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Definition

» Calibration: f(x'|x’) ; the statistical
adjustment of the (ensemble) forecast

— Rationale 1: Infer large-sample probabilities from
small ensemble.

— Rationale 2: Remove bias, increase forecast
reliability while preserving as much sharpness as
possible. Guided by discrepancies between past
observations and forecasts.




Ensemble-base probabilistic forecasts: problems
we’d like to correct through calibration

Forecast Initial Time = 0000 UTC 02 Jan 1988

(a) 2—day fecst 24—h accum. member 1 precip (b) 2—day fecst 24—h accum. member 2 precip
R |
g RS A

B
ﬁ.—ﬂ!’:’




(1) bias (drizzle over-forecast)

Forecast Initial Time = 0000 UTC 02 Jan 1988
(a) 2—day fecst 24—h accum. member 1 precip (b) 2—day fcst 24—h accum. precip
~

1 25 5 10 25 50
Forecast Precipitation (mm)
ANAY AN T

(d) Observed Precipitation




(2) ensemble members too
similar to each other.

Forecast Initial Time = 0000 UTC 02 Jan 1988
(a) 2—day fecst 24—h accum. member 1 precip (b) 2—day fcst 24—h accum. member 2 brecip




(3) Ensembles are too smooth, not capturing intense local
precipitation due to orographic forcing. Downscaling needed.

Forecast Initial Time = 0000 UTC 02 Jan 1988
(a) 2—ddly fcst 24—h accum. member 1 precip (b) 2—day fcst 24—h accum. member 2 precip




Calibration questions

 |s there a best technique, or best for this particular
forecast problem? Different techniques may be
needed for:
— Errors are ~normally distributed, ~stationary, vs.
— Distributions with long tails

 How much training data (past forecasts &
observations) do you have / need?
— More needed to do good job with rare events.

— Lots more work involved in trying to get a good result with a
short training data set.



Disadvantages to calibration

Calibration won’t correct the underlying problem. Prefer to achieve unbiased,
reliable forecasts by doing numerical modeling correctly in the first place.

No one general approach that works best for all applications.

Corrections may be model-specific; the calibrations for NCEP v 2.0 may not be
useful for ECMWEF, or even NCEP v 3.0.

Could constrain model development. Calibration ideally based on long database
of prior forecasts (reforecasts, or hindcasts) from same model. Upgrading model
good for improving raw forecasts, may be bad for skill of post-processed forecasts.

Users beware: Several calibration techniques that have been recently proposed
are conceptually flawed / only work properly in certain circumstances.



Calibration review

« Adjusting for sample size, no model-error correction
e Simple methods

— Gross bias correction

— Linear regression

— Kalman filters
 More complex methods

— Logistic regression

— Rank histogram-based calibration

— Dressing

— Bayesian model averaging

— CDF corrections

— Non-homogeneous Gaussian regression



Inferring large-sample pdf from small
ensemble: fitting parametric distributions

SMOOTHING OF FORECAST ENSEMBLES 2827

" 7 . I

” . Do Wilks (QJRMS, 128, p 2821)

1 e ;) explored fitting parametric
o4 L . distributions, or mixtures
L s thereof, to ECMWF forecasts
éo- S ' in perfect-model context.
2 .- ) Power-transformed non -
o . Gaussian variables prior to

] fitting. Goal was smooth pdfs,

not bias/spread corrections.

10 m windspeed, m/s

Figure 2. Example ensemble distribution with fitted Gaussian mixture, jointly for the temperature and wind-
speed forecast at 12 UTC 10 January 1997 at Manchester, made at the 180 h lead time. Dots indicate individual
forecasts made by the 51 ensemble members, with the ensemble mean located at ‘E’. The two bivariate Gaussian
densities fj(x) and f>(x) are centred at ‘1’ and ‘2’, respectively, and the smooth lines indicate level curves of their 10
mixture fpix (), formed with @ = 0.57 (see text). Contour interval is 0.05, and the thick and thin dashed lines are
for 0.01 and 0.001, respectively. Subsequent verifying analysis is ‘A’.



Gross bias correction

* Given sample of past forecasts x,, ..., x, and
observations y,, ..., y,, gross bias correction

s simply y —x

(a) ECMWF (b) GFS
1.0f o o o ECMWF Calibrated | 1.0¢ o o o GFS Calibrated
0.8F o--0..¢ ECMWF Bias—Corr ] 0.8F e--0..¢ OFS Bias—Corr
0.6 . 0.6 F 7
DR NUN ; : ;
1 0.4 0@ e 2 - 1 0.4
o i ; o F .
o 0.2r O 0.2p® e °
0.0F 0.0F
-0.2F . -0.2F
—0.4:||\|||1|||J|||JI\||1: —0.4:||\|||1|||J|||JI\||1:
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Forecast Lead (Days) Forecast Lead (Days)

In surface-temperature calibration experiments with NCEP’s GFS and ECMWF,
simple gross bias correction achieved a large percentage of the improvement

that was achieved through more sophisticated, bias+spread correction. y

Ref: Hagedorn et al., MWR, 2008, in press.



Linear regression
v, =Py + Bx; + €

Linear Regression and MOS

i S Corrects for bias; when
sl T no skill, regresses to
s ! p sample climatology.
S 40
3t o] Diagnostics include
- e AU statistics on error, so
§ sof - ) can infer pdf.
I o’ ]
25 g ] . . .
- _ Multiple linear regression,
20 With multiple predictors,
20 25 30 35 40 45 50
Forecast Temperature (C) Often used

12
Ref: any applied statistics textbook



Model Output Statistics ("MOS”)

many elements based on multiple linear regression

KBID GFS MOS GUIDANCE 2/16/2005 1800 UTC

DT /FEB 17 /FEB 18 /FEB 19

HR 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 12 18
N/X 32 40 25 35 19

TMP 42 39 36 33 32 36 38 37 35 33 30 28 27 30 32 31 28 25 23 19 27
DPT 34 29 26 22 19 18 17 17 17 17 17 15 14 13 11 8 7 6 5 2 4
CLD OV FW CL CL SC BK BK BK BK BK BK BK SC BK BK BK BK FW CL CL CL
WDR 26 30 32 32 32 31 29 28 30 32 31 31 31 31 30 29 31 32 33 33 27
WSsp 12 12 12 11 08 08 09 08 09 09 10 10 10 12 13 13 15 16 15 09 08

P06 17 0 0 0 4 0 10 6 8 0 O
P12 17 0 10 17 8
Q06 0 0 0 0 0 0 0 0 0 0 O
012 0 0 0 0 0
T06 o/ 2 o0/0 1/ 0 1/ 2 o0/1 0/1 1/ 0 0/1 0/0 0/0
T12 1/ 0 1/ 2 1/ 1 0/ 1 0/ 0

POZ o 0 o o o o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 0 o0 o0 o0 o0 o
POS 13 47 70 84 91100 96100100100100 92100 98100100100 94 92100100

TYP R 8§ S s s s s s s s s s s s S s S S s S S
SNW 0 0

CIG 7 8 8 8 8 8 8 8 8 7 7 7 8 7 7 7 8 8 8 8 8
VIS 7T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77
OBV N N N N NN N NDNDNDNNDNNNNNN N N N N

US: Statistical corrections to operational US NWS models, some fixed (NGM),
some not (Eta, GFS). Refs: hitp://www.nws.noaa.gov/mdl/synop/index.htm,
Carter et al., WAF, 4, p 401, Glahn and Lowry, JAM, 11, p 1580. Canadian
models discussed in Wilson and Vallee, WAF, 17, p. 206, and WAF, 18, p 288.
Britain: Met Office uses “updateable MOS” much like perfect prog.

13



Kalman filter

Today’s Yesterday's Yesterday's
forecast bias bias estimate observed bias
estimate l l

W A

N f
bt _bt—l +Kt(8t _bt—l)
T Kalman gain:

weighting applied

to residual
Pro:
- memory in system, amount tunable through X,
- adaptive
Con:

- takes time to adapt after regime change

Ref: Cheng and Steenburg, conferences.dri.edu/WxPrediction/Weather12/Cheng_Steenburgh.ppt

14



Logistic regression

 Define event, for example, Temp > Q4

* For each grid point (or station) let x = continuous
predictor data (ens. mean forecast value), y =
binary predictand data (1.0 if predicted event
happened, 0.0 if not).

» Problem: Compute P(y=1.0| x)as a

continuous function of x. .

Logistic Regression: 1 +exp (Bo + fiz)

15
Ref: any applied statistics text.



Logistic regression using a long data set
of observed and forecast anomalies

6—10 Day SfcT Fest v. Ver,
~ Oregon, January 16

10 N L B LS S
S [ i
z\ .."
O S R | K —
& .
& - - |
< 0 . )
T M)
o — = |- —1= = ] - = -
C : AT
¢ I
7] L
0
O —5} |

_10_.-1---[‘]"."-1 . | Lol
—-10 -5 0 5 10

Forecast Anomaly (°C)

Ref: Hamill et al. MWR, June 2004

1.00

0.75

0.50

0.25

. 0.00

(el1o4e] Jeddn < Jop)d

Seeking to predict
probability of warmer than
normal conditions (upper
tercile of observed).
Using reforecasts, we
have 23 years of data.
Let’'s use old data in a 31-
day window around the
date of interest to make
statistical corrections.

Dashed lines: tercile boundaries
Red points: samples above upper tercile
Blue points: samples below upper tercile

Solid bars: probabilities by bin count
Dotted line: logistic regression curve

16



Fraction

Ensemble calibration:

rank histogram techniques

NCEP MREF precipitation forecasts,
from Eckel and Walters, 1998

A S AP A R
H O, H > 030 ‘I s_:mz?xm
P(T < -4) PG<T<5) O N [ et R
=0.30 =019 220.00% —
<0.10
TS 25 35 as 55 65 75 85 95 105 115 125 135 145 155
Forecast Lead Time (Days)
FiG. 10. Ranked probability skill score (RPSS) results for all fore-
cast lead times.
Ds Rank Histogram _ Advantages: Demonstrated skill gain
050 \ E Disadvantages:
(1) Odd pdfs, especially when two ensemble
0.25 members close in value.
0.20 (2) Sensitive to shape of rank histogram,
015 and shape of histogram may vary with
aspects like precip amount --> sample
010 Size issues.
0.05 (3) Fitted parametric distributions as skillful
0.00

Rank References: Hamill and Colucci (MWR, 1997, 1998; Eckel
and Walters, WAF, 1998; used at Met Office)



Original Ensemble

Dressing methods

Cov(ens mean errors)

(b)

d

(-~

Dressed Ensemble

(d)

Method of correcting
spread problems.
Assume prior bias
correction.

Adv: Demonstrated
improvement in
ETKF ensemble
forecasts in

NCAR model.

Dis: Only works
if too little spread,
not too much.

18

Ref: Roulston and Smith (Tellus, 55A, p 16); Wang and Bishop (QJRMS, 2005; picture above)



Bayesian model averaging (BMA)

K
k=1

0.12
]

MMS/GFS MM5/Eta

0.10
1
>
b
b
b

MM5/Canada

0.08
1

0.06
1

MM5/NGM

BMA Predictive PDF

MMS/Navy /

0.04
1

0.02
1

0.00
1

T * T T . T
280 285 290 295 300

Temperature

Figure 3: BMA predictive PDF (thick curve) and its five components (thin curves) for the
48-hour surface temperature forecast at Packwood, Wash., initialized at 0000 UTC on June
12, 2000. Also shown are the ensemble member forecasts and range (solid horizontal line
and bullets), the BMA 90% prediction interval (dotted lines), and the verifying observation
(solid vertical line).

Weighted sum of kernels
centered around individual,
bias-corrected forecasts.

Advantages: Theoretically
appealing. No parameterized
distribution assumed, weights
applied proportional to their
independent information

(in concept).

Disadvantages: When trained
with small sample, BMA radically
de-weighted some members
due to “overfitting” See Hamiill,
MWR, Dec. 2007.

Ref: Raftery et al.,
MWR, 2005. Wilson 19
et al., MWR, 2007



Another problematic method:
CDF-based corrections

Zhu CDF correohon <CONUS> 1-Day ch’r Julian Day

1.0

0.9

WA

L 08 = 8 3
a - ) E
O = S ]
- L .

0.7 :qo_, *g E

- a1 18 Forecast :

: 3| |5 :

0.6 IR __ Observed E

C w| |2 .

C (] O ]

- o| |x -

0.5 ... .} Al I R Lo Lo =

0 10 20 30 40

Precipitation Amt (mm)

Ref: Zhu and Toth, 2005 AMS Annual Conf., and many others

Use difference

in CDFs to correct
each ensemble
member’s forecast.
In example shown,
raw 7-mm forecast
corrected to ~5.6 mm
forecast.

NOTE: bias only, not

spread correction or
downscaling.

20



CDF corrections: example of problem

1-day forecasts in Northern Mississippi (US), mid-August.
Consider a forecast precipitation of 25 mm.

Sb) Observed vs. Forecast
(a) CDFs Scatterplot, Remapping Function (c¢) Histograms, 25 mm
1'0 F T 60 ;l T ; T AR i T T )E 0.20 [ T T T T T
L —~ F . . . . . 7
E | ‘ 7 3 [
F : ' S E [
0.8 y Esop .. o, 5 . Raw _
[ £ £ , ] 0.15 CDF bias
E. 4 ] [
i < 40¢ v 3 ; - corrected
L 067 1 - . ES [ O|F
8 i 4 30¢ ___ CDF A §o1o_
i T E E o
.47 — Forecast < 20k OF j
i ] 3 0.05
0.2f — Observed . g 10E 3 ’
L E 7] E E
[ s 5
0.0 L 1 1 1 1 I 1 O H [T | 1 A 0.00
0 10 20 30 40 S50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Precipitation Amount (mm) Forecast Precipitation (mm) Forecast Precipitation (mm)

f

CDF-based corrections at high amounts suggest further
increasing precipitation amount forecast. O|F indicates
decrease.

At root of problem is assumption that Corr (F,O) =1.0 21



Non-homogeneous
Gaussian regression

Reference: Gneiting et al., MWR, 133, p. 1098
Predictors: ensemble mean and ensemble spread
Output: mean, spread of calibrated Gaussian distribution

f(X,0)~N(a+bX,c+do)

Advantage: leverages possible spread/skill relationship
appropriately. Large spread/skill relationship, ¢ = 0.0, d =1.0.
Small, d=0.0

Disadvantage: iterative method, slow...no reason to bother
(relative to using simple linear regression) if there’s little or no
spread/skill relationship.

22



Is there a "best” calibration technique?

Using Lorenz ‘96 toy model, direct model output (DMO), rank histogram technique, MOS applied to each

member, dressing, logistic regression, non-homogeneous Gaussian regression (NGR), “forecast

assimilation”, and Bayesian model averaging (with perturbed members assigned equal weights) were
compared. Comparisons generally favored logistic regression and NGR, though differences were not
dramatic, and results may not generalize to other forecast problems such as ones with non-Gaussian

errors.
Pr{V = q1/3} T=4
(a) DMO (b) Rank Hist. (c) Single-int. MOS (d) Ens. Dressing
rel = .0235 rel =.0146 rel =.1038 rel = .0101
res= .0117 res=.0125 res=.0111 res= .0151
L
[
(e) Logistic Reg. (f) NGR i (g) Fest. Assim. (h) BMA
rel = .0009 rel = .0007 rel = .0201 rel =.0047
res=.0194 res=.0148 res=.0180 res=.0162

Figure 8. As Figure 5, for Pr{V < qys3} at lead time T = 4.

Ref: Wilks, Met. Apps, 2006, 13, p. 243

23



Part |Il: "Reforecasting”
Q: What is a reforecast?

* A hindcast, a numerical prediction for a
date in the past using the model and
data assimilation system that is
currently operational.

24



Precipitation Amt (mm)

Why compute reforecasts?

For many forecast problems, such as long-lead
forecasts or high-precipitation events, a few past
forecasts may be insufficient for calibrating the
probabilistic forecasts

1—Day Ensemble—Mean Forecast and Observed Precipitation

o I B R R B
B o— o Forecast
151 oo Observed 'f__
10 - =
5F .

25



NOAA's reforecast data set

Model: T62L28 NCEP GFS, circa 1998
Initial States: NCEP-NCAR Reanalysis Il plus 7 +/- bred modes.

Duration: 15 days runs every day at 00Z from 19781101 to now.
(http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/refcst/week?2).

Data: Selected fields (winds, hgt, temp on 5 press levels, precip,
t2m, u10m, v10m, pwat, prmsl, rh700, heating). NCEP/NCAR
reanalysis verifying fields included (Web form to download at
htip.//www.cdc.noaa.gov/reforecast). Data saved on 2.5-degree
grid.

Experimental precipitation forecast products:
http://www.cdc.noaa.gov/reforecast/narr .

26



Outline

« Part 2a: Several applications of 1998 GFS
reforecasts.
— Comparison of Z500, T850, T2m
— 6-10 day forecasts over US
— Downscaled PQPF in US
— Monsoon PQPF in India
— Tornado forecasts

« Part 2b: An exploration of whether reforecasts
from a much-improved 2005 ECMWF model
provide similar benefits as were achieved for
1998 GFS

27



Ranked Probability Skill Score

Skill of 500-hPa Z, 850-hPa T, and 2-m T
from raw 1998 GFS reforecast ensemble

CRPSS

1.0_ T T T T T T T T T T T T T T T T T T

—-e 2500 Raw

0.8 __ —o Raw __

e—=e I2m Raw

Forecast Lead (Days)

1998 T62 GFS
much less accurate
than current models,
but qualitatively

still the same with
current models.

The one we
probably care about
the most, T,
scores the worst.

(1979-2004 data)
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Forecast bias
contaminates
T,,, much more

Forecast Lead (Days)

Forecast Lead (Days)

Forecast Lead (Days)

15(<:|) 7500 <Bias/Obs Climatological o>
[ [ ]

[&]

-
—_

JFMAMUJJASOND

15(b) T850 <Bias/Obs Climatological o>

13
11
9
7
5
3
1
JFMAMUJJASOND
‘o (¢) T2M <Bias/Obs Climatological o>
9
8
7
6
5
4
3
2
1

JFMAMUJJASOND
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4 8 8 8°3 38 8

®w © ©O O

6-10 DAY QUTLOOK

TEMPERATURE PROBABILITY

MADE 24 Apr 2006

VALID Apr 30 - May 04, 2006

Map of
probabilities of
above / below /
near normal.
33 percent
probability
assumed in
near normal
unless above
or below > 67
percent.

S0SIER, LA HTRES BRE, £ onpoLoox /&

VYALUES AROVE (A) OR BEL [{]

)} NORMAL
UNSHADED AREAS ARE NEAR-NORNMAL
— S e §
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Observed Anomaly (°C)

Using a long reforecast data set
of observed and forecast anomalies

6—10 Day SfcT Fest v. Ver,
~ Oregon, January 16

10_ T — T T T T 1.00
5— ' lo7s
oj____: _ f+ ':,____0.50
—5; | ] o.25
—101 | L .1 0.00
—10 -5 0 5 10

Forecast Anomaly (°C)

With our reforecasts,
we have 25+ years
of data. Let’s use
old data in a 31-day
window around the
date of interest to
make statistical
corrections.

(el1o4e] Jeddn < Jop)d

Dashed lines: tercile boundaries
Red points: samples above upper tercile
Blue points: samples below upper tercile

Solid bars: probabilities by bin count

Dotted line: a fitted model, TBD 31
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Comparison against NCEP / CPC forecasts
at 155 stations, 100 days in winter 2001-2002

Forecast Probability (%)

temperature
forecasts

Reforecast calibrated
Week-2 forecasts more
skillful than operational

NCEP/CPC 6-10 day,
which was based on

human blending of NCEP,

ECMWE, other tools.

precipitation
forecasts
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Reforecast-based example: floods causing
La Conchita, California landslide, 12 Jan 2005

apcp initialized 2005010200 apcp initialized 2005010300
Upper Tercile Probs Percent

6-10 day from
reforecast

Upper Tercile Probs Percent

week-2 from
reforecast
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Fraction

Histogram of CPC, ESRL reforecast RPSS

0.20[ ™ 7 | !
| ESRL (0.18)
] | More reforecasts
| CPC (0.11) | with RPSS < 0.0
0.15 |
L |
|
0 |
_ I
0.10 - |
B |
— |
i I
0.05
0.00 L
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Fraction

0.20

0.15

0.10

0.05

0.00

Histogram of CPC, ESRL reforecast RPSS

—-0.4

ESRL (0.32)

CPC (0.10)

Still, many more
reforecasts
with RPSS > 0.3

!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-0.2 0.0 0.2 0.4 0.6 0.8
RPSS

1.0
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Application: downscaled precipitation forecasts using analog technique

26 Nov 2005
24—48h Forecast Analyzed

1 2.5 5 10 25 50
24—h Accumulated Precipitation (mm)

On the left are old forecasts
similar to today’s ensemble-
mean forecast. The data on

the right, the analyzed
precipitation conditional upon

the forecast, can be used to
statistically adjustand —»
downscale the forecast.

Analog approaches like this
may be particularly useful for
hydrologic ensemble
applications, where an
ensemble of realizations is
needed.




Downscaled analog probability forecasts

26 Nov 2005
24—48h Forecast

P (ppn > 1 mm)

10 20 30 40 50 60 70 80 90
Probability A i

1 25 5 10 25 50

24—h Accumulated Precipitation (mm)
——

Analyzed

P (ppn > 5 mm

10 20 30 40 S0 60 70 80 90
Probabilit
2 KT

10 20 30 40 S0 60 70 80 90

Probablllfz l

P(ppn > 25 mm)

Probability
T T AN,
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Brier Skill Score

Brier Skill Score

—-0.6

-0.3

0.2 F

Ensemble Relative Frequency

(a) 2.5 mm

JFMAMJ JASOND

(b) 25 mm

Day 1 E

1]

E

JFMAMJ JASOND

Brier Skill Score

-

Brier Skill Score

0.6

0.5

0.4}
0.3F
0.2

0.1

0.4 L

0.3

0.2

Basic Analog Technique

(a) 2.5 mm

0.0 E
JFMAMUJI JASOND

(b) 25 mm

Day 1
Day 2
Day 3
Day 4
Day S
Day 6

[111

Verified over 25 years of forecasts;

skill scores use conventional

method of calculation which may

overestimate skill
(Hamill and Juras 2006).
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Reforecast Domains, 2.5° and 1°

Application:

monsoon
forecasts
over India

For this experiment
we saved forecast
total precipitation,
column precipitable
water, and sea-level
pressure tendency
on coarse and fine
grids, as shown,

for May 15 - Oct 15,
1979-2007. 1-degree

| precipitation analyses

available over India.
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Monsoon precipitation climatology

%:1) Climatological
P(Obs > 1 mm) Jun 01

(b) Climatological
P(Obs > 10 mm) Jun 01

(¢) Climatological

P(Obs > 50 mm) Jun 01

S

| | 2“{
\

5

10 20 30 40 S0 60 70 80 90
Probability (%)

05 10 20 30 40 S0 60 70 80 90
Probability (%)

05 10 20 30 40 S0 60 70 80 90
Probability (%)

(a) Climatological
P(Obs > 1 mm) Jul 01

(b) Climatological
P(Obs > 10 mm) Jul 01

(¢) Climatological
P(Obs > 50 mm) Jul 01

S

05 10 20 30 40 S0 60 70 80 90
Probability (%)

S

05 10 20 30 40 S0 60 70 80 90
Probability (%)

5

10 20 30 40 S0 60 70 80 90
Probability (%)
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Monsoon precipitation climatology

%) Cllmc’rologlcql
P(Obs > 1 mm) Aug 01

(b) Climatological
P(Obs > 10 mm) Aug 01

(¢) Climatological

P(Obs > 50 mm) Aug 01

lg;

S

5

10 20 30 40 S0 60 70 80 90
Probability (%)

05 10 20 30 40 S0 60 70 80 90
Probability (%)

05 10 20 30 40 S0 60 70 80 90
Probability (%)

a) Cllmc’rologlcql
P(Oﬂvs > 1 mm) Sep 01

(b) Climatological
P(Obs > 10 mm) Sep 01

(¢) Climatological

P(Obs > 50 mm) Sep 01

‘ad] l [{

05 10 20 30 40 S0 60 70 80 90
Probability (%)

\) 4 | {;

05 10 20 30 40 S0 60 70 80 90
Probability (%)

5

10 20 30 40 S0 60 70 80 90
Probability (%)
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Which predictors in logistic regression
with stepwise elimination? Day 1

(a) Day 1, 1 , b) Day 1, 1 mm, (c) Day 1, 1 mm,
ZAeon Preciprp'gn recipitable Water 1—Day Sea—Level Pressure Change

For every day of the monsoon
season, a stepwise linear
regression was run to determine
which predictors provided a
reduction in error. As shown,

a power-transformed ensemble-

) Day
[ [T [ 1 [ mean forecast precipitation was
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 S50 60 70 80 90 .
Percent of Days Using This Predictor Percent of Days Using This Predictor Percent of Days Using This Predictor un|form|y Selected aS an

important predictor. Precipitabl
(a) Day 1, 50 mm, (b) Day 1, 50 mm, (c) Day 1, 50 mm, portant predictor. Precipitable
Mean Precip® Precipitable Water 1-Day Sea—Level Pressure Change Water was occasionally selected,
|

|

i

and sea-level pressure change
was virtually never selected.
Based on these results, all
subsequent logistic regression
analyses will be based on using
only one predictor, the power-
transformed ensemble-mean
precipitation amount.

i

‘ ! 21 !
10 20 30 40 S50 60 70 80 90 10 20 30 40 S50 60 70 80 90 10 20 30 40 S0 60 70 80 90
Percent of Days Using This Predictor Percent of Days Using This Predictor Percent of Days Using This Predictor

i
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Which predictors in logistic regression
with stepwise elimination? Day 3

(024 Day 3, 1 mm,

ean Precip

b) Day 3, 1 mm,
recipitable Water

(c) Day 3, 1 mm,
1—Day Sea—Level Pressure Change

a) Day 3, 50 mm,
( )Mec% Precip513

(b) Day 3, 50 mm,
Precipitable Water

1—Day Sea—Level Pressure Change

(c) Day 3, 50 mm,

The same conclusion
is reached when
considering other
forecast leads.
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BSS

BSS
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Brier Skill Scores
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(a) BSS, 25 mm

 Logistic Regr.
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5

(a) BSS, 5 mm

0.21 Logistic Regr.
o0 —————-————~— == =
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A
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~
-0.8} S,
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(a) BSS, 10 mm

Logistic Regr.
I Raw N
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~
~
L o N
N
N
- ‘ ~ —
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| | | | |

Forecast lead (days)

Notes:
(1) My BSS smaller than

conventional BSS, since
calculated in a way to not
exaggerate skill. See
Hamill and Juras, QJRMS,
Oct 2006 (issue C)

(2) Confidence intervals are so

small they don’t show up on
the plot.
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Observed Frequency (%)

Observed Frequency (%)

Reliability, logistic regression, 1 and 5 mm
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Observed Frequency (%)

Observed Frequency (%)
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Reliability, logistic regression, 10 and 25 mm
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Map of logistic regression BSS, day 1

BSS, 1 mm, Day 1

BSS, 5 mm, Day 1

2 4

8 10 12 14 16 18 20
Brler Skill Score (%)

4
Brler SklII Score (%)

10 12 14 16 18

BSS, 10 mm, Day 1

BSS, 25 mm, Day 1

4 10 12 14 16 18
Brler SklII Score (%)

4
Brler SklII Score (%)

10 12 14 16 18
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Map of logistic regression BSS, day 3

BSS, 1 mm, Day 3

BSS, 5 mm, Day 3

2 4 8 10 12 14 16 18 20
Brler Skill Score (%)

12 14 16 18

4
Brler Sklll Score (%)

BSS, 10 mm, Day 3

BSS, 25 mm, Day 3

&

4 10 12 14 16 18
Brler Sklll Score (%)

&

4 10 12 14 16 18
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Map of logistic regression BSS, day 5

BSS, 1 mm, Day 5

BSS, 5 mm, Day 5

2 4 8 12 14 1618 20
Brler Sklll Score (%)

2 4 12 14 16 18

Brler Sklll Score (%)

BSS, 10 mm, Day 5

BSS, 25 mm, Day 5

4 12 14 16 18
Brler Sklll Score (%)

2 4 10 12 14 16 18

Brler Sklll Score (%)
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Logistic regression forecast example #1, 1-day lead

a) Analyzed Precipitation
Analyzed Precipitati
Aug 24 200

(b) Forecast P(Obs > 1 mm)

(c) Climatological P(Obs > 1 mm)

1 25 5 10 20 30 40 50

24—h Accumulated Precip (mm)

MRS

5 10 20 30 40 S50 60 70 80 90
Probability (%)

» l
14
8 I
,;',‘
5 10 20 30 40 S50 60 70 80 90
Probability (%)

(d) Ensemble—Mean Precipitation
1—day forecast from Aug 23 2002

(e) Forecast P(Obs > 10 mm)

(f) Climatological P(Obs > 10 mm)

1 2.5 5 10 20 30 40 50
24—h Accumulated Precip (mm)

L

5 10 20 30 40 S50 60 70 80 90
Probability (%)

\ | Q
5 10 20 30 40 S50 60 70 80 90
Probability (%)
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Logistic regression forecast example #1, 3-day lead

(a) Analyzed Precipitation
Aug 24 200

1 2.5 5 10 20 30
24—h Accumulated Precip (mm)

40 50

(b) Forecast P(Obs > 1 mm)

v L

(c) Climatological P(Obs > 1 mm)

's |
i

5 10 20 30 40 S50 60 70 80 90
Probability (%)

5 10 20 30 40 S50 60 70 80 90
Probability (%)

(d) Ensemble—Mean Precipitation
3—day forecast from Aug 21 2002

2.5 5 10 20 30 40 50
24—h Accumulated Precip (mm)

(e) Forecast P(Obs > 10 mm)

S

(f) Climatological P(Obs > 10 mm)

S

5 10 20 30 40 S50 60 70 80 90
Probability (%)

5 10 20 30 40 S50 60 70 80 90
Probability (%)
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Logistic regression forecast example #2, 1-day lead

(a) Analyzed Precipitation
Aug 02 1994

1 2.5 5 10 20 30 40 50
24—h Accumulated Precip (mm)

(b) Forecast P(Obs > 1 mm)

¢ 4 [ {‘{
5 10 20 30 40 S50 60 70 80 90
Probability (%)

(c) Climatological P(Obs > 1 mm)

5 10 20 30 40 S50 60 70 80 90
Probability (%)

(d) Ensemble—Mean Precipitation
1—day forecast from Aug 01 1994

2.5 10 20 30 40 50
24—h Accumulated Precip (mm)

(e) Forecast P(Obs > 10 mm)

L

5 10 20 30 40 S50 60 70 80 90
Probability (%)

(f) Climatological P(Obs > 10 mm)

?
2
|
5 10 20 30 40 S50 60 70 80 90
Probability (%)
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Logistic regression forecast example #2, 3-day lead

(a) Analyzed Precipitation
Aug 02 1994

(b) Forecast P(Obs > 1 mm)

(c) Climatological P(Obs > 1 mm)

1 25 5 10 20 30 40

24—h Accumulated Precip (mm)

50

5 10 20 30 40 S50 60 70 80 90
Probability (%)

5 10 20 30 40 S50 60 70 80 90
Probability (%)

day forecast from Jul

éd) Ensemble—Mean Precipitation

0 1994

1 2.5 5 10 20 30 40
24—h Accumulated Precip (mm)

50

(e) Forecast P(Obs > 10 mm)

S

5 10 20 30 40 S50 60 70 80 90
Probability (%)

(f) Climatological P(Obs > 10 mm)

|
5 10 20 30 40 S50 60 70 80 90
Probability (%)
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Observed F2+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 27 Apr 1991

Tornado Probabilities for
O01—day Forecast from 26 Apr 1991

Climatological F2+ Tornado Probabilities,
15 Apr — 15 Jun

.01 .02 .04 .06 .08 .10
obability of F2+ Tornado in 2.5x2.5 box

Tornado probability

forecast wind shear and instability

forecasting

were used as predictors in an analog
approach.

25

Reliability of 1—Day (Weighted) Tornado Forecasts
— e e —

BSS = 0.0220

e e e e e

5 10 15 20
Tornado Forecast Probability (%)
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Part l1b:

Calibration using
ECMWEF reforecast
data set

95



Questions

 Will reforecasts benefit calibration of a state-of-
the art model like ECMWF’s as much as with now
outdated GFS model?

 How do probabilistic forecasts from the old GFS,
with calibration, compare to the new ECMWF
without?

* Are multi-decadal reforecasts really necessary?
Given the computational expense of computing
them, are much smaller training data sets

adequate for probabilistic forecast calibration?
56



ECMWEF's reforecast data set

Model: 2005 version of ECMWF model; T255
resolution.

Initial Conditions: 15 members, ERA-40 analysis +
singular vectors

Dates of reforecasts: 1982-2001, Once-weekly
reforecasts from 01 Sep - 01 Dec, 14 weeks total.
So, 20y x14w ensemble reforecasts = 280 samples.

Data obtained by NOAA / ESRL : T,,, and
precipitation ensemble over most of North America,
excluding Alaska. Saved on 1-degree lat / lon grid.
Forecasts to 10 days lead.
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Observation locations
for temperature calibration

Station Locations

Produce probabilistic
forecasts at stations.

Use stations from
NCAR’'s DS472.0
database that have
more than 96%

of the yearly records
available, and overlap
with the domain that
ECMWEF sent us.
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Calibration procedure: "NGR”

“Non-homogeneous Gaussian Regression”

 Reference: Gneiting et al., MWR, 133, p. 1098. Shown in Wilks and
Hamill (MWR, 135, p 2379) to be best of common calibration methods
for surface temperature using reforecasts.

* Predictors: ensemble mean and ensemble spread
« Output: mean, spread of calibrated normal distribution

f(X,0)~N(a+bX,c+do)

« Advantage: leverages possible spread/skill relationship appropriately.
Large spread/skill relationship, c= 0.0, d =1.0. Small, d = 0.0

« Disadvantage: iterative method, slow...no reason to bother (relative to
using simple linear regression) if there’s little or no spread-skill
relationship.
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Bias (°C)

Inter-annual variabillity
of forecast bias

850 hPa Day 4 Temperature Bias (°C) 95.0W 40.0N Red curve shows

4| —— 23—year Average Bias - bias averaged over

L Yearly Estimates of Bias

/\ 1 23 years of data
w (bias = mean F-O
in running 61-day
window)

"\”/V'"

| A
'(4,‘ 'l’

Green curves show
23 individual

yearly running-mean
bias estimates

Note large inter-annual
variability of bias.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec



What training data to use, given
inter-annual variability of bias?

1 Sep 15 Sep 30 Sep 6 Oct 20 Oct 3 Nov 17 Nov 1 Dec
¢ ¢ ¢ | | | | | | L 5
1Sep 7 Sep 15 Sep 30 Sep 6 Oct 20 Oct 3 Nov 17 Nov 1 Dec
¢ ¢ ¢ | | | | | | L 5
1 Sep 15 Sep 30 Sep 6 Oct 20 Oct 3 Nov 17 Nov 1 Dec
| | o o o o+ o | ' L,
1 Sep 15 Sep 30 Sep 6 Oct 20 Oct 3 Nov 17 Nov 24 NOV 1 Dec
| | | | | | | ¢ ¢ >
1 Sep 15 Sep 30 Sep 6 Oct 20 Oct 3 Nov 17 Nov 1 Dec
| | | | | | | ¢ ¢ >
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Forecast spread and error

(a) ECMWF RMS Error & Spread (b) GFS RMS Error & Spread

6 ] 6 ]
S e—eo—e RMS Error S :
8 5 e o o Spread + R E 8 5F E
[ - [ -
Q E Q E
n 4r E n 4r E
¥ _ I ]
. JF . E . JF E
8 E /.,o’.— 3 8 E
S52F Lo 15 2¢ ]
n : ] n ]
= 1¢ 3 = 1F E
o ] @
O | | \ | \ | | | [ 3 O | | \ | \ | | | | |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Forecast Lead (Days) Forecast Lead (Days)

For both systems, with 2-m temperature, there is a deficiency
of spread. This is much worse for GFS than ECMWEF.
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ECMWEF, raw and post-processed

CRPSS of Surface Temperature,
with /without Reforecast—Based Calibration

1.0[ ]

i Multi—Model Calibrated _

0.8 e — — e ECMWF Calibrated _

i o — — o T62 GFS Calibrated )

0.6 __ o——08 ECMWF Raw ]

Pl & -8 i

B - % o——e 162 GFS Raw |

n _® -

n 0.4 _|
n - i
a - i
o L |
© 0.2 — ]
0.0 -
~0.2 =
-0.4[ 1 | [ [ T

Forecast Lead (Days)

Note: 5th and 95th %ile confidence intervals very small, 0.02 or less
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ECMWEF, raw and post-processed

CRPSS

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

CRPSS of Surface Temperature,
with /without Reforecast—Based Calibration

Multi—Model Calibrated
ECMWF Calibrated

L In this metric, calibrated 4-5 day
| forecasts now as skillful as

: - ——0
- uncalibrated 1-day forecast. o — — o T62 GFS Calibrated
o—— LECMWF Raw
o 9
.- % e—+o 162 GFS Raw
)

IIIIIIIIIIIIIII'IIIIII

Forecast Lead (Days)

Note: 5th and 95th %ile confidence intervals very small, 0.02 or less
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1.0
0.8}

0.6 f

CRPSS

0.0}
-0.2}
—0.4¢

~ 60 percent of total improvement at short leads, 70 percent at longer leads.

How much from
simple bias correction?

(a) ECMWF

0.4

0.2}

o o ¢ ECMWF Calibrated
e--0--¢ ECMWF Bias—Corr
e—e—e ECMWF Raw

Forecast Lead (Days)

CRPSS

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4L

(b) GFS

o o o GFS Calibrated
e--0--¢ GFS Bias—Corr
e—eo—oe COFS Raw

Forecast Lead (Days)
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How much from short
training data sets”

CRPSS

CRPSS of Surface Temp, Fall 2005 GFS CRPSS of Surface Temp, 2005
1.0[ ] 1.0[
L o —-o ECMWF Refcst Calibrated i L e — — o GFS Refcst NGR 4
0.8 __ o - ECMWF 30—day Calibrated _ 0.8 __ e — — o GFS 30—day NGR _
L oe—e ECMWF Raw ] B e— o GFS Raw ]
0.6 — ] 0.6 — —
0.4 . 0.4 -
0.2 B 0.2 .
0-0:— E _ 0.0 -
—0.21 4 02 .
040 0 1 1T _ggt
1 2 3 4 5 6 7 8 9 10 )
Forecast Lead (Days) Forecast Lead (Days)

Note: (1) that ECMWF reforecasts use 3D-Var initial condition, 2005 real-time forecasts use
4D-Var. This difference may lower skill with reforecast training data set. (2) No other predictors
besides forecast T2m; perhaps with, say, soil moisture as additional predictor, reforecast

calibration would improve relative to 30-day. 66



Forecast Lead (Days)

—_
—_

Forecast Lead (Days)

(a) 850 hPa Temperature Bias (°C) 95.0W 40.0N

e
,“ ﬁ
oy

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

[ | |
-2-1.5-1-0.50.5 1
Bias (°C)

|
1.5 2

(b) 850 hPa o(Yearly Bias Estimate) (°C)

Vil w

1 2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

When are long
reforecast data
sets necessary,
and when are
they not?

Example: bias
correction.

Here, large training
data set required,;
bias is small relative
to its yearly variability.

Here, small training
data set adequate;
bias comparable or
greater than its
yearly variability.
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CRPSS

1.0
0.8

0.6

0.4

0.2

0.0

-0.2
-0.4

How much from long GFS

training data set?

GFS CRPSS of Surface Temperature

IIIIIIIIIIIIIIIIIII

IIIIIII

e—o——o Full Training NGR
o —o— o Weekly Training NGR
......... RAW

IllllllIIIIIIIIIlIlIlIIIIII

Forecast Lead (Days)

Here GFS reforecasts
sampled once per
week are compared
to those sampled
once per day (“full”).
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Precipitation calibration

NARR CONUS 12-hourly data used for training,
verification. ~32 km grid spacing

Logistic regression for calibration here
1.0

1.0 +exp{ﬁo _|_ﬁ1()—cf)0-25 +ﬁ2(6f)0'25}

More weight to samples with heavier forecast

PO>T)=10-

precipitation to improve calibration for heavy-rain events.

Unlike temperature, throw Sep-Dec training data
together.
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Problem: patchy probabilities when grid point X
trained with only grid point X's forecasts / obs

(a) 12—h Accumulated Analyzed Precip (b) 0.5—day ECMWF Ens.—Mean Precip

Even 20 years of

weekly forecast data
(260 samples after

cross-validation)
is not enough for
stable regression

coefficients, especially
at higher precipitation

thresholds.

for 12 h ending 1991111712

for 12 h ending 1991111712

y

At

. 10 25 50
Precipitation (mm)
LY . §

1 2.5 5 10 25 50
Precipitation (mm
TR

(c) 0.5—-day ECMWF P(ppn > 10 mm) (d) 0.5—day ECMWF P(ppn > 10 mm)
Logistic Regression

Logistic Regression (Composite)

\

o

0 2 5 10 30 50 _ 70 90
P(Precip > 10 mm
A NI

P(Pre(il;lam> 10 mm) 70




When is it proper to use training data
at location B to supplement regression
analysis at location A”?

(1) When location B’s errors are
iIndependent of location A’s
errors.

(2) When observed CDF at A and
B are very similar.

(3) When forecast CDF at A and B
are very similar.

(4) When corr(forecast, observed)
at A and B are similar.
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When is it proper to use training data
at location B to supplement regression
analysis at location A”?

(1) When location B’s errors are Make sure location
independent of location A’'s * /snottoocloseto
location B
errors.

(2) When observed CDF at A and
B are very similar.

(3) When forecast CDF at A and B
are very similar.

(4) When corr(forecast, observed)
at A and B are similar.
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When is it proper to use training data
at location B to supplement regression
analysis at location A”?

(1) When location B’s errors are
iIndependent of location A’s
errors.

f .
(2) When observed CDF at Aand "5 ' 7 °omPies

B are very similar. - NARR provides them.

(3) When forecast CDF at A and B
are very similar.

(4) When corr(forecast, observed)
at A and B are similar.
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When is it proper to use training data
at location B to supplement regression
analysis at location A”?

(1) When location B’s errors are
iIndependent of location A’s
errors.

(2) When observed CDF at A and

B are very similar Judging this would be
tough with ECMWF

(3) When forecast CDF at Aand B forecasts. only
are very similar. < 14 weeks*20 years,

not a large sample

(4) When corr(forecast, observed) for non-normally
. distributed data. Can
at A and B are similar. be fooled by rare events.
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When is it proper to use training data
at location B to supplement regression
analysis at location A”?

(1) When location B’s errors are
iIndependent of location A’s
errors.

(2) When observed CDF at A and
B are very similar

(3) When forecast CDF at A and B
are very similar. | |
Tricky to compute in

(4) When corr(forecast, observed) dry regions, where
Taal helming bulk
at A and B are similar. - overwheiming bu

of the samples are
Zero’s.
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Tested method: add in training data at
other grid points that have similar
analyzed climatologies

Selected Analog Composite Locohons

\1 _ _ y B .3
= SE\DA o ‘ T ‘ Big symbol:
i T & 4" grid point
x s v where we
X ¢ ' do regression

L A Small symbols:
‘.& analog locations
( k'w. with similar

‘ climatologies
3
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Training data sets tested

“Weekly” - use 1x weekly, 20-year
reforecasts for training data. Sep-Dec
cases all thrown together. X-validated.

“30-day” - for 2005 only, where
forecasts available every day, train
using the prior available 30 days.

“Full” (GFS only) - use 25 years of daily
reforecasts. X-validated.
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Observed Frequency (%)

Observed Frequency (%)
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5-mm reliability diagrams, raw ensembles

(a) Day 1, ECMWF Raw
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5-mm
reliability
diagrams,
calibrated

In some respects

GFS forecasts

look more calibrated
but the frequency

of usage histograms
show ECMWEF sharper
and thus more skillful.
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Scores

Notes:

(1) Diurnal oscillation in

raw forecast skill

(2) Raw forecast skill poor,
especially at higher thresholds
(3) Calibration has substantial 0.4F
positive impact.
(4) ECMWEF > GFS skill. g -02t]
(5) Multimodel not plotted, ~ PN
same as ECMWF calibrated
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Why are
127 - 00Z
forecasts

less
skillful ?

Over-forecast bias in
models during daytime
relative to NARR

Fractional Usage

(a) Precipitation Distribution,

0-12 h
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Precipitation
skill with
weekKly,

30-day, and

full training
data sets

Notes:

(1) Substantial benefit of weekly
relative to 30-day training data
sets, especially at high thresholds.

(2) Not much benefit from full
relative to weekly reforecasts.
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Brier Skill Score

Effect of training sample size:

(a) BSS of 2.5 mm forecasts
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(b) BSS of 25 mm forecasts
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colors of dots indicate which size analog ensemble
provided the largest amount of skill.
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Adapting reforecasting ideas
to calibration of SREF heavy
precipitation events

* Q: where are you going to get past initial conditions
from:

— Good: re-run current operational analysis system

— Worse: use reanalysis from some other model
(possibly different initial condition biases

 (Q: which subset of cases to run?

— Good: where forecast indicated heavy
precipitation.

— Bad: where observed indicated heavy
precipitation.
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Conclusions

Calibration important, especially for sensible-weather like
temperature and precipitation

Many fairly good calibration techniques, a few that can be
problematic.

Reforecasts shown to aid in calibration of forecasts for a
wide variety of applications

Still a large benefit from forecast calibration, even with
state-of-the-art ECMWF forecast model.

— Temperature calibration:
» Short leads: a few previous forecasts adequate for calibration
» Long leads: better skill with long reforecast training data set.
— Precipitation calibration
« Low thresholds: a few previous forecasts somewhat ok for calibration
« Larger thresholds: large benefit from large training data set.

 Skill when trained with daily data not much larger than when trained
with weekly data (preliminary result, more testing needed).
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Are operational centers
heading toward reforecasting?

 NCEP: tentative plans for 1-member real-time
reforecast.

« ECMWEF: once-weekly, real-time 5-member
reforecast starting mid 2008.

RPN Canada: planning ~5-year reforecast
data set, delayed by budget and staffing
ISsues.
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