samples are draws from a distribution
with the same climatology.

Ref: Hersbach, WAF, Oct 2000, + Hamill and Juras, QJ, Oct 2006
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Hit Rate

1.0

0.8

0.6

0.4
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0.0

0.0

Relative Operating
Characteristic (ROC)

(a) ROC, Perfect Forecast
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False Alarm Rate

Hit Rate = H / (H+M)
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(b) ROC, Climatological Forecast
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(c¢) ROC, Realistic Forecast
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FAR = F / (F+C)
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Hit Rate

Relative Operating
Characteristic (ROC)

(a) ROC, Perfect Forecast

c) ROC, Realistic Forecas

.I.

(b) ROC, Climatological Forecast
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ROCSS =

False Alarm Rate

AUC, — AUC

clim
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 10-05
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58

1.0



Fcst=T?

Method of calculation of ROC:
parts 1 and 2

(1) Build contingency tables for each sorted ensemble member

T
F Obs r F F F F
) | | | | | I | | | | | | g
55 56 57 58 59 60 61 62 63 64 65 X
Obs >2T? Obs >2T? Obs >2T? Obs >2T? Obs >2T? Obs >2T?
Y [ N Y [ N Y [ N Y [ N Y [ N Y [ N
- - - = -
o |o A o |o A o |o A 0o |1 N 0o |1 A 0o |1
3 3 3 % 3
0 |1 Sl NJO |1 Sl NJO |1 Sl NJO [0 S NJO O eI NJO [0

(2) Repeat the process for other locations, dates, building
up contingency tables for sorted members.
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Method of calculation of ROC:

part 3

(3) Get hit rate and false alarm rate for each from contingency table
for each sorted ensemble member.

60

Obs=>T?
Y | N _ _
SRR HR=H/(H+M) FAR=F/(F+C)
Al
§ N|M |C
Sorted Sorted Sorted Sorted Sorted Sorted
Member 1 Member 2 Member 3 Member 4 Member 5 Member 6
Obs=>T? Obs=>T? Obs=>T? Obs=>T? Obs=>T? Obs=>T?
N Y N N Y N N Y N N Y N N Y N N Y N
',] Y| 1106 | 3 ',] Y| 3097 | 176 ',] Y| 4020 | 561 ',] Y| 4692 | 1270 ',] Y| 5297 | 2655 ',] Y | 6603 44895
. N 5651i 73270 . N 3630i 73097 . N 2707i 72712 . N 2035i 72003 || N 1430i 70618 . N | 124 i 28378
HR =0.163 HR = 0.504 HR = 0.597 HR = 0.697 HR = 0.787 HR = 0.981
FAR = 0.000 FAR =0.002 FAR = 0.007 FAR =0.017 FAR =0.036 FAR =0.612




Method of calculation of ROC:

part 3

l l l l l

HR =0.163 HR = 0.504 HR = 0.597 HR = 0.697 HR =0.787
FAR = 0.000 FAR = 0.002 FAR = 0.007 FAR =0.017 FAR = 0.036

\

HR =1[0.000, 0.163, 0.504, 0.597, 0.697, 0.787, 0.981, 1.000]

FAR =[0.000, 0.000, 0.002, 0.007, 0.017, 0.036, 0.612, 1.000]

1.0

(4) Plot hit rate
vs. false alarm _
rate > 0.6]

0.8

Again, can overestimate 0.2
forecast skill.

0.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate

|

HR = 0.981
FAR =0.612
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Fcst = T? (our test statistic)

ROC connection with
hypothesis testing

Observed =2 T7?

YES NO
YES | H (HIT) (F) FALSE
ALARM
NO | (M)MISS | (C)
CORRECT
NO

Point on ROC curve provides
evaluation of Type | (inappropriate
rejection of null hypothesis, which
here is Obs <T)vs. 1. - Type |l
statistical errors (inappropriate
acceptance of alternate hypothesis,
Obs = T). ROC curve provides
tradeoff as different ensemble data
Is used as test statistic.

FAR =F / F+C = P(Type | error)

HR=H/H+M =1 - P(Type Il error)
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Value

Economic value diagrams

Motivated by search for a metric that relates ensemble forecast
performance to things that customers will actually care about.

Yalue of EPS for different thresholds
Jan—Feb 19938 Europe T+144. T850 anom = +4 K

0.3
s [\ IITILIT VAILE
— — *=(), 02
— p=0.1
5 7 = pt=0.2, 0.3, ..., 0.3

p*=0.9

0.4

_________
"""""

1.0

These diagrams
tell you the
potential economic
value of your
ensemble forecast
system applied to
a particular forecast
aspect. Perfect
forecast has value
of 1.0, climatology
has value of 1.0.
Value differs with
user’s cost/loss

ratio. 63



Economic value:
calculation method

Contingency table indicating the costs
and losses accrued by the use of weather
forecasts, depending on forecast and observed
events.

Miss (m)
Loss (L = L+ L)

False Alarm (f)
Cost (C)

Correct rejection (c)
No cost (N)

h+m

Assumes decision maker
alters actions based on
weather forecast info.

C = Cost of protection

L =L,+L, = total cost of
a loss, where ...

L, = Loss that can be
protected against

L, = Loss that can’t be
protected against.

N = No cost

64



Economic value, continued

. Contingency table indicating the costs Suppose we have the CcO n“ngency

and losses accrued by the use of weather

forecasts, depending on forecast and observed table Of forecast Outcomes’ [h’ m, f’ C]

events.

Then we can calculate the expected
' f:i:s_ <£n>+ & value of the expenses from a forecast,
0\ from climatology, from a perfect forecast.

False Alarm (f) Correct rejection (c)
Cost (C) | No cost (N)

] \ Note that

=fC+h(C+L,)+m(L,+L,) ://v?tl;:ecwli_” V?ry
’ =pr =up

forecast

climate

= Min| 5(L,+L,), C+5L, |=5L, + Min[ oL, C|
Different users

perfect =0 (C + Lu) Wlth dlffel’ent
protection costs
EC - . Mll’l 5L , C . (h + f)C . mL may eXpel’lenCG
V= El Ef L= [ . _} a z a different value
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Ref: Zhu et al. 2002 BAMS



From ROC to economic value

f

-0

HR = FAR = m=o0—HRo

Sl |

o Min|2,C/L, |- (h+ f)C/L, - m
- Min[5,C/Lp]—0r

_ Min|5,C/L, |-(C/L,)FAR(1-3)+ HRo(1-C/L,) -0
B Min[5.C/L, |- or

Value is now seen to be related to FAR and HR, the
components of the ROC curve. A (HR, FAR)
point on the ROC curve will thus map to a

value curve (as a function of C/L)
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ensemble distribution.
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the 10th percentile.
Overall economic
value is the maximum
(use whatever member
for decision threshold
that provides the

best economic value).
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Conclusions

* Many ensemble verification techniques
out there.

* A good principle is to thought-test every
verification technique you seek to use;
Is there some way it could be
misleading you about the characteristics
of the forecast (commonly, the answer
will be yes).
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Useful references

Good overall references for forecast verification:

—  (1): Wilks, D.S., 2006: Statistical Methods in the Atmospheric Sciences (2nd Ed). Academic
Press, 627 pp.

— (2) Beth Ebert’s forecast verification web page, hitp://tinyurl.com/y97c74

Rank histograms: Hamill, T. M., 2001: Interpretation of rank histograms for verifying
ensemble forecasts. Mon. Wea. Rev., 129, 550-560.

Spread-skill relationships: Whitaker, J.S., and A. F. Loughe, 1998: The relationship
between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 3292-3302.
Brier score, continuous ranked probability score, reliability diagrams: Wilks text
again.

Relative operating characteristic: Harvey, L. O., Jr, and others, 1992: The application
of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120,
863-883.

Economic value diagrams:

— (1)Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction
system. Quart. J. Royal Meteor. Soc., 126, 649-667.

— (2) Zhu, Y, and others, 2002: The economic value of ensemble-based weather forecasts. Bull.
Amer. Meteor. Soc., 83, 73-83.
Overforecasting skill: Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: is it
real skill or is it the varying climatology? Quart. J. Royal Meteor. Soc., Jan 2007 issue.
http://tinyurl.com/kxtct
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