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Part 1: two desirable properties of 
ensembles, and the challenges of 

evaluating these properties 

•  Property 1: Reliability, no matter how 
you slice and dice your ensemble data. 

•  Property 2: Specificity, i.e., sharpness. 
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Unreliable ensemble? 

Here, the observed is outside of the range of the ensemble, 
which was sampled from the pdf shown.  Is this a sign of 
a poor ensemble forecast? 
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Unreliable ensemble? 

Here, the observed is outside of the range of the ensemble, 
which was sampled from the pdf shown.  Is this a sign of 
a poor ensemble forecast? 
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You just don’t know…it’s only one sample You just don’t know; it’s only one sample. 



Rank 1 of 21 Rank 14 of 21 

Rank 5 of 21 Rank 3 of 21 
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“Rank histograms,” aka “Talagrand diagrams” 

Happens when 
observed is  
indistinguishable 
from any other  
member of the 
ensemble. Ensemble 
hopefully is reliable. 

Happens when  
observed too  
commonly is 
lower than the  
ensemble members. 

Happens when 
there are either 
some low and some 
high biases, or when 
the ensemble doesn’t 
spread out enough. 

With lots of samples from many situations, can evaluate the characteristics of the ensemble. 

ref: Hamill, MWR, March 2001 
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X = (x1, … , xn )

E P V < xi( )⎡⎣ ⎤⎦ =
i

n +1

E P xi−1 ≤V < xi( )⎡⎣ ⎤⎦ =
1

n +1
R = r1, … , rn+1( )
rj = P xj−1 ≤V < x j( )

n-member sorted ensemble at 
some point 

probability the truth V is less than the  
ith sorted member if V and X’s  
members sample the same distribution 

… equivalently 

our rank histogram vector 

overbar denotes the sample average  
over many (hopefully independent) 
samples 

Underlying mathematics 

ref: ibid. 



Rank histograms of Z500, T850, T2m 
(from 1998 reforecast version of NCEP GFS) 

Solid lines indicate  
ranks after bias  

correction.  

Rank histograms  
are particularly  

U-shaped for T2M. 

8 
Ref: Hamill and Whitaker, MWR, Sep 2007. 



Rank histograms… 
pretty simple, right? 

Let’s consider some of the issues 
involved with this one seemingly 
simple verification metric. 
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Issues in using rank histograms 
(1) Flat rank histograms can be created from 

combinations of uncalibrated ensembles. 
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Lesson: you only be confident you have reliability if you see flatness of 
rank histogram having sliced the data many different ways. 

Ref: Hamill, MWR, Mar 2001 



Issues in using rank histograms 
(2) Same rank histogram shape may result from 

ensembles with different deficiencies 
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Ref: ibid 

Here, half of  
ensemble  
members  
from low-biased 
distribution, 
half from 
high-biased 
distribution 

Here, all of  
ensemble  
members from  
under-spread 
distribution. 



Issues in using rank histograms 
(3) Evaluating ensemble relative to observations with errors 

distorts shape of rank histograms. 
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A solution of sorts is to dress every ensemble member with 
a random sample of noise, consistent with the observation errors. 

Ref: ibid. 

small obs error medium  
obs error 

large obs error 



Rank histogram shapes under 
“location” and “scale” errors 
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truth from N(0,1) 

forecast from 
N(µ,σ); no implicit 
correlations between 
members or between 
member and truth 

Ref: ibid. 



Caren Marzban’s question: 
what if we did have correlations 

between members, and w. truth? 
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Truth y; ensemble x1,… , xn( )
y, x1,… , xn( )  MVN 0,µx ,… , µx( ),Σ( )

Σ =
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r is correlation between  
ensemble members  

R is correlation between  
ensemble member and  
the observation 

Ref: Marzban et al., MWR 2010, in press. 



Rank histograms, r = R = 0.9 
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Marzban’s rank 
histograms include 
box & whiskers to 
quantify sampling 
variability (nice!). 

µ=0.0 µ=0.2 µ=0.4 µ=1.6 µ=0.8 

σ =0.25 

σ =0.5 

σ =1.0 

σ =2.0 

σ =4.0 



Rank histograms, r = R = 0.9 

16 

Marzban’s rank 
histograms include 
box & whiskers to 
quantify sampling 
variability (nice!). 

What’s going on  
here? Why do we  
now appear to have 
diagnosed  
under-spread 
with an ensemble 
with apparent 
excess spread? 

µ=0.0 µ=0.2 µ=0.4 µ=1.6 µ=0.8 

σ =0.25 

σ =0.5 

σ =1.0 

σ =2.0 

σ =4.0 



Dan Wilks’ insight into this 
curious phenomenon… 
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Property of multivariate Gaussian distribution: 

(= 0, since in this case  
assumed y ~ N(0,1)) 

When  µx= 0 (unbiased forecast), and given σy =1, expected 
value for ensemble member is Rσxy,  which will be more  
extreme (further from origin) than y for relatively large σx.  

Ref: Wilks, 2010 MWR, submitted. 

µx |y = µx + R
σ x

σ y

y − µy( ) = µx + R
σ x

σ y

y



Illustration, µx=0 
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slope 
Rσx 

Here, for a 1-member 
ensemble, that forecast 
member x1tends to be further 
from the origin than the 
verification y.  If we generated 
another ensemble member, it 
would tend to be further from 
the origin in the same 
manner.  Hence, you have an 
ensemble clustered together, 
away from the origin, and the 
verification near the origin, 
i.e., at extreme ranks relative 
to the sorted ensemble.  

Many realizations of truth 
and synthetic 1-member 
ensemble were created, 
µx = 0,σx = 2, r = R = 0.9 



Rank histograms in higher dimensions: the 
“minimum spanning tree” histogram 

•  Solid lines: minimum spanning tree (MST) between 10-member forecasts 
•  Dashed line: MST when observed O is substituted for member D 
•  Calculate MST’s sum of line segments for all forecasts, and observed replacing each forecast 

member.  Tally rank of pure forecast sum relative to sum where observed replaced a 
member. 

•  Repeat for independent samples, build up a histogram 

Ref: Wilks, MWR, June 2004.  See also Smith and Hansen, MWR, June 2004 
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Rank histograms in higher dimensions: the 
“minimum spanning tree” histogram 

•  Graphical interpretation of 
MST is different and 
perhaps less intuitive than 
it is for uni-dimensional 
rank histogram. 

Ref: Wilks, MWR, June 2004.  See also Smith and Hansen, MWR, June 2004 
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Multi-variate rank histogram 

•  Standardize and rotate using Mahalanobis transformation (see Wilks 2006 text).  
•  For each of n members of forecast and observed, define “pre-rank” as the number of 

vectors to its lower left (a number between 1 and n+1) 
•  The multi-variate rank is the rank of the observation pre-rank, with ties resolved at 

random 
•  Composite multi-variate ranks over many independent samples and plot rank histogram. 
•  Same interpretation as scalar rank histogram (e.g., U-shape = under-dispersive). 

based on Tilmann Gneiting’s presentation at Probability and Statistics, 2008 AMS Annual Conf., New Orleans. 
and http://www.springerlink.com/content/q58j4167355611g1/ 

zi = S[ ]−1/2 xi − x( )

“Mahalanobis” 
transform 
(S is forecasts’ 
sample 
covariance) 
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Multi-variate rank histogram calculation 

based on Tilmann Gneiting’s presentation at Probability and Statistics, 2008 AMS Annual Conf., New Orleans 

F1, F2, F3, F4, F5, O pre-ranks:  [1, 5, 3, 1, 4, 1] ;  sorted: obs = either rank 1, 2, or 3 with p=1/3. 



Reliability diagrams 
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Reliability diagrams 

Curve tells you what 
the observed frequency 
was each time you 
forecast a given probability. 
This curve ought to lie 
along  y = x  line. Here this 
shows the ensemble-forecast 
system over-forecasts the 
probability of light rain. 

Ref: Wilks text, Statistical Methods in the Atmospheric Sciences 
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Reliability diagrams 

Inset histogram tells 
you how frequently 
each probability was 
issued.   

Perfectly sharp:  
frequency of usage 
populates only 
0% and 100%. 

Ref: Wilks text, Statistical Methods in the Atmospheric Sciences 

25 



Reliability diagrams 

BSS = Brier Skill Score 

BSS =
BS(Climo) − BS(Forecast)
BS(Climo) − BS(Perfect)

BS(•) measures the 
Brier Score, which you 
can think of as the  
squared error of a  
probabilistic forecast. 

Perfect: BSS = 1.0 
Climatology: BSS = 0.0  

Ref: Wilks text, Statistical Methods in the Atmospheric Sciences 
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Brier score 
•  Define an event, e.g., precip > 2.5 mm. 
•  Let      be the forecast probability for the ith 

forecast case. 
•  Let      be the observed probability (1 or 0).  

Then 

yi

oi

BS =
1
n

yi − oi( )i=1

n∑
2

(So the Brier score is the averaged squared error of 
the probabilistic forecast) 

27 

Ref: Wilks 2006 text 



Brier score decomposition 
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BS =
1
n

yi − oi( )i=1

n∑
2

Suppose I  allowable forecast values, e.g., I=10 for 
(5%, 15%, ... , 95%). Frequency of usage Ni .
Suppose overall climatological probability o, and
conditional average observed probability oi  for Ith value.

BS =
1
n

Ni
i=1

I

∑ yi − oi( )2 −
1
n

Ni
i=1

I

∑ oi − o( )2 + o 1− o( )

         ("reliability")           ("resolution")     ("uncertainty")

Ref: 2006 Wilks text 



Brier score decomposition 
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BS =
1
n

yi − oi( )i=1

n∑
2

Suppose I  allowable forecast values, e.g., I=10 for 
(5%, 15%, ... , 95%). Frequency of usage Ni .
Suppose overall climatological probability o, and
conditional average observed probability oi  for Ith value.

BS =
1
n

Ni
i=1

I

∑ yi − oi( )2 −
1
n

Ni
i=1

I

∑ oi − o( )2 + o 1− o( )

         ("reliability")           ("resolution")     ("uncertainty")

Decomposition only makes sense when every sample  
is drawn from a distribution with an overall climatology 
of     .  For example, don’t use if your forecast sample 
mixes together data from both desert and rainforest  
locations.  For more, see Hamill and Juras, Oct 2006 QJ 

o



Degenerate case: 

Skill might 
appropriately 
be 0.0 if all 
samples with 
0.0 probability 
are drawn from 
climatology with 
0.0 probability, 
and all samples 
with 1.0 are  
drawn from  
climatology with 
1.0 probability. 



“Attributes diagram” 

www.bom.gov.au/bmrc/wefor/staff/eee/verif/ReliabilityDiagram.gif, 
from Beth Ebert’s verification web page, 
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html 
based on Hsu and Murphy, 1986, Int’l Journal of Forecasting 

BSS = “Resolution” - “Reliability”
“Uncertainty”

Uncertainty term always positive, so 
probability forecasts will exhibit positive skill if 
resolution term is larger in absolute value 
than reliability term.    Geometrically, this 
corresponds to points on the attributes 
diagram being closer to 1:1 perfect reliability 
line than horizontal no-resolution line (from 
Wilks text, 2006, chapter 7) 

Again, this geometric interpretation of the 
attributes diagram makes sense only if all 
samples used to populate the diagram are 
drawn from the same climatological 
distribution.If you are mixing samples from 
locations with different climatologies, this 
interpretation is no longer correct! (Hamill and 
Juras, Oct 2006 QJRMS) 

31 



Proposed modifications to 
standard reliability diagrams 

(1) Block-bootstrap techniques (perhaps each forecast day is a block) to provide 
confidence intervals.  See Hamill, WAF, April 1999, and Bröcker and Smith, WAF, 
June 2007. 

(2) BSS calculated in a way that does not attribute false skill to varying climatology 
(talk later this morning) 

(3) Distribution of climatological forecasts plotted as horizontal bars on the inset 
histogram.  Helps explain why there is small skill for a forecast that appears so 
reliable  (figure from Hamill et al., MWR, 2008). 
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When does reliability ≠ reliability? 

33 

Probabilities directly estimated from a “reliable” ensemble system  
with only a few members may not produce diagonal reliability curves  
due to sampling variability. 

10 members 50 members 

ref: Richardson 2001 QJRMS 



Sharpness also important 
“Sharpness” 
measures the 
specificity of 
the probabilistic 
forecast.  Given  
two reliable forecast 
systems, the one  
producing the  
sharper forecasts 
is preferable. 

But: don’t want 
sharp if not reliable. 
Implies unrealistic  
confidence. 
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Sharpness ≠ resolution 
•  Sharpness is a property of the forecasts 

alone; a measure of sharpness in Brier 
score decomposition would be how 
populated the extreme Ni’s are is. 
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BS =
1
n

Ni
i=1

I

∑ yi − oi( )2 −
1
n

Ni
i=1

I

∑ oi − o( )2 + o 1− o( )

         ("reliability")           ("resolution")     ("uncertainty")



“Spread-error” relationships are 
important, too. 

ensemble-mean 
error from a sample 
of this pdf on avg. 
should be low. 

ensemble-mean 
error should be 
moderate on avg. 

ensemble-mean 
error should be 
large on avg. 

Small-spread ensemble forecasts should have less ensemble-mean error 
than large-spread forecasts, in some sense a conditional reliability 
dependent upon amount of sharpness. 
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Why would you expect 
spread-error relationship? 

•  Ensemble-mean error ought to be the same 
expected value as ensemble spread. 

•  If V, xi are sampled from the same 
distribution, then 

•  Sometimes quantified with a correlation 
between spread and error.  
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E xi − x( )2 = E V − x( )2
(spread)2 (ens. mean error)2 



Spread-error correlations  
with 1990’s NCEP GFS 

At a given grid point, spread  
S is assumed to be a random 
variable with a lognormal  
distribution 

where Sm is the mean spread  
and β is its standard deviation. 

As β increases, there is a  
wider range of spreads  
in the sample. One would  
expect then the possibility for 
a larger spread-skill correlation.  

lnS ~ N lnSm ,β( )

38 

corr 

β 

Lesson: spread-error correlations inherently limited by amount of variation in spread  

Ref: Whitaker and Loughe, Dec. 1998 MWR 



Spread-error relationships and  
precipitation forecasts 

True spread-skill relationships  
harder to diagnose if forecast 
PDF is non-normally distributed,  
as they are typically for  
precipitation forecasts. 

Commonly, spread is no longer 
independent of the mean value; 
it’s larger when the amount is 
larger. 

Hence, you may get an apparent 
spread-error relationship, but 
this may reflect variations in the 
mean forecast rather than 
real spread-skill. 

39 
Ref & possible solution: Hamill and Colucci, MWR, Mar. 1998 



Is the spread-error correlation as 
high as it could be?  

40 
40 
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Ref: Hamill et al., MWR 2010 conditionally accepted. 



…use one member as synthetic verification to 
gauge potential spread-error correlation 
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Spread vs. error in 
more than one 

dimension: 
verification 
of ellipse 

eccentricity 

Hurricane Bill, initialized  
00 UTC 19 August 2009. 

Fitted bi-variate normal 
to each ensemble’s  
forecast track positions. 
Ellipse encloses 90% of 
the fitted probability. 

42 
Ref: Hamill et al., MWR 2010 conditionally accepted. 



Ellipse eccentricity analysis 

 

xλ
' = xλ (1) − xλ , … , xλ (nt ) − xλ( ) nt −1( )1/2

xφ
' = xφ (1) − xφ , … , xφ (nt ) − xφ( ) nt −1( )1/2

λ = longitude, φ = latitude, nt = # tracked

X =
xλ

'

xφ
'

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

F = XXT = SΛS−1 = SΛST = SΛ1/2( ) SΛ1/2( )T

E i S1 should be consistent with Xii i S1

E i S2 should be consistent with Xii i S2

i = average over cases;  i = average over cases, members 43 

Question: are errors projections larger along the direction  
where the ellipse is stretched out? 



Ellipse eccentricity analysis 
(n

on
-h

om
og

en
eo

us
) 



Ellipse eccentricity analysis 
(n

on
-h

om
og

en
eo

us
) 
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Notes for GFS/EnKF: 

(1)  Along major axis of ellipse, consistent 
average projection error of errors and 
projection of members; spread well 
estimated. 

(2)  Along minor axis of ellipse, slightly larger 
projection of errors than projection of 
members.  Too little spread. 

(3)  Together, imply more isotropy needed. 
(4)  Still (dashed lines) some separation of 

projection of error onto ellipses indicates 
there is some skill in forecasting ellipticity. 



Another way 
of conveying 
spread-error 
relationships. 
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Averaging the individual 
samples into bins, then 
plotting a curve. 

Ref: Wang and Bishop, 
JAS, May 2003. 



Part 2: other common (and uncommon)  
ensemble-related evaluation tools 

•  What do they tell us about the ensemble? 
•  How are they computed? 
•  Is there some relation to reliability, sharpness, 

or other previously discussed attributes? 
•  What are some issues in their usage? 
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Isla Gilmour’s non-linearity index 
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Ref: Gilmour et al., JAS, Nov. 2001 

how long does a linear regime persist? 



Power spectra and saturation 
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Ref: Tribbia and Baumhefner, MWR, March 2004 

The 0–curve represents the  
power difference between 
analyses as a function of 
global wavenumber. 

Other numbered curves  
indicate the power difference at  
different forecast leads, in days. 

Diagnostics like this can be 
useful in evaluating upscale 
growth characteristics of 
ensemble uncertainty. 



Satterfield and Szunyogh’s  
“Explained Variance” 

50 

 

EV =
δ ξ ( )

ξ
=

δ ξ ( )

δ ξ ( ) + δ ξ ⊥( )

How much of the error ξ (difference of truth from ens. mean) 
lies in the space spanned by the ensemble (||) vs. orthogonal  
to it (  )?  (calculation is done in a limited-area region). 

Would expect that as EV decreases, more U-shaped  
multi-dimensional rank histograms would be encountered. 

Ref: Satterfield and Szunyogh, MWR, March 2010 

⊥



Example 
with  

forecasts 
from “local 

ETKF” 
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top: 5x5 degree 
boxes 

bottom: 10x10 
boxes. 

the larger the  
box, the smaller 
the EV, but  
patterns similar. 



Cumulative distribution function 
(CDF); used in CRPS 

•  Ff(x) = Pr {X ≤ x} 
where X is the random variable, x is some 

specified threshold. 
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Continuous Ranked Probability Score 
•  Let           be the forecast probability CDF for the ith forecast case. 

•  Let           be the observed probability CDF (Heaviside function).   
Fi

f (x)

Fi
o(x)

CRPS =
1
n

Fi
f (x) − Fi

o(x)( )
x=−∞

x=−∞

∫
2
dx

i=1

n

∑

53 

b 



Continuous Ranked Probability Score 
•  Let           be the forecast probability CDF for the ith forecast case. 

•  Let           be the observed probability CDF (Heaviside function)*.   
Fi

f (x)

Fi
o(x)

CRPS =
1
n

Fi
f (x) − Fi

o(x)( )
x=−∞

x=−∞

∫
2
dx

i=1

n

∑

54 

* or incorporate obs error; see Candille and Talagrand, QJRMS,2007 

(difference 
   squared) 

b 



Continuous Ranked Probability 
Skill Score (CRPSS) 

CRPSS =
CRPS( forecast) − CRPS(climo)
CRPS(perfect) − CRPS(climo)

Like the Brier score, it’s common to convert this to 
a skill score by normalizing by the skill of a reference  
forecast, perhaps climatology. 
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Danger: can over-estimate forecast skill.  See 
later presentation on this. 



Decomposition of CRPS 

•  Like Brier score, there is a 
decomposition of CRPS into reliability, 
resolution, uncertainty. 

•  Like Brier score, interpretation of this 
decomposition only makes sense if all 
samples are draws from a distribution 
with the same climatology. 

56 
Ref: Hersbach, WAF, Oct 2000, + Hamill and Juras, QJ, Oct 2006 



Relative Operating 
Characteristic (ROC) 
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Hit Rate = H / (H+M)      FAR = F / (F+C) 



Relative Operating 
Characteristic (ROC) 

ROCSS =
AUCf − AUCclim

AUCperf − AUCclim

=
AUCf − 0.5
1.0 − 0.5

= 2AUCf −1
58 



Method of calculation of ROC: 
parts 1 and 2 

Y N 

Y 0 0 

N 0 1 

55         56        57         58        59         60         61        62         63        64         65        66 

T 
F F F F F F 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

(1) Build contingency tables for each sorted ensemble member 

Obs 

Y N 

Y 0 0 

N 0 1 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Y N 

Y 0 0 

N 0 1 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Y N 

Y 0 1 

N 0 0 

Obs ≥ T? 
Fc

st
 ≥

 T
? 

Y N 

Y 0 1 

N 0 0 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Y N 

Y 0 1 

N 0 0 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

(2) Repeat the process for other locations, dates, building 
up contingency tables for sorted members. 
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Method of calculation of ROC: 
part 3 

Y N 

Y 4020 561 

N 2707 72712 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

(3)  Get hit rate and false alarm rate for each from contingency table  
for each sorted ensemble member. 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Obs ≥ T? 

Fc
st

 ≥
 T

? 

Y N 

Y H F 

N M C 

Obs ≥ T? 

Fc
st

 ≥
 T

? HR = H / (H+M)      FAR = F / (F+C) 

Sorted  
Member 1 Sorted  

Member 2 
Sorted  
Member 3 

Sorted  
Member 4 

Sorted  
Member 5 

Sorted  
Member 6 

Y N 

Y 1106 3 

N 5651 73270 

Y N 

Y 4692 1270 

N 2035 72003 

Y N 

Y 3097 176 

N 3630 73097 

Y N 

Y 5297 2655 

N 1430 70618 

Y N 

Y 6603 44895 

N 124 28378 

HR = 0.163 
FAR = 0.000 

HR = 0.504 
FAR = 0.002 

HR = 0.597 
FAR = 0.007 

HR = 0.697 
FAR = 0.017 

HR = 0.787 
FAR = 0.036 

HR = 0.981 
FAR = 0.612 
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Method of calculation of ROC: 
part 3 

HR = 0.163 
FAR = 0.000 

HR = 0.504 
FAR = 0.002 

HR = 0.597 
FAR = 0.007 

HR = 0.697 
FAR = 0.017 

HR = 0.787 
FAR = 0.036 

HR = 0.981 
FAR = 0.612 

HR = [0.000, 0.163, 0.504, 0.597, 0.697, 0.787, 0.981, 1.000] 

FAR = [0.000, 0.000, 0.002, 0.007, 0.017, 0.036, 0.612, 1.000] 

(4) Plot hit rate 
vs. false alarm 
rate 
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Again, can overestimate 
forecast skill. 



ROC connection with 
hypothesis testing 
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Point on ROC curve provides 
evaluation of Type I (inappropriate 
rejection of null hypothesis, which 
here is Obs < T) vs. 1. - Type II 
statistical errors (inappropriate 
acceptance of alternate hypothesis, 
Obs ≥ T). ROC curve provides 
tradeoff as different ensemble data 
is used as test statistic. 

YES NO 

YES H (HIT) (F) FALSE 
ALARM 

NO (M) MISS (C) 
CORRECT 
NO 

Observed ≥ T? 

Fc
st

 ≥
 T

? 
(o

ur
 te

st
 s

ta
tis

tic
) 

FAR = F / F+C = P(Type I error) 
HR = H / H+M = 1 - P(Type II error) 



Economic value diagrams 

These diagrams 
tell you the  
potential economic 
value of your 
ensemble forecast 
system applied to 
a particular forecast 
aspect.  Perfect 
forecast has value 
of 1.0, climatology 
has value of 1.0. 
Value differs with 
user’s cost/loss 
ratio. 

Motivated by search for a metric that relates ensemble forecast 
performance to things that customers will actually care about. 
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Economic value:  
calculation method 

Assumes decision maker 
alters actions based on  
weather forecast info. 

C = Cost of protection 
L = Lp+Lu = total cost of 
  a loss, where … 
Lp = Loss that can be  
  protected against 
Lu = Loss that can’t be 
  protected against. 
N = No cost 

h + m

= o

f + c

= 1− o
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Economic value, continued 
Suppose we have the contingency 
table of forecast outcomes, [h, m, f, c]. 

Then we can calculate the expected 
value of the expenses from a forecast, 
from climatology, from a perfect forecast. 

Eforecast = f C + h C + Lu( ) + m Lp + Lu( )
Eclimate = Min o Lp + Lu( ), C + oLu⎡⎣ ⎤⎦ = oLu + Min oLp , C⎡⎣ ⎤⎦
Eperfect = o C + Lu( )

V =
Eclimate − Eforecast

Eclimate − Eperfect

=
Min oLp , C⎡⎣ ⎤⎦ − h + f( )C − mLp

Min oLp , C⎡⎣ ⎤⎦ − oC

Note that 
value will vary 
with C, Lp, Lu; 

Different users 
with different  
protection costs 
may experience 
a different value 
from the forecast 
system. 

h + m

= o

f + c

= 1− o
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From ROC to economic value 
HR =

h
o

FAR =
f

1− o
m = o − HRo

V =
Min o,C Lp⎡⎣ ⎤⎦ − h + f( )C Lp − m

Min o,C Lp⎡⎣ ⎤⎦ − or

=
Min o,C Lp⎡⎣ ⎤⎦ − C Lp( )FAR 1− o( ) + HRo 1− C Lp( ) − o

Min o,C Lp⎡⎣ ⎤⎦ − or

Value is now seen to be related to FAR and HR, the 
components of the ROC curve.  A (HR, FAR) 
point on the ROC curve will thus map to a  
value curve (as a function of C/L)  
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The red curve is 
from the ROC 
data for the member  
defining the 90th  
percentile of the  
ensemble distribution. 
Green curve is for 
the 10th percentile. 
Overall economic 
value is the maximum 
(use whatever member 
for decision threshold  
that provides the 
best economic value). 
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Conclusions 
•  Many ensemble verification techniques 

out there. 
•  A good principle is to thought-test every 

verification technique you seek to use; 
is there some way it could be 
misleading you about the characteristics 
of the forecast (commonly, the answer 
will be yes). 

68 



Useful references 
•  Good overall references for forecast verification: 

–  (1): Wilks, D.S., 2006:  Statistical Methods in the Atmospheric Sciences (2nd Ed).  Academic 
Press, 627 pp. 

–  (2) Beth Ebert’s forecast verification web page, http://tinyurl.com/y97c74 
•  Rank histograms:  Hamill, T. M., 2001: Interpretation of rank histograms for verifying 

ensemble forecasts.  Mon. Wea. Rev., 129, 550-560. 
•  Spread-skill relationships:  Whitaker, J.S., and A. F. Loughe, 1998: The relationship 

between ensemble spread and ensemble mean skill.  Mon. Wea. Rev., 126, 3292-3302. 
•  Brier score, continuous ranked probability score, reliability diagrams: Wilks text 

again. 
•  Relative operating characteristic:  Harvey, L. O., Jr, and others, 1992:  The application 

of signal detection theory to weather forecasting behavior.  Mon. Wea. Rev., 120, 
863-883. 

•  Economic value diagrams:   
–  (1)Richardson, D. S., 2000:  Skill and relative economic value of the ECMWF ensemble prediction 

system.  Quart. J. Royal Meteor. Soc., 126, 649-667. 
–  (2) Zhu, Y, and others, 2002:  The economic value of ensemble-based weather forecasts.  Bull. 

Amer. Meteor. Soc., 83, 73-83. 
•  Overforecasting skill:  Hamill, T. M., and J. Juras, 2006:  Measuring forecast skill: is it 

real skill or is it the varying climatology?  Quart. J. Royal Meteor. Soc., Jan 2007 issue. 
http://tinyurl.com/kxtct   
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