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Statistical post-processing,
holistic view

e Would like probability distribution ¢ of true state
T (or samples thereof) given all available

information, inc

o(T

uding today’s ensemble forecast

X, 5o X, ,z)

* z might be past observations and/or forecasts,
output from other modeling systems, your

Intuition, etc.

e ¢ might be a field rather than a scalar



Statistical post-processing,
in terms of specific rationales.

— Rationale 1: Infer large-sample probabilities from small
ensemble, assuming ensemble is calibrated (truth and
ensemble drawn from same distribution).

— Rationale 2: Remove biases, increase forecast
reliability while preserving as much sharpness as
possible. Guided by discrepancies between past
observations and forecasts.

— Rationale 3: Predict probabilities of a variable that may
not be forecast by the model using variables that are
forecast by the model, e.g., tornado probability from
CAPE, shear.

— Combinations of these three, or perhaps others.



Rationale 1:

Infer large-sample probabilities from
small ensemble, assuming ensemble

is calibrated



Perfect model, but finite ensemble size =2
unreliable probabilities
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Figure 3. Reliability diagrams for theoretical ensemble forecasts for (a) a 10-member ensemble prediction
system (EPS) and (b) a 50-member EPS. Distribution of underlying forecast probabilities is completely reliable
and specified by a beta distribution with r = s = 3. See text for details and explanation of symbols.

Probabilities directly estimated from an ensemble system where truth and ensemble

members drawn from the same distribution. With only a few members, you may not
produce reliable probabilities.

ref: Richardson 2001 QJRMS
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Imagine: your
20-member
storm-scale ensemble
(which is a calibrated
system, truth consistent
with a random draw
from ensemble)

Your job: estimate
reliable probabilities
on the grid.
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Imagine: your
20-member
storm-scale ensemble
(which is a calibrated
system, truth consistent
with a random draw
from ensemble)

Your job: estimate
reliable probabilities
on the grid.

Zero probability

™ for this cell? Yes if

you use ensemble

relative frequency
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There are many ways to estimate probabilities you’d get
with a large sample, such as with kernel density estimation.

®no Kernel density estimation - Wikipedia, the free encyclopedia Cc
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Kernel density estimation

From Wikipedia, the free encyclopedia

I * It has been suggested that Multivariate kernel density estimation be merged into this article or section. (Discuss)

In statistics, kernel density estimation is a non-parametric way of estimating the probability density function of a random variable. Kernel density estimation is a
fundamental data smoothing problem where inferences about the population are made, based on a finite data sample. It is also known as the Parzen-Rosenblatt
window method, named after Emanuel Parzen and Murray Rosenblatt, who are usually credited with independently creating it in its current form,““zl though it
appears that this latter nomenclature is more common amongst certain specialists e.g. signal processing, econometrics. Within statistical and mathematical
sciences, kernel density estimation is more prevalent.

Contents [hide]
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Definition [edit]

Let (x1, X,y veey xn) be an iid sample drawn from some distribution with an unknown density /. We are interested in estimating the shape of this function £. Its kernel
density estimator is

a 12 12 T —
fh(‘r)_;;hh(m-l‘i) —Egl\(T),

where K(*) is the kernel — a symmetric but not necessarily positive function that integrates to one — and h> 0 is a smoothing parameter called the bandwidth. A

kernel with subscript h is called the scaled kernel and defined as Kh(x) = 1/h K(x/h). Intuitively one wants to choose h as small as the data allows, however there is

always a tradeoff between the bias of the estimator and its variance; more on the choice of bandwidth later. A range of kernel functions are commonly used: 8
uniform, triangular, biweight, triweight, Epanechnikov, normal, and others. The Epanechnikov kernel is optimal in a minimum variance sense,ISI though the loss of

efficiency is small for the kernels listed previously['ﬂ, and due to its convenient mathematical properties, the normal kernel is often used K(x) = ¢(x), where ¢ is the

standard normal density function.



Density function
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Density estimate from histogram
and from kernel density estimation.
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Density estimate from histogram
and from kernel density estimation.
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Key question: how do you set the “kernel width?”
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“Bias-variance tradeoft”

Narrow kernel width Wider kernel width e Example: 80 samples from

Y =sin(X) + e, where
X~N(0,1), e~N(0,1/9).

e Large grey area shows
twice the standardized
pointwise errors, reflect
the variance under

2 b repeated samplings of 80

pairs.

e Darker grey region shows
bias, difference between
generating curve and
average value of the
estimated function.

¢ d 11
Ref: Hastie and Tibshirani, “Generalized Additive Models” (an excellent book)



More on “bias-variance tradeoft”

e Same dilemma in the decision of how many
predictors to use in a linear regression.

e Need to select some criteria to decide the
optimal tradeoff. Perhaps to minimize
mean squared error (MSE)?

E{ () £ (o)) =varJ (x)b+ [, (x) - ()]

estimated value actua'I value Varian'[e of squarjd bias of
at data point x ; at data point x ; estimate estimated value
value, perhaps
by “jackknife”

12
Ref: ibid.



2-D example of inferring large-sample
pdf from small-sized ensemble

SMOOTHING OF FORECAST ENSEMBLES 2827

;o Wilks (QJRMS, 128, p 2821)
;o) explored fitting parametric
r distributions, or mixtures

, thereof, to ECMWF forecasts
’ in perfect-model context.
Power-transformed non -
Gaussian variables prior to
fitting.

2 m temperature, *C

9 10 11 12

10 m windspeed, m/s

Figure 2. Example ensemble distribution with fitted Gaussian mixture, jointly for the temperature and wind-
speed forecast at 12 UTC 10 January 1997 at Manchester, made at the 180 h lead time. Dots indicate individual
forecasts made by the 51 ensemble members, with the ensemble mean located at ‘E’. The two bivariate Gaussian
densities fj(x) and f>(x) are centred at ‘1’ and ‘2’, respectively, and the smooth lines indicate level curves of their 13
mixture fpix (), formed with @ = 0.57 (see text). Contour interval is 0.05, and the thick and thin dashed lines are
for 0.01 and 0.001, respectively. Subsequent verifying analysis is ‘A’.



Inferring large-sample pdf
from small-sized ensemble

kernels of probability density }NSEMBLES
around each sample, pdf
constructed from sum of these . Vo

v A

| I B
8 9 10 1 12

10 m windspeed, m/s

for 0.01 and 0.001, respectively. Subsequent verifying analysis is ‘A’.

2827

Wilks (QJRMS, 128, p 2821)
explored fitting parametric
distributions, or mixtures
thereof, to ECMWF forecasts
in perfect-model context.
Power-transformed non -
Gaussian variables prior to
fitting.

Figure 2. Example ensemble distribution with fitted Gaussian mixture, jointly for the temperature and wind-
speed forecast at 12 UTC 10 January 1997 at Manchester, made at the 180 h lead time. Dots indicate individual
forecasts made by the 51 ensemble members, with the ensemble mean located at ‘E’. The two bivariate Gaussian
densities fj(x) and f>(x) are centred at ‘1’ and ‘2’, respectively, and the smooth lines indicate level curves of their 14
mixture fpix (), formed with @ = 0.57 (see text). Contour interval is 0.05, and the thick and thin dashed lines are
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Rationale 2:

Remove biases, increase forecast
reliability while preserving as much
sharpness as possible. Guided by
discrepancies between past

observations and forecasts.

[let’s call this “post-processing” now]

16



Ensemble-base probabilistic forecasts: problems we’d
like to correct through post-processing

Forecast Initial Time = 0000 UTC 02 Jan 1988
(a) 2—day fecst 24—h accum. member 1 precip (b) 2—day fcst 24—h accum. member 2 precip

1 25 5 10 25 50
orecast Precipitation (mm)
ANAY AN T

(d) Observed Precipitation




(1) possible conditional bias
(drizzle over-forecast)

Forecast Initial Time = 0000 UTC 02 Jan 1988
(a) 2—day fecst 24—h accum. member 1 precip (b) 2—day fcst 24—h accum. precip

25 5 10 25 50
orecast Precipitation (mm)
ANAY AN T

(d) Observed Precipitation

1 25 § 10 25 650
Forecast Precipitation (mm)
ANAY AN VA




(2) ensemble members too
similar to each other (or
ensemble size too small).

Forecast Initial Time = 0000 UTC 02 Jan 1988
(a) 2—day fcst 24—h accum. member 1 precip (b) 2—day fcst 24—h accum. membe\ 2 precip

(c¢) 2—day fcst 24—h accum. member 3 precip ~—(dJ Ubserved Precipitation

1 25 § 10 25 &0
Forecast Precipitation (mm)
AY AN VA




(3) Ensembles are too smooth, not capturing intense local
precipitation due to orographic forcing. Downscaling needed.

Forecast Initial Time = 0000 UTC 02 Jan 1988
(a) 2—dgly fcst 24—h accum. member 1 precip (b) 2—day fcst 24—h accum. member 2 precip

25 5 10 25 50
Forecast Precipitation (mm)
A AN T

25 5 10 25 50
Forecast Precipitation (mm)
ANAY AN T

(d) Observed Precipitation




Post-processing of PQPF & rare events:
importance of sample size

Want lots of old forecast cases that were similar to today’s forecast.
Then the difference between the observed and forecast on those days
can be used to calibrate today’s forecast.

1—Day Ensemble—Mean Forecast and Observed Precipitation

N
o

e— o Forecast

e o Observed

Precipitation Amt (mm)
o o
[ I LI

0)]
I I N I

(this has motivated our exploration of reforecasts) 2



Key post-processing questions

e |sthere a best technique, or best for this
particular forecast problem?

e How much training data (past forecasts & obs/
analyses) do you have / need?

— Generally, more needed to do good job with rare
events, longer-lead forecasts where chaotic noise is

large.

e Tradeoff between the two:

— Lots more algorithm development involved in trying to
get a good result with a short training data set, but less

computations required.
22



Disadvantages to post-processing

Post-processing won’t correct the underlying problem. Prefer to achieve
unbiased, reliable forecasts by doing numerical modeling correctly in the first
place.

No one general approach that works best for all applications.

Corrections may be model-specific; the calibrations for NCEP v 2.0 may not be
useful for ECMWEF, or even NCEP v 3.0.

Simple techniques applied to date mostly focus on point-by-point post-
processing, may lose spatial correlation information of original ensemble.

Could constrain model development. Calibration ideally based on long database
of prior forecasts (reforecasts) from same model. Upgrading model good for
improving raw forecasts, may be bad for skill of post-processed forecasts.

Users beware: Several calibration techniques that have been recently proposed
may only work properly in certain circumstances. Can’t use naively.

23



A quick survey of common
post-processing techniques

Simpler methods

Gross bias correction
Kalman-inspired filters
CDF-based bias corrections
Linear regression

Some more complex methods

Logistic regression

Analog approach

Bayesian model averaging (MDL’s EKDMOQOS very similar)
Bayesian processor of forecasts

Non-homogeneous Gaussian regression

Rank histogram-based calibration

24



Gross bias correction

e Given sample of past forecasts x,, ..., x, and
observations y,, ..., y,, gross bias correction is

simply Y —X

(a) ECMWF (b) GFS
1.0f o o o ECMWF Calibrated 1.0f o o o GFS Calibrated
0.8F o -0« ECMWF Bias—Corr ] 0.8 e--o--¢ OFS Bias—Corr ]
0.6 | 0.6 |
8 0.4 8 0.4
& L e r e
o 0.2 o 0.2 ° e
0.0F 0.0F
-0.2F ] -0.2F
—04: T A T AN A NN WA (N NN AN T A TN NN RN SN N S - —04: T A T NN N NN MO (N NN NN T N N N |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Forecast Lead (Days) Forecast Lead (Days)

In surface-temperature calibration experiments with NCEP’s GFS and ECMWEF,
simple gross bias correction achieved a large percentage of the improvement

that was achieved through more sophisticated, bias+spread correction. )e

Ref: Hagedorn et al., MWR, 2008, in press.



Gross bias correction

e Effectively, the implied statistical model is
the following:

Yi::B+Xi+8i

— assumes normality of errors; uncorrelated

errors, error not state dependent (next slide).

26



State-dependent errors

January Boulder Reforecast—U,,, vs. NARR avg.

10 | L T 7

For this 10-m wind,

the bias is conditional,
depends on the forecast
amount. Linear regression
(discussed later) a

much better choice.

NARR Avg. U,

_10 I 1 1 1 l 1 L 1 1 | 1 L L ! |

-10 -5 0 5 10
Reforecast U,,,,
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“Kalman-inspired” filter

Today’s Yesterday’s Yesterday’s
estimate l l
b =b! K (e - b
4 r—1 4 4 r—1
X
Kalman gain: weighting applied
to residual. Larger K,, more weight
to recent data, and vice versa.
Pro:
- memory in system, amount tunable through K,
- adaptive
Con:

-assuming there is state-dependent bias, takes time to adapt

after regime change and change of state.

Ref: Cheng and Steenburg, conferences.dri.edu/WxPrediction/Weather12/Cheng_Steenburgh.ppt



An alternative “analog” formulation

| | | |
| | | |
N
i i | | Standard
| | | |
i | | ; Kalman-type
i i i i filter
|
| | |
| day; | dayg | days | day, | day, | day, | day, |
t=0
| | | | |
| | | | |
| | | | |
PRED ! | | | | Analog
| | | | |
| | | | | Kalman-
S\ | | | | | '
| | | | | Va type
| : | : Iy / \ \/ i
| I I I I | \" .- ﬁlter
| | | | | | /
day, | day, | day, i day, | day, | day, | day, | S
farthest closest
analog analog

c/o Luca delle Monache, NCAR/RAL, MWR, submitted.
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CDF-based bias corrections

Zhu CDF correc’rlon <CONUS> 1-Day ch’r Julian Day

e -
1.0 F :
WA :

L 08 = 8 3
() : (0] ]
O - S -
- L =

0.7 3 I E

- al 1 __ Forecast :

: 3l |5 ]

0.6 1B Observed B

- w| | = .

C ()] O .

- O| |x i

0.5t . ... Al I Lo Lovove =

0 10 20 30 40

Precipitation Amt (mm)

Ref: Zhu and Toth, 2005 AMS Annual Conf., and many others

Use difference

in CDFs to correct
each ensemble
member’s forecast.
In example shown,
raw 7-mm forecast
corrected to ~5.6 mm
forecast.

NOTE: bias only, not

spread correction or
downscaling.
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CDF corrections: example of problem

1-day forecasts in Northern Mississippi (US), mid-August.
Consider a forecast precipitation of 25 mm.

Sb) Observed vs. Forecast
(a) CDFs Scatterplot, Remapping Function (c) Histograms, 25 mm
60 ;l T ; T AR AL T )E 0.20 T T T T T
— E C 7 3 r
E |- s _
] E S0F . . A . Raw ]
E o E 0.15r CDF bias ]
] < 40% E [ ' corrected
W ] 2 3 A E = [ O|F
8 [ _ 8 30¢ ./ . __CDF A § 0.10¢
L ] T / ] o
0.47 _ Forecast ] < E O|F
~ 20
G :
I 1 0.05
0.2f — Observed . g E
I ] a
[ o 3
0.0 L L I 1 1 O H V| L A 0.00
0 10 20 30 40 S0 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Precipitation Amount (mm) Forecast Precipitation (mm) Forecast Precipitation (mm)

T

CDF-based corrections at high amounts suggest further increasing
precipitation amount forecast. O|F indicates
decrease.

At root of problem is assumption that Corr (F,0) = 1.0 31



Linear regression
Y, = :Bo +181Xi,1 +"'+ﬁNXi,2 T &

Linear Regression and MOS

50_' T T T UL DL L L L '/_
: 0 Corrects for state-dependent
451 K bias; when no predictive
] skill of forecast, regresses

N
o

to observed sample climatology.

Diagnostics include statistics
on error, so can infer (largely
non-state dependent) pdf.

W
o

Observed Temperature (C)
W
O

25

20_IIIIIIIII|IIII|IIII|IIII|IIII

20 25 30 35 40 45 50
Forecast Temperature (C)

32
Ref: any applied statistics textbook



When is linear regression
approach useful?

e Some assumptions:
— Normality of errors.

— Linear relation between predictors and
predictand.

— Homoscedasticity, error variance doesn’t
depend on state x.

— Errors are uncorrelated between samples.

Ref: any applied stats text, e.g., Neter, Wasserman, and Kutner, Applied Linear Statistical Models.

33



When is linear regression
approach useful?

e Some assumptions:
— Normality of errors.

— Linear relation between predictors and
predictand.

— Homoscedasticity, error variance doesn’t
depend on state x. Well, there goes using

this for precipitation!

— Errors are uncorrelated between samples.

34
Ref: any applied stats text, e.g., Neter, Wasserman, and Kutner, Applied Linear Statistical Models.



When is linear regression
approach useful?

e Some assumptions:
— Normality of errors.

— Linear relation between predictors and
predictand.

— Homoscedasticity, error variance doesn’t
depend on state x.

— Errors are uncorrelated between samples.

T Problematic for weather, if samples every day.
“Serial correlation,” smaller “effective sample size.”
But can deal with this problem.

35
Ref: any applied stats text, e.g., Neter, Wasserman, and Kutner, Applied Linear Statistical Models.



Linear regression — big assumption!
Y, = :Bo +181Xi,1 +"'+ﬁNXi,2 T &

unknown, T T
with error known, assumed no error

In our practice, the Y’s typically have some small error (obs)
and the X’s have larger error (forecast model state).

Practically, the method works well enough to gloss over what
error €, represents, but there is a whole branch of statistics
(regression with “errors in variables”) that deals with this more
formally. This incorrect assumption applies to most of the rest
of the methods discussed, too.

Ref: Casella and Berger, Statistical Inference, 1990. Also Vannitsem & Nicolis, Feb 2008 MWR (though | 36

think their analysis is unfairly critical of MOS)



Model Output Statistics (“MOS”)

most elements based on multiple linear regression

KBID GFS MOS
DT /FEB 17
HR 00 03 06
N/X
TMP 42 39 36
DPT 34 29 26
CLD OV FW CL
WDR 26 30 32
wWsSP 12 12 12
P06 17
P12
Q06 0
Q12
TO6 0/ 2
T12
POz 0 0 O
POS 13 47 70
TYP R S S
SNW
CIG 7 8 8
VIS 7 7 1
OBV N N N

US: Statistical corrections to operational US NWS models, some fixed (NGM),

some not (Eta, GFS). Refs: http://www.nws.noaa.gov/mdl/synop/index.htm,

Carter et al., WAF, 4, p 401, Glahn and Lowry, JAM, 11, p 1580. Canadian models
discussed in Wilson and Vallee, WAF, 17, p. 206, and WAF, 18, p 288. Britain: Met Office

GUIDANCE 2/16/2005

/FEB 18
09 12 15 18 21 00 03 06

32 40
33 32 36 38 37 35 33 30
22 19 18 17 17 17 17 17
CL SC BK BK BK BK BK BK
32 32 31 29 28 30 32 31
11 08 08 09 08 09 09 10
0 0 0 4

17 0
0 0 0 0

0 0
0/ 0 1/ 0 1/ 2 0/ 1
1/ 0 1/ 2
0o 0 0 0 0 0 0 O
84 91100 96100100100100
S s s s s s s s
8 8 8 8 8 8 7 7
7 7 7 7 7 71 1 17
N N N N NN N N

1800 UTC
/FEB 19

09 12 15 18 21 00 03 06 12 18

25 35 19
28 27 30 32 31 28 25 23 19 27
15 14 13 11 8 7 6 5 2 4
BK SC BK BK BK BK FW CL CL CL
31 31 31 30 29 31 32 33 33 27
10 10 12 13 13 15 16 15 09 08
0 10 6 8 0 O

10 17 8
0 0 0 0 0 O

0 0 0
0/1 1/ 0 0/ 1 0/ 0 0/ 0
1/ 1 0/ 1 0/ 0
o 0 0 0 0 0 0 0 0 O
92100 98100100100 94 92100100
S s s s s s s s s s

0 0
7 8 7 7 7 8 8 8 8 8
7 7 7 7 7 7 7 17 1 1
N N N N N NN N N N

uses “updateable MOS” much like perfect prog.

37



Logistic regression

e Useful for making probabilistic forecasts for some
binary event, e.g, precip above threshold.

e For each grid point (or station) let x = continuous
predictor data (ens. mean forecast value), y = binary
predictand data (1.0 if predicted event happened, 0.0
if not).

e Problem: Compute P(y =1.0 | X ) as a continuous
function of x. 1

F=1- 1 +exp (Bo + Biz)

e |ogistic Regression:

38
Ref: any applied statistics text.



Logistic regression using a long data set
of observed and forecast anomalies

6—10 Day SfcT Fcst v. Ver,
~ Oregon, January 16 ' 00

L A P Seeking to predict

S R probability of warmer than

IE B normal conditions (upper

tercile of observed). Using
reforecasts
(a later talk), we have 23
years of data. Let’s use old
data in a 31-day window
around the
date of interest to make
statistical corrections.

Lo S R L P N £

LT

B e I IR 0.50

Observed Anomaly (°C)
o
I
|

0.25

(en1o4e] Joddn < Jop)d

I
(O)
T I T
H
-
|

Dashed lines: tercile boundaries
| ~ o | Red points: samples above upper tercile
—10 bepens” 'l" L o000 Blue points: samples below upper tercile
Solid bars: probabilities by bin count
-10 -5 0 5 10 g Y

o Dotted line: logistic regression curve
Forecast Anomaly (°C)

39

Ref: Hamill et al. MWR, June 2004



Logistic regression drawbacks

Doesn’t generate full pdf (though see Wilks,

2009, Met Apps, p. 361).

With ensembles, what do you use as
predictors? Ens. mean? Spread? Every
member?

Iterative technique, can be slower.

Better have training set with distribution of

1’s and 0’s, otherwise software will croak.

40



Analog technique using reforecasts

24 Oct 197 18 Nov 197 24 Oct 1996

26 Nov 2005
24—48h Forecast Analyzed

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

1 2.5 5 10 25 50
24—h Accumulated Precipitation (mm)

On the left are old forecasts

similar to today’s ensemble- gt s— o ror e e o rore T o rores F
mean forecast. The data on
the right, the analyzed
precipitation conditional upon

the forecast, can be used to
statistically adjust and —
downscale the forecast.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Analog approaches like this ,
may be particularly useful for 2o roreces e 24-stn roreces e — RO Y 24-42n roreves =
hydrologic ensemble
applications, where an
ensemble of realizations is
needed.




Fraction

Rank histogram technique
for ensemble calibration

NCEP MRF precipitation forecasts,
from Eckel and Walters, 1998

-4 -2 0 2 4 6 8
. @ | S | | % | D | PQPF Method
\&/ l—v-Demcntic Voting
P(T<-4) P3<T<5)
=030 =0.19
P(S < T) LS 25 35 45 55 ;;;fu:’s—r;sw::; 115 125 135 145 155
=0.29 FIG. 10. Ranked probability skill score (RPSS) results for all fore-
cast lead times.
0,350 Rank Histogram Advantages: Demonstrated skill gain
0.5 : \ E Disadvantages:
(1) Odd pdfs, especially when two ensemble
0-25 members close in value.
0.20 (3) Sensitive to shape of rank histogram, and
0.15 shape of histogram may vary with aspects
oo like precip amount --> sample size issues.
' (4) Fitted parametric distributions as skillful
0.05
0.00
1 2 3 4 5 42

Rank

References: Hamill and Colucci (MWR, 1997, 1998; Eckel and
Walters, WAF, 1998; used at Met Office)



Bayesian model averaging (BMA)

K
p(y | f1>---7fK) — Zwkz gk:(y | fk:) —
k=1

0.12
1

MMS/GFS [~ 77T oo 1 MM5/Eta
5 MM5/Canada
5 i
3 - ' MM5/NGM
<
Z

MM5/Navy /

0.02 0.04
1 1

0.00
1

T * T T T T
280 285 290 295 300

Temperature

Figure 3: BMA predictive PDF (thick curve) and its five components (thin curves) for the
48-hour surface temperature forecast at Packwood, Wash., initialized at 0000 UTC on June
12, 2000. Also shown are the ensemble member forecasts and range (solid horizontal line
and bullets), the BMA 90% prediction interval (dotted lines), and the verifying observation
(solid vertical line).

Weighted sum of kernels
centered around individual,
bias-corrected forecasts.

Advantages: Theoretically
appealing. No parameterized
distribution assumed, weights
applied proportional to their
independent information

(in concept).

Disadvantages: When trained
with small sample, BMA radically
de-weighted some members
due to “overfitting” See Hamill,
MWR, Dec. 2007.

Ref: Raftery et al.,
MWR, 2005. Wilson 43
et al,, MWR, 2007



Error, Members 4

Error, Members 4

Why BMA’s unequal weights?
regression correction accentuates error
correlations.

17850 Errors, Members 2 and 4,
Uncorrected

Error, Member 2

T850 Errors, Members 2 and 4,
Regression Corrected

Error, Member 2

Error, Members 3

Error, Members 3

17850 Errors, Members 2 and 3,
Uncorrected

3 ] .
-10 -5 0 5 10
Error, Member 2

T850 Errors, Members 2 and 3,
Regression Corrected
10 T T LI

-10 -5 0 5 10
Error, Member 2

Ref: Hamill,
MWR, Dec. 2007
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Why BMA’s unequal weights?
(2) E-M overfits with little training data

An “estimation-minimization” (E-M) algorithm is used to determine the weights applied
to ensemble members. If two forecasts have highly co-linear errors, E-M will weight

one very highly, the other very little.

Log(—likelihood of BMA, 40—day Training,
850 3—Day Forecast for Montreal

T -2.20F | [ =
le) C
< F
© E .
X -2.30F =
— E 3
g’ ; Training Data é
- 2 E
> —2.40¢ ]
S E ]
o Fo- - .
o —250F T TTT--o_ =
g, T T Forecast Data 7
o e T ]
Py ‘
>
< - L | L | L -
.01000 .00300 .00100 .00030 .00010 .00003

Stopping Criterion (Fractional change in Log—Likelihood)

f

E-M is an iterative technique, and we can measure
the accuracy of the fit to the data through the
log-likelihood. Something odd happens here; as
the E-M convergence criteria is tightened, the fit
of the algorithm to independent data gets worse.

Log,o[Median Ratio (W, ... / Wmi)], 40—day Training,
1850 3—Day Forecasf for Montreal

6F 3

5t 3

2c 3

0 3 \ | ! \ \ ! =
.01000 .00300 .00100 .00030 .00010 .00003

Log,o[Median Ratio (Woae / Woin)]
w

Stopping Criterion (Fractional change in Log—Likelihood)

f

This plots the ratio of the weights of the highest-
weighted member to the lowest-weighted member.
As the convergence criterion is tightened, the method
increasingly weights a few select members and de-
weights others. 45



(BMA overfitting not a problem with
2+ decades training data)

Average Daily Log Likelihood

Log—likelihood of BMA, 22—year Training, Log,,[Median Ratio (w_.. / W], 23—year Trainin
10 in/1s Y 9,
T850 3—Day Forecast for Montreal 7850 3—Day Forecast for Montreal
_2.20 E_ T T T T T T _E .E 6;_ _é
- ] - -
F ] ~NSE E
-2.30F E 5 E
F ] s 4 = =
—2.40 E— ______________ Forecast Dofo_i % 3 E_ —é
F Training Data 7 o E E
] c 2F =
O E =
-2.50 E S E E
[} E B
= 1F E
- 0 . | ! ! \ L 8; 0 £ \ \ l | | | =
-01000 -00300 -00100 -00030 -00010 -00003 -1 .01000 .00300 .00100 .00030 .00010 .00003
Stopping Criterion (Fractional change in Log—Likelihood) Stopping Criterion (Fractional change in Log—Likelihood)

With reforecast data set, we can train with a very large amount of data. When we
do so, the weights applied to individual members are much more equal. This
indicates that the unequal weighting previously is incorrect.
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Probability Density

0.02

0.00¢C

BMA's problem: an example

BMA Test, Approx. Replica of Fig. 4

0.06 |

0.04 |

Climo

pdf \ members

BMA
pdf

Bias-corrected

-20 -10
Temperature (C)

Probability Density
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o
o

0.08
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0.02

0.00 L. !
-20 -10

BMA Test, Equal Weights

......................................

Temperature (C)

Here’s a test of BMA in the winter season for a grid point
near Montreal. BMA ends up highly weighting the warmest
members (inappropriately so), thus producing a very high

probability of a warm forecast.
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Ref: Laurie Wilson, Met Service Canada, personal correspondence. See also upcoming Bishop et al. MWR manuscript.




“Bayesian Processor of Forecasts”

e Two key ideas:

— (1) Bayes’ Rule: leverage prior non-NWP
information, whether from climatology,
persistence, whatever. Update with NWP

information q)(o‘f)ocq)(f‘o)g(a)

— (2) If data non-normally distributed, transform
data to space where normally distributed
before performing regression analysis.

48
Ref: Krzysztofowicz and Evans, WAF, April 2008



Non-homogeneous
(Gaussian regression

Reference: Gneiting et al., MWR, 133, p. 1098
Predictors: ensemble mean and ensemble spread
Output: mean, spread of calibrated Gaussian distribution

f(X,0)~N(a+bX,c+do)

Advantage: leverages possible spread/skill relationship appropriately.
Large spread/skill relationship, ¢ = 0.0, d =1.0. Small, d = 0.0

Disadvantage: iterative method, slow...no reason to bother (relative
to using simple linear regression) if there’s little or no spread/skill
relationship.

49



Is there a “best” calibration technique?

Using Lorenz ‘96 toy model, direct model output (DMO), rank histogram technique, MOS applied to
each member, dressing, logistic regression, non-homogeneous Gaussian regression (NGR), “forecast
assimilation”, and Bayesian model averaging (with perturbed members assigned equal weights)
were compared. Comparisons generally favored logistic regression and NGR, though differences
were not dramatic, and results may not generalize to other forecast problems such as ones with

non-Gaussian errors.

Pr{V=qys}, T=4

(a) DMO
rel = .0235
res= .0117

rel = .0009
res=.0194

(e) Logistic Reg.

(b) Rank Hist.

(c) Single-int. MOS

(d) Ens. Dressing

rel = .0146 rel =.1038 rel = .0101
res=.0125 res=.0111 res= .0151
L
(f) NGR (g) Fest. Assim. (h) BMA
rel = .0007 rel = .0201 rel =.0047
res=.0148 res=.0180 res=.0162

50

Figure 8. As Figure 5, for Pr{V < qy;3} at lead time T = 4.

Ref: Wilks, Met. Apps, 2006, 13, p. 243



Rationale 3 for post-processing:

Predict probabilities of a variable that may
not be forecast by the model using variables
that are forecast by the model, e.g., tornado

probability from CAPE, CIN, shear.
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Tornado probabilities from analogs

Observed F24+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 27 Apr 1991

< N

\, (@)

A=Y

Tornado Probabilities for
O1—day Forecast from 26 Apr 1991

8 I | I
.01 .02 .04 .06 .08 .10
Probability of F2+ Tornado in 2.5x2.5 box

13
[ =
>

Ve
=

For each grid point, in a region
around the point | compared that
day’s forecast ensemble-mean shear,
CAPE, and CIN to the values of shear,
CAPE, CIN from past days at a similar
time of the year in the reforecast
data set. This provided a set of
dates. The probability of F2+
tornadoes for that box was
determined by counting the

number of analog days with
tornadoes in that box divided

by the number of analog days (50).

(details in supplementary slides
after conclusion).



Climatology of F2+ tornadoes

Climatological F2+ Tornado Probabilities,
15 Apr — 135 Jun
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Reliability and skill of tornado
analog probabilities

Reliability of 1—Day Tornado Forecasts
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BSS = 0.0074

Note: low BSSes inevitable
when verifying rare events.
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here, closer analogs are
weighted more than further ones



Tradeoffs between
reforecast sample size and
statistical sophistication

e Large reforecast: almost any reasonable
post-processing approach gives some
benefit.

e Smaller training data set: you have to find
ways such as “compositing” to increase the

sample size.
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Example: precipitation calibration
with ECMWEF reforecasts

e NARR CONUS 12-hourly data used for training,
verification. ~32 km grid spacing

e |Logistic regression

e Use all of their 20 year * 1x/week Sep-Dec training
data, except for data from the year being forecast.
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Problem: patchy probabilities when grid point X
trained with only grid point X’s forecasts / obs

Even 20 years of
weekly forecast data
(260 samples after
cross-validation)

is not enough for
stable regression
coefficients, especially
at higher precipitation
thresholds.

for 12 h ending 1991111712

(a) 12—h Accumulated Analyzed Precip (b) 0.5—day ECMWF Ens.—Mean Precip

for 12 h ending 1991111712

o/
5

1 2.5 5 10
Precipitation (mm)
LY .|

V

At

1 2.5 5 10 25 50
Precipitation (mm)
T

(c) 0.5—day ECMWF P(ppn > 10 mm)
Logistic Regression

0 2 5 10 30 50 _ 70 90
P(Precip > 10 mm
Sl X

d) 0.5—day ECMWF P(ppn > 10 mm
( )Logisﬁc yRegression(Izgomposi’re) )
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Tested method: add in training data at other
grid points that have similar analyzed
climatologies

Selected Analog Composite Loca’nons
N U

»

“7‘3\ ﬂ‘ Big symbol:
4 grid point

where we
o do regression
L v Small symbols:
° ‘.& analog locations
. 4 ‘ AN with similar

‘ climatologies
3

[\
— ) o 53




When is it proper to use training data
at location B to supplement regression
analysis at location A?

(1) When location B’s errors are
independent of location A’s errors.

(2) When observed CDF at A and B are
very similar.

(3) When forecast CDF at A and B are
very similar.

(4) When corr(forecast, observed) at
A and B are similar.
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When is it proper to use training data
at location B to supplement regression
analysis at location A?

Make sure location
A is not too close to
location B

(1) When location B’s errors are
independent of location A’s errors.

(2) When observed CDF at A and B are
very similar.

(3) When forecast CDF at A and B are
very similar.

(4) When corr(forecast, observed) at
A and B are similar.

60



When is it proper to use training data
at location B to supplement regression
analysis at location A?

(1) When location B’s errors are
independent of location A’s errors.

(2) When observed CDF at Aand B are

Need lots of samples.

very similar. Luckily, ~28 year
(3) When forecast CDF at A and B are NARR provides them.
very similar.

(4) When corr(forecast, observed) at
A and B are similar.
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When is it proper to use training data
at location B to supplement regression
analysis at location A?

(1) When location B’s errors are
independent of location A’s errors.

(2) When observed CDF at A and B are

Judging this would be

very similar tough with ECMWF
forecasts. Only
(3) When forecast CDF at A and B are 14 weeks*20 years,

not a large sample

for non-normally
distributed data. Can
be fooled by rare events.

very similar.

(4) When corr(forecast, observed) at
A and B are similar.
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When is it proper to use training data
at location B to supplement regression
analysis at location A?

(1) When location B’s errors are
independent of location A’s errors.

(2) When observed CDF at A and B are
very similar

(3) When forecast CDF at A and B are
very similar.

Tricky to compute in

(4) When corr(forecast, observed) at dry regions, where
A and B are similar ) overwhelming bulk

of the samples are
zero’s.
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Conclusions #1: post-processing can be very
beneficial if you have the following:

e Enough training data (past forecasts with the
same model as you are running operationally,
plus quality obs/analyses)

— more data needed for rare events, long-lead forecasts.

e A reasonable statistical correction method.

Poorly post-processed guidance is worse than nothing at all;
misleading, another thing the forecaster must

compensate for.
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Conclusions #2: What's the best
post-processing technique?

— Enlarging training sample size has a bigger effect for many
variables than changing the post-processing technique.

— Preferred techniques may vary from user to user.
Hydrologists want bias-corrected and downscaled
members, others want smooth pdfs.

— If possible, KISS (Keep it simple, stupid). Increasing focus
on complicated techniques. Often parametric
distributions, linear techniques work just fine.

— We are just learning how to begin to do joint post-
processing in multiple dimensions; no idea yet what’s best.
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Technique for finding tornado forecast analogs

For a given grid point, match today’s ensemble mean fields
with past forecast fields. Find n closest analog dates.

° ° ° ° » _ Shear /25 ms-’

o . . . ° (normalized so CAPE doesn’t
. o ° o o overwhelm shear)

g ’ ) ’ ) ’ ) ’ / .°‘/CAPE/3000Jkg'1

~—_ CIN /500 J kg

o o o o o blue dot: point to find analogs for
. . . . . pink dots: points to match up
current forecasts with old ones.
Result: Note: can vary weights horizontally

1) Dates of n analogs
2) Numerical quantification of how
good the pattern match is for each of n.



Finding analogs, cont’d: horizontal weighting
5x5 arrays of shear, CAPE, CIN weighted by distance from center grid
point; controlled by e-folding distance

e E-folding of 7.5 grid points
0.867 0.915 0.931 0.915 0.867
0.915 0.965 0.982 0.965 0.915
0.931 0.982 1.000 0.982 0.931
0.915 0.965 0.982 0.965 0.915
0.867 0.915 0.931 0.915 0.867

e E-folding of 4.5 grid points
0.674 0.781 0.821 0.781 0.674
0.781 0.906 0.952 0.906 0.781
0.821 0.952 1.000 0.952 0.821
0.781 0.906 0.952 0.906 0.781
0.674 0.7810.8210.781 0.674

e E-folding of 1.5 grid points
0.0290.108 0.169 0.108 0.029
0.108 0.411 0.641 0.411 0.108
0.169 0.641 1.000 0.641 0.169
0.108 0.411 0.641 0.411 0.108
0.0290.108 0.169 0.108 0.029

Sample Search Grid Locations

(Comparing skill using
many e-folding distances
this will indicate if the local
information is of primary
Importance, or the
larger-scale pattern.)



Making probabilistic forecasts
from analogs

e Method 1: Use raw relative frequency of
observed tornado occurrence in n analogs

L= .
P(T) = — Z T T,-: 1 !f F2+ occurred,
n i1 T;= 0 if no F2+ occurred

e Method 2: Use weighted relative frequency of
observed tornado occurrence in n analogs

1 n
P(T)= -y w T
=1



Sfc—500 Shear (ms™') and LI 0000 UTC 27 Apr 1991
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Observed F2+ Tornado Counts in 12—hour Window

Centered on 0000 UTC 13 May 1980
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Sfc—500 Shear (ms™') and LI 0000 UTC 29 May 1980
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Sfc—500 Shear (ms™') and LI 0000 UTC 10 May 1981
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Observed F2+ Tornado Counts in 12—hour Window

Centered on 0000 UTC 18 May 1981
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Sfc—500 Shear (ms™") and LI 0000 UTC 14 May 1981
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Observed F2+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 12 May 1982
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Observed F2+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 13 May 1982
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Observed F2+ Tornado Counts in 12—hour Window

Centered on 0000 UTC 04 May 1999
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Sfc—500 Shear (ms™') and LI 0000 UTC 14 May 1995
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Other results

Better to use large e-folding distance, e.g.,
nearly equal weights for 5x5 box of grid
points (not shown).

CIN useful as predictor.

n=100 much better than n=50.

sfc-650 shear not as good as sfc-500 shear
No skill (yet) beyond day 2.



Possible ways to improve

e Rarity of events part of the problem; use F1+, not

F2+ Tornado Trends?
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