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ABSTRACT 
 
Many readers of this text may be developing improved post-processing algorithms with the 
desire to have them used regularly, such as for the daily adjustment of real-time weather 
guidance produced by an operational weather prediction facility.   This chapter discusses some 
of the practical aspects involved with the development and technology transition of advanced 
post-processing algorithms.  Topics will include challenges involved with the preparation of 
high-quality training data sets and possible compromises one may wish to consider in an 
environment where the training data is limited.  The chapter will also provide a case study and 
suggest some changes that the post-processing community can institute to more rapidly move 
advanced methodologies from research into regular operational use. 
 
Keywords: reanalyses, reforecasts, data assimilation, bias-variance tradeoff, quantile mapping, 
ensemble dressing, supplemental locations. 
 
7.1. Introduction​. 
 

Those involved with statistical model development commonly spend much of their time 
dealing with the practical aspects behind testing a research hypothesis.  What data should be 
used?  Is the input data of consistent quality, or must the researcher perform quality control?  Is 
the training data so limited that no existing method produces acceptable quality guidance?  Is it 
so voluminous as to be challenging to store and disseminate or to speedily train a model?  Does 
the training data change in its statistical characteristics over time?  How do I quickly obtain code 
for existing methods to use as standards of comparison?  A researcher may wish to focus on 
the scientific aspects of the problem but find they cannot do so until due diligence has been paid 
to these other issues.  Such issues will not go away, but it is possible to anticipate and surmount 
common obstacles, individually and as a community.  
 

Figure 7.1 illustrates a typical weather prediction system with its components and data 
stores, illustrating the dependency of statistical postprocessing on previously produced data. 
These components commonly include a data assimilation system (Daley 1991, Kalnay 2003) 
that statistically adjusts prior numerical forecasts to newly available observations.  Its purpose is 
to generate accurate and dynamically balanced gridded analyses of the state of the 

1 

mailto:tom.hamill@noaa.gov


environment suitable for the initialization of a prediction system.  The forecast model (or more 
commonly now, an ensemble prediction system; see chapter 2) approximates the laws 
governing the evolution of the environmental state (Durran 2010, Warner 2011) and simulates 
the evolution from the initial states.  The statistical post-processing algorithm is commonly 
trained using archives of forecast, observation, and/or analysis data.  

 

 
 
Figure 7.1​:  Diagram of many of the typical components and data stores of an end-to-end weather 
prediction system, and the propagation of data through the system.  Boxes with solid borders are data 
stores, and boxes with dashed borders are components of the prediction system.  
 

This diagram simplies the actual data flow.  For example, statistical postprocessing often 
has two distinct phases, the training of a model and the application of that model to adjust 
today’s real-time guidance.  For some variables such as precipitation, the analyses used in the 
statistical training may (Lespinas et al. 2015) or may not  (Zhang et al. 2016) utilize prior model 
forecast guidance, as suggested in the diagram.  Further, the post-processed guidance is not 
necessarily the end of the product chain; it may also provide inputs to other prediction systems. 
For example, a hydrologic prediction system intended to produce streamflow forecasts may 
ingest post-processed meteorological guidance, synthesize it with observations of the land and 
snow state, and then generate ensembles of hydrologic predictions which in turn may require 
their own statistical postprocessing (Schaake et al. 2007).  

 
Because of these data dependencies, the quality of the post-processed guidance 

depends on more than just the sophistication of the statistical algorithm.   Suppose a statistical 
postprocessing algorithm is trained against analysis data, regarding these as proxies for the true 
state.   The ultimate accuracy of the post-processed guidance thus depends upon the accuracy, 
bias, and temporal consistency of these analyses.  Further, the post-processing algorithm is 
statistically modeling the discrepancies between prior forecasts and the verification data.  What 
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should be done if the characteristics of the forecast discrepancies change in time due to 
something other than weather variability?  Perhaps the forecast model has different bias 
characteristics in the warm season relative to the cool season, or El Nińo vs La Nińa conditions, 
or perhaps the forecast model was upgraded to a new version during the training period, and 
the old and new versions have different error characteristics.   Understanding these issues and 
addressing them may be essential to providing the high-quality post-processed guidance 
desired by forecast users.  

 
This chapter now delves more deeply into these issues and some possible ways to 

ameliorate them.  Section 7.2 provides an example of how the classical and thorny 
“bias-variance tradeoff” manifests itself in statistical postprocessing; this tradeoff underlies the 
discussion of many of the algorithmic and data choices that follow.  Section 7.3 then returns to 
discuss challenges with the training data, both forecast and observed/analyzed data.  Section 
7.4 discusses future directions to mitigate these challenges.   Section 7.5 then provides a case 
study, discussing the tradeoffs that were made in developing a product of common interest, the 
probability of precipitation from multi-model ensemble guidance.  Finally, in section 7.6 we turn 
to a different problem: how do we accelerate progress in statistical post-processing as a 
community?  Different investigators commonly develop methods in isolation from each other, 
which may make testing a hypothesis (is the proposed method better than other recently 
developed methods?) quite difficult.   There is a way forward, providing we are willing to 
participate in the co-development of a community infrastructure and test data sets.  
 
7.2:  The bias-variance tradeoff​. 
 

Reader are referred to applied statistics texts such as Hastie and Tibshirani (1990, Fig. 
2.2) or Hastie et al. (2001, section 2.9) for more discussion on this subject. The bias-variance 
tradeoff is intimately related to a statistical concept called “overfitting.”  For example, this is 
discussed in Wilks (2011, section 7.4).  Wikipedia (2016) describes the bias-variance tradeoff 
this way: 
 

“The bias–variance tradeoff is a central problem in supervised learning . Ideally, one 1

wants to​ ​choose a model that both accurately captures the regularities in its training 
data, but also​ ​generalizes well to unseen data. Unfortunately, it is typically impossible to 
do both simultaneously. High-variance learning methods may be able to represent their 
training set well, but are at risk of overfitting to noisy or unrepresentative training data. In 
contrast, algorithms with high bias typically produce simpler models that don't tend to 
overfit, but may underfit their training data, failing to capture important regularities.” 

 
Let’s construct a simple, synthetic observation and forecast training data set to illustrate 

the problem that occurs with a commonly applied statistical post-processing algorithm, a 
“decaying-average bias correction” (Cui et al. 2012). Today’s forecast bias is estimated as a 

1 Supervised learning is the machine learning task of inferring a function from labeled training data. 
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linear combination of the most recent forecast minus observation and a previous bias estimate. 
This simple post-processing approach is appealing for its minimal data storage requirements. 
Our theoretical construct is as follows.  The true state of a univariate system at date/time ​t​,  y t

true

is sought.  In this synthetic construct, the true state, unknown for purposes of model training, is 
always exactly zero.  What is available is a time series of forecasts, all for the same lead time 
(say, perhaps a 3-day ahead forecast) from dates/times ​t0​ to ​tf​, ​x​ .  Pastx  , ... ,  ] = [ t0  x tf  
observations ​y​ = are also available.  The observations are generated from they  , ... ,  ] [ t0  y tfī1  
truth plus random noise:    that is, the observations at time ​t ​are   e ,y t

o = y t
true +  t

o  (0, ),e t
o ~ N 9

1  
normally distributed with zero mean (the true state) and random error with a variance of 1/9. 
Forecast-error characteristics, unknown to the data analyst but known to us here, are 
constructed with random, seasonally dependent, and serially correlated systematic errors.  The 
true seasonally dependent bias is , where ​J(t)​ is the Julian day of the year cosB t =  (2ˊJ(t)/365)  
minus one; that is, the bias varies over the year from 1 to -1 in a cosine-shaped function, too 
warm at the beginning and end of the calendar year and too cold in the middle.   The forecast’s 
daily random error , i.e, the innovation variance (Wilks 2011, section 9.3.1) is here (0, )e t

f ~ N 1  
nine times larger than the observation variance.  Finally, the time series of synthetic forecasts 
are simulated with a first-order autoregressive model (ibid) : , where   x  

t ī B t = k (x  )tī1 ī B tī1 + e t
f  

here ​k​ = 0.5.  
 

The decaying-average bias correction assumes that estimated forecast bias for day ​t​, 
 can be estimated as a linear combination of the previous day’s bias estimate and the most  ,B

︿
t  

recent deviation of the forecast from the observation:  
 

.  B
︿

t = (1 )ī Ŭ B
︿

tī1 + Ŭ (x  ) 
tī1 ī y o

tī1  (7.1) 
 
Here α is a user-defined parameter that indicates how much weight to apply to the most recent 
deviation of the observation from the forecast.   When α is small, the bias tends toward being 
estimated as a long-term mean of the difference between forecasts and observations.  When α 
is large, the most recent data is weighted heavily, and estimated bias may vary a lot from one 
day to the next. 
 

Figure 7.2 illustrates 100 independent Monte-Carlo simulations of the estimated bias 
started from different initial random numbers and using different random observation errors; 
data is shown only after 60 days of spinup.  The four panels show the simulations for four 
increasing values of α.   Each simulation’s estimated bias is shown with a light gray line.  The 
mean of these bias estimates is shown with the dashed black line; this is unavailable in practice, 
as nature provides but one realization.  The true bias, again unknown to the data analyst, is 
denoted by the heavy black line.  For small α (Fig. 7.2a), there is less variance in the 100 
Monte-Carlo estimates of the bias.  However, because the algorithm thereby provides heavier 
weight to past data, and because the true bias for the past data is seasonally dependent, there 
are systematic errors in those bias estimates; the maximum amplitude of the bias​ ​is typically 

4 



under-estimated and lags the true bias.  The tradeoff made for this value of α has resulted in 
comparatively low variance amongst the bias estimates but high systematic error with respect to 
the true underlying bias. It is akin to a regression analysis with too few predictors (underfitting). 
For large α (Fig. 7.2d), much weight is provided to the most recent forecast deviation from the 
observations. The several recent observations are implicitly assigned heavier weight while the 
long-term mean is assigned less weight.  This is akin to a regression analysis with too many 
predictors.  The bias estimates change rapidly with each new daily update, and there is a much 
greater variety of bias estimates over the 100 independent simulations. The tradeoff made for 
this α has resulted in lower bias on average, but there is high sampling variability.  

 
 
Figure 7.2​.  Illustration of the bias-variance tradeoff in statistical post-processing for the decaying- 
average bias-correction algorithm.  Thin gray lines denote individual Monte-Carlo bias estimates using the 
decaying-average bias-correction algorithm. Dashed black line indicates the mean of the 100 Monte-Carlo 
bias estimates.  Solid black line indicates the true underlying bias.  Panels (a), (b), (c), and (d) show 
decaying average weights α = 0.02, 0.04, 0.08, and 0.16 respectively.  
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In practical weather prediction, again we have only a single set of observation data to 
work with, not 100 replicates, so the dashed lines in Fig 7.2 are never achieved.  Were a data 
analyst to use this algorithm without modification, she would be faced with making a choice, 
adjusting α as to find an acceptable compromise between the bias and the variance based on 
seeing only a single one of the 100 thin gray lines in each of the panels of Figure 7.2.  If she had 
developed some intuition that the biases were seasonally varying, she might choose to test the 
value of incorporating other predictors in a more sophisticated regression analysis, predictors 
such as and .   Why not do this?  The decaying-average biasosc (2ˊJ(t)/365) ins (2ˊJ(t)/365)  
correction has one very appealing characteristic: very little data need be archived.  Once the 
current forecast and observation have been used to update the bias, it can effectively be 
discarded for purposes of training.  A longer time series of data would need to be stored to 
apply the more appropriate regression analysis and improve the bias estimates.    While data 
storage was insignificant in this simple synthetic problem, if the method was applied to many 
variables on a high-resolution grid over a large area, the data storage demands might require 
the analyst’s attention. 
 
7.3.  Training data issues for statistical postprocessing. 
 

Consider now the characteristics of an ideal training data set, ideal not in the sense of 
providing perfect forecasts but rather ideal in that it serves nearly all the needs of the 
statistician.  

 
● The training data should span a long period of time, thereby providing multiple samples 

of the range of possible future environmental conditions​.  This would provide enough 
samples to quantitatively estimate the probability of even relatively unusual events at 
each geographic location. Forecast errors are likely to be at least somewhat related to 
the local geographic peculiarities, including characteristics such as the terrain height, the 
terrain orientation, the vegetation, land-use, and soil type.  With voluminous training 
data, models could be developed that incorporate any necessary additional predictors 
without overfitting.  

● Training data should be generated from the same ensemble prediction system in the 
training period as used for real-time predictions​.   This makes the error characteristics of 
the forecast more consistent over time. 

● Real-time and retrospective forecast ensembles would have many members. ​This 
permits estimates of the atmospheric uncertainty to be quantitatively estimated with 
modest sampling variability.  

● Error characteristics would not change radically over time​; the forecast errors from 
simulations 10 or 20 years past would be similar to those today. 

● Past analyses or observations used as predictand data would cover the same period as 
the forecasts​. 

● Past analyses or observations would be unbiased and of uniformly high quality​. 
● Observation or analysis data would be available for all the locations where 

post-processed guidance is desired​. 
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Unfortunately, less-than-ideal training data is the norm.  Consider now the issues with 

predictor data (typically the ensemble forecasts) followed by the issues associated with 
predictand (observation, analysis) data. 
 
a.  Challenges in developing ideal predictor training data. 
 

The ideal predictor data set can be computationally expensive to generate and archive, 
and may even be practically impossible to achieve perfectly.  Let’s presume that an operational 
implementation occurs every year, and that many past years of forecast data are desired. 
Computational costs will scale linearly with the number of ensemble members and the number 
of past “reforecast” cases; twenty years of reforecasts will be ten times more expensive than two 
years.  Ideally, the model forecast data would be archived at the native model resolution, but if 
the forecast upgrade has double the horizontal resolution and twice as fine a temporal 
resolution, eight times more reforecast data must be stored when the model is changed, an 
increasing data-storage burden as the system is upgraded.  If the statistical model development 
is occurring on another computing system, there are additional issues of data transfer to and 
storage on the computer system used for statistical development.  While this may not be 
excessively burdensome if the statistical modeler is developing a regional post-processing 
system for one or two variables, it becomes an increasingly important issue to deal with if the 
system is intended to produce statistical adjustments for a wide number of variables over a 
large geographic region. 
 

The ideal forecast data set would also generate the reforecasts’ initial conditions using a 
consistent data assimilation system, the same one as used for the generation of the real-time 
forecasts’ initial conditions.  Most operational centres use a computationally expensive 
four-dimensional variational data assimilation technique (4D-Var; Courtier et al. 1994, Kalnay 
2003), an ensemble Kalman filter (Hamill 2006, Evensen 2014), or hybridizations of the two 
(e.g., Buehner et al. 2013, Kleist and Ide 2015).  Generating multi-year or even multi-decadal 
reanalyses to provide reforecast initial conditions may use computational resources that could 
otherwise be used for increasing the real-time prediction system’s resolution or its ensemble 
size.  The additional post-processed skill added by utilizing the extra training data must be 
evaluated relative to the additional skill generated from using a higher-resolution, more 
sophisticated real-time prediction system.  
 

Perhaps to save the computational expense of regenerating reanalyses, the developers 
of a prediction system may choose to initialize reforecasts using a previously generated 
reanalysis based on an older version of the forecast model and assimilation system.  This was 
the choice that was made with the recent NCEP Global Ensemble Forecast System (GEFS) 
reforecasts (Hamill et al. 2013).  Prior to 2011, initial conditions were generated from the NCEP 
Climate Forecast System reanalysis (Saha et al. 2010).  Subsequent to this, the forecast initial 
conditions were generated from the real-time data assimilation system, which underwent various 
changes that affected initial condition characteristics.    Figure 7.3, from Hamill (2017), shows 
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that the character of short-range temperature and dew point analyses changed over that period 
with respect to an unchanging reanalysis developed at the European Centre for Medium-Range 
Weather Forecasts (ECMWF; Dee et al. 2011).   Forecasts inherit this initial-condition bias to 
some extent, so the statistical character of the forecasts were not homogeneous before vs. after 
2011.  The practical impact of this is degraded statistically post-processed products after 2011 if 
they were trained with forecast data prior to 2011. 

 
Figure 7.3​:  (a) Time series of mean temperatures at 00 UTC from ERA-Interim reanalyses for area 
covered in map inset.  (b) Time series of mean differences at 00 UTC between the temperature of the 
GEFS initial analysis and the ERA-Interim analysis for temperature (solid curve) and dewpoint (dashed 
curve).  
 

Even if the computational and storage resources are set aside for the generation of 
multi-decadal reanalyses and reforecasts that are consistent with the operational prediction 
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system, the observing system that provides input to the reanalysis system may have changed 
dramatically over the reanalysis period.  In the last few decades, assimilation systems have 
begun to assimilate more and more satellite data, including microwave radiances (McNally et al. 
2006), infrared radiometer data (Collard and McNally 2009), cloud-drift winds estimated from 
high-resolution satellite imagery time series (Velden et al. 2005), aircraft temperatures 
(Benjamin et al. 2010), scatterometer estimates of ocean surface winds (Bi et al. 2011) and 
radio occultations (Anthes et al. 2008).  These have increased the accuracy of analyses and 
reanalyses in recent years.  Because of these changes, even with current state-of-the-art 
assimilation methods it is not possible to generate a retrospective forecast for a date in the 
distant past with expected errors as small as they are for current forecasts (Dee et. al. 2011, 
Fig. 1). 
 
b.  Challenges in gathering/developing ideal predictand training data. 
 

Training against gridded analyses is often desired, for many users need gridded 
post-processed guidance, and this is a straightforward way to achieve this.  Unfortunately, some 
of the characteristics of the ideal analyses outlined above are difficult to achieve.  First, a long 
time series of analyses can be computationally expensive if generated with modern data 
assimilation methods such as 4D-Var, the EnKF, or hybridizations.  It also requires synthesis of 
all available observations and massive storage of the resulting data.  This may make reanalysis 
generation impractical for some prediction centers.  Were the statistician to use the operational 
analyses produced in real time, these analyses would likely vary in quality and bias, reflecting 
both the changing nature of the observing system and the changes in the data assimilation and 
forecast system. 
 

Why should one expect the analysis bias to vary over time?  Presumably the analyses or 
reanalyses are generated by adjustment of first-guess (background) forecasts to newly available 
observations.  Then the observations and the background should be unbiased in order for the 
assimilation procedure to produce the unbiased analyses desired for postprocessing.  While 
technology for adjusting the observations to reduce bias (e.g., Auligné et al. 2007) is now 
common, and while approaches to adjust the background to be unbiased have been proposed 
(e.g., Dee 2005) if not widely used, complete removal of bias from data assimilation information 
sources is still problematic.  Hence many analyses should be expected to have bias.  

 
Illustrations of analysis bias are shown in Figs. 7.4 and 7.5.  Figure 7.4 shows the 

time-averaged spread (standard deviation about the multi-analysis mean) of 2-meter surface 
temperatures between four different prediction centers.  Spreads are calculated for each day 
and then averaged over the year.  Analyses were interpolated to a 1-degree grid before display 
and were taken from the TIGGE archive (Bougeault et al. 2009, Swinbank et al. 2016). 
Time-averaged analysis spreads exceeding 1° C are common, with many regions, especially in 
mountainous and polar regions, with much greater spread.  If we examine the time series of 
analyses at a particular location (Fig. 7.5), here in the central Amazon river basin, we see that 
the differences are not random; some analysis systems are systematically colder, others 
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