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ABSTRACT

Analog post-processing methods have previously been applied using
precipitation reforecasts and analyses to improve probabilistic forecast skill and
reliability. A modification to a previously documented analog procedure is
described here that produces highly skillful, statistically reliable precipitation
forecast guidance at a 1/8th-degree grid spacing. These experimental probabilistic
forecast products are available via the web in near real-time.

The main changes to the previously documented analog algorithm were as
follows: (a) use of a shorter duration (2002-2013) but smaller grid spacing, higher-
quality time series of precipitation analyses for training and forecast verification,
the Climatology Calibrated Precipitation Analysis; (b) increased training sample size
using data from 19 supplemental locations, chosen for their similar precipitation
analysis climatologies and terrain characteristics; (c) selection of analog dates for a
particular grid point based on the similarity of forecast characteristics at that grid
point rather than similarity in a neighborhood around that grid point; (d) using an
analog rather than a rank-analog approach; (e) varying the number of analogs used
to estimate probabilities from a smaller number (50) for shorter-lead forecasts to a
larger number (200) for longer-lead events; (f) spatial Savitzky-Golay smoothing of
the probability fields. Special procedures were also applied near coasts and country
boundaries to deal with data unavailability outside of the US while smoothing.

The resulting forecasts are much more skillful and reliable than raw

ensemble guidance across a range of event thresholds. The forecasts are not nearly



70  as sharp, however. The use of the supplemental locations is shown to especially

71  improve the skill of short-term forecasts during the winter.
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1. Introduction.

Previous studies have shown that probabilistic forecasts of precipitation can
be significantly improved by post-processing with reforecasts (e.g., Hamill et al.
2006, hereafter HO6; Hamill et al. 2013, hereafter H13; Hamill and Whitaker 2006,
hereafter HW06). The real-time forecast is adjusted using a long time series of past
forecasts and associated precipitation analyses. Appealing for its simplicity was the
“analog” procedure used in these studies. For a given location, dates in the past
were identified that had reforecasts similar to today’s forecast. An ensemble was
formed from the observed or analyzed precipitation amounts on the dates of the
chosen analogs, and probabilities were estimated from the ensemble relative
frequency. Maps of precipitation probabilities were constructed by repeating the
procedure across the model grid points.

A challenge with analog procedures used in these previous studies was their
inability to find many close-matching forecasts when today’s precipitation forecast
amount was especially large, even with a long training data set. The method as
previously documented used the data surrounding grid point of interest but did not
supplement the training data set with observation and forecast data centered on
other locations. The benefit of this location-specific approach was that if the
model’s systematic errors varied greatly with location, it corrected for these, as
shown in HO6. One disadvantage was that if there were not many prior forecasts
with similarly extreme precipitation, then the selected analogs were biased toward

precipitation forecasts with less extreme forecast values and typically lighter



94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

analyzed precipitation. Consequently, the forecast procedure did not often produce
high probabilities of extreme events.

Another possible disadvantage of the forecast products demonstrated in
these previous studies was that the associated precipitation analyses were in each
case from the North American Regional Reanalysis (NARR, Mesinger et al. 2006).
Several studies have identified deficiencies with this data set (e.g., West et al. 2007,
Bukovsky and Karoly 2009). We have also noted a significant dry bias in the NARR
over the northern Great Plains during the winter season. There is now an
alternative data set that covers the contiguous US (CONUS) and that utilizes both
gauge and adjusted radar-reflectivity data, the Climatology-Calibrated Precipitation
Analysis (CCPA; Hou et al. 2014). Data is available from 2002-current. While this
time period is shorter than the 1985-current time span of the most recent reforecast
(H13), the availability of higher-resolution, more accurate precipitation analysis
data has led us to consider whether useful products could be generated with this
data set.

This article briefly describes modifications to previously documented analog
forecast procedures. What adjustments will allow it to provide improved
probabilistic forecasts while using a shorter time series of analyses? We describe a
series of changes to the analog algorithm and show that the resulting analog
probabilistic forecasts are skillful, somewhat more sharp, and reliable. Since the
statistically post-processed guidance provide a significant improvement over
probabilities from the raw Global Ensemble Forecast System (GEFS) forecast data,

we are also making experimental web-based guidance available in near real time
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during the next few years; this guidance can be obtained from

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/ccpa/index.html.

2. Methods and data.
a. Reforecast data, observational data, and verification methods.

In this study we considered 12-hourly accumulated precipitation forecasts
during the 2002 to 2013 period for lead times up to +8 days. Precipitation analyses
were obtained on a ~1/8-degree grid from the CCPA data set of Hou et al. (2014).
Probabilistic forecasts were produced at this ~1/8-degree resolution over the
CONUS. All of the forecast data used in this project were obtained from the second-
generation GEFS reforecast data set, described in H13. Ensemble-mean
precipitation and total-column ensemble-mean precipitable water were used in the
analog procedure. GEFS data was extracted (for precipitation) on the GEFS’s native
Gaussian grid at ~1/2-degree resolution in an area surrounding the CONUS.
Precipitable-water forecasts, which were archived on a 1-degree grid, were
interpolated to the native Gaussian grid before input to the analog procedure.

Forecasts were cross validated; for example, 2002 forecasts were trained
using 2003-2013 data. For the production of forecasts in a given month, the training
data used that month and the surrounding two months, e.g., January forecasts were
trained with December-January-February data. Was the use of future data in the
cross-validation procedure a source of unrealistic skill of these forecasts? As shown
in Baxter et al. (2014, Fig. 5 therein), the inter-annual variability of skill in the

southeast US was larger than the systematic changes from 2002 to 2013. This
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suggests that the use of future forecasts in the cross-validation procedure probably
did not result in a large over-estimation of forecast skill for the earlier years.

One of the controls against which the new method was compared were the
raw event probabilities generated from the 11-member GEFS reforecast ensemble,
bi-linearly interpolated to the 1/8-degree grid.

Verification methods included reliability diagrams and Brier Skill Scores
computed in the conventional way (Wilks 2006, eqgs. 7.34 and 7.35, Hamill and Juras
2006), with climatology providing the reference probabilistic forecasts. Maps of
Brier Skill Scores were also generated for the CONUS. These were produced by
accumulating the probabilistic forecasts’ and climatological forecasts’ average of
squared error at that grid point across all years and all months prior to the
calculation of skill. Because of the extremely large sample size, confidence intervals

for the skill differences (very small; see HW06) were not included on the plots.

b. Rank analog forecast procedure as a control.

A revised “rank-analog” approach served as another standard of comparison
for the newer, somewhat more involved analog methodology described in section
2.c below. For the most part, the rank-analog approach was a hybrid of the
techniques that have previously been shown to work well, described in sections
3.b.6 and 3.b.8 of HW06. This control rank-analog methodology was further
updated in the following respects:

* As with the rank-analog algorithm of HWO06, the rank of the forecast for a

particular date of interest and set of grid points was compared against the ranks of
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sorted forecasts at the same set of grid points for each date in the training data set.
In evaluating which forecasts were closest to today’s forecast, the difference
between forecasts was calculated as 70% of the absolute difference of the
precipitation forecast ranks and 30% of the absolute difference in precipitable
water forecast ranks averaged over the set of grid points, following HW06. As
shown therein, with the exception of warm-season probability of precipitation,
there was minimal sensitivity to the chosen weight between precipitation and
precipitable water. A more precise definition of the forecast difference is as follows:
let S be the set of grid points in a region surrounding the current grid point of
interest. Let tc be the current date, and let t be another date from the set of dates T
whose forecast data will be compared against the forecast at tc. As indicated
previously, by cross validation tc & T. Define rpr¢ as the rank of the current
forecast precipitation amount at time tc and at grid point s from a combined set with
the training data ats. Similarly, rpw{¢ is the associated rank of the current total-
column precipitable water forecast. Then the difference in ranks for date t was
calculated as

dp = X5=1{10.7x (rprf¢ — rprd)| + 10.3X (rpw® — rpw) [} (1)
The chosen date t was then simply the date in T that had the minimum difference.
Once this date was selected, it was omitted from further consideration.

* The size of the search region for pattern matching of forecasts was
allowed to vary with forecast lead time, inspired by the results of testing the method
described in 3.b.9 of HW06. Specifically, let te denote the end of the forecast

precipitation accumulation period in hours, and let d denote the box width in units
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of numbers of grid points on the ~ 1/2-degree Gaussian grid. If te<48, then §=5; if
48<t.<96, then 0=7; if 96<t.<132, then 0=9; if 132<t,, then 6=11.

* The number of analogs used in the generation of probabilities was
allowed to vary as a function of the forecast lead time and how unusual was the
precipitation forecast in question, measured in terms of its percentile relative to the
climatological distribution of forecasts (qr). Let na be the number of analogs used. If
the end period for the forecast precipitation was > 48 h, then when gr<0.75, n,.=100;
when 0.75=q¢< 0.9, n.=75; when 0.9 =<q¢< 0.95, n.=50; when qs>0.95, n,=25. If the
end period for the forecast < 48 h, then when qr<0.75, n.=50; when 0.75=q¢< 0.9,
n,=40; when 0.9=qr<0.95, n,=30; when q¢>0.95, n,=20. This dependence of analog
size on forecast lead time and unusualness of the forecast with respect to the
climatology was inspired by the results of Fig. 7 and associated discussion in HO6.
This showed that fewer analogs provided the best skill for shorter lead times and for
heavy-precipitation events; more analogs were desirable at longer leads and for
more common light- or no-precipitation events. The values do not correspond
exactly with the optimal values from H06 in part because the length of the training

data set was somewhat shorter here (11 years with cross validation).

c. New analog procedure with additional training data from supplemental locations.
We now describe an update to the basic analog (hereafter, simply “analog”)
procedure described in section 3.a.3 of HW06. This revised procedure was

evaluated here against the rank-analog procedure described in section 2.b, and was
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used in the generation of our real-time web graphics. The following modifications
were made:

* Analogs were chosen not by finding a forecast pattern match in an area
surrounding the analysis grid point of interest, but rather by using only the forecast
data specifically at a grid point, as in Delle Monache et al. (2013). With this
modification, data from other supplemental grid points, described below, could be
used as additional training samples. In large part, the reason for not using a rank
analog with a pattern match over an area was computational efficiency; with many
extra supplemental locations under consideration, matching forecasts at points was
much faster than matching forecasts over regions encompassing many grid points.

* The number of analogs used in the computation of the probabilities
varied with forecast lead time. The number of analogs was defined as follows: if the
end period te for the forecast precipitation was < 24 h, then n,=50; if 24 <te <48 h,
n,=75;if 48 <te <96 h, n.=100; if 96 <t. <120 h, n,.=150; if te = 120 h, n.=200.
However, unlike the rank-analog method described above, the number of analogs
was not allowed to vary based on the unusualness of today’s forecast; it was judged
that ample training data was available in most situations, given the extra data from
the 19 supplemental locations.

* Inthe selection of analog dates, the interpolated forecast for a particular
date of interest and analysis grid point (i,j) was compared against interpolated
forecasts at (i,j) for each date in the training data set. In evaluating which forecasts
were closest to today’s forecast, the difference between forecasts was calculated as

70% of the absolute difference of the precipitation forecasts and 30% of the

10



231  absolute difference in precipitable water forecasts. That is, let prif]? be the forecast
232 precipitation amount at the grid point (i,j) and the current date, and pwfj be total-

233 column precipitable water. Then the difference d; at a different date t was

234 de= | 0.7x(pr§-pri;) + 0.3x (pw($ -pwy ;) |. (2)

235  Note that here the ranks of the precipitation values were not compared, as in the
236  prior algorithm, but rather the raw forecasts values.

237 * The interpolated forecast for a particular date of interest and grid point
238  (i,j) was also compared against interpolated forecasts at 19 other supplemental
239  locations (is,js) on other dates. When a the closest match was found to occur with
240  data at one of these supplemental locations, then the analysis from this

241  supplemental location on this date was used as an analog member. That

242  supplemental member and date were then excluded from further consideration.
243  The 19 supplemental locations were determined for each grid point based upon the
244  similarity of the observed climatology and the similarity of terrain characteristics.
245  There were also constraints on a minimum distance between supplemental

246 locations and a penalty for distance between points. The specific methodology of
247  defining supplemental locations is described in the online appendix A. An example
248  of the selected supplemental locations and their relation to the local climatology is
249  shown in Fig. 1.

250 * Once probability forecasts were generated from the ensemble of analyzed
251  states on the dates of the selected forecast analogs, the probability forecasts were

252  smoothed using a 2-D Savitzky-Golay smoother with a window size of 9 grid points

11
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and using a third-order polynomial. The details of this smoother are also described
in the online appendix A.

Which of the changes above were significant and which were more minor?
Not considering supplemental locations, the use of the analog with point data vs. the
rank analog with surrounding-area data decreased skill somewhat (not shown).
However, the inclusion of supplemental training data had an even bigger positive
impact and provided overall the largest impact on skill and reliability. The variable
number of analog members with forecast lead produced a smaller improvement
relative to using the same number at all leads. The smoothing did not affect the
reliability or skill much, but the resulting forecasts were much more visually
appealing. Online Appendix A provides an example of the before vs. after smoothing
difference.

3. Results.

Figures 2 and 3 show Brier Skill Scores as a function of forecast lead time for
the > 1 mm (12 h)! event and the > 25 mm (12 h)-1, respectively. Skill scores for
other event thresholds are presented in online appendix B. While both rank analog
and analog forecasts provided a significant improvement with respect to the raw
guidance, the skills of the warm-season forecasts at shorter leads from the newer
analog method for the > 1 mm event were slightly lower skill than those of the rank-
analog method. This was likely because the > 1 mm event was not an especially
rare event at most locations, so the increased sample size with the new analog
method did not compensate for the other relative advantages of using a rank-analog

rather than a straight analog approach. Considering the skill for the > 25 mm event
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in Fig. 3, the new analog procedure did provided a skill improvement, especially for
shorter-lead forecasts during the cool season. In these circumstances, the day +2
analog forecasts with supplemental locations were more skillful than the day +1
rank analog forecasts, and both were notably higher in skill than the raw ensemble.
Why was there greater improvement of heavy precipitation forecasts with the new
analog procedure in winter? Though not confirmed, we hypothesize that in winter
there was higher intrinsic skill of the forecasts than in summer, due to the different
phenomena driving precipitation with their different space and time scales:
synoptic-scale ascent in mid-latitude winter cyclones, thunderstorms during the
summer season. Further, in wintertime, there were larger fluctuations of the
probabilities about their long-term climatological mean with meaningful signal.
Thus the additional samples helped refine the estimates of O|F, the conditional
distribution of observations given the forecast (HWO06, eq. 3), thereby improving the
probabilistic forecast, despite the lack of pattern matching used in the rank-analog
approach.

Figure 4 shows maps of Brier skill scores for the > 1 mm event at the 60-72-h
lead time. There was little difference between the two analog forecasts, consistent
with Fig. 2. Both were more skillful than the raw ensemble, which had BSS < 0 over
a significant percentage of the country, in part due to sampling error (Richardson
2001) but mostly due to systematic errors and sub-optimal treatment of model
uncertainty in the GEFS. Skill for all methods was largest in mountainous areas
along the US West Coast, with the predictable phenomena of the flow from mid-

latitude cyclones impinging upon the stationary topography. Figure 5 shows maps
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of skill for the > 25 mm event at the 60-72-h lead time. There appeared to be a
general improvement in skill across the country for the analog with supplemental
locations. Again, raw ensembles were notably unskillful across drier regions of the
US but competitive in a few select locations in the Sierra Nevada mountain range.
Maps for other forecast lead times and thresholds are provided in online Appendix B.
The resulting post-processed forecast guidance was consistently reliable, too.
Figure 6 provides reliability diagrams for the three methods for > 25 mm and 60-72
h forecast leads; again, see appendix B for more diagrams at other leads and event
thresholds. Both analog methods were quite reliable, though the analog with
supplemental locations had somewhat more forecasts issuing high-probabilities
(greater sharpness). Both analog methods were much less sharp than the raw
forecast guidance but more reliable. Why was the analog method with
supplemental locations sharper? This was because the extra training sample size
permitted the identification of closer analogs than with the rank-analog approach.
As noted in HWO06, a general challenge with the analog or rank-analog forecasts
(therein without supplemental location data) of extreme events was their inability

to find many forecasts dates with amounts that were similar in magnitude.

4. Discussion and conclusions

This article has demonstrated an improved method for post-processing that
provides dramatically improved guidance of probabilistic precipitation when paired
with a reforecast data set of sufficient length and precipitation analyses of sufficient

quality. This article provides additional evidence to support the assertion that the
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regular production of weather reforecasts will help with the objective definition of
high-impact event probabilities.

Though the use of supplemental locations was shown to provide significant
improvement to heavy precipitation forecast calibration, our examination of
possible methods for choosing the location and number of supplemental location
data was far from systematic. The methods for the selection of these locations
deserves further study.

This method may provide a useful benchmark for comparison of other
methods. Whereas the analog method here has been shown to work well with
larger reforecast data sets, these are not always available. We anticipate
subsequent studies will compare the efficacy of analog methods with respect to
other (e.g., parametric) post-processing methods, including when using much
smaller training sample sizes. In this way we hope to understand whether the
choice of a preferred post-processing algorithm is robust from small to large

training sample sizes.
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Figure captions

Figure 1. [llustration of the location of supplemental locations and their
dependence on the analyzed precipitation climatology. Colors denote the 95t
percentile of the analysis distribution for the month of January, based on 2002-2013
CCPA data. Supplemental data locations are also shown. The larger symbols indicate
sample locations where supplemental data is sought, and the smaller symbols
indicate the chosen supplemental locations.

Figure 2: Brier skill scores for the > 1 mm (12h)-! event over a range of lead times
as a function of the month of the year. (a) Skills of forecasts from the new analog
method with 19 supplemental locations; (b) skills of forecasts from the older rank-
analog method for comparison; (c) skills of forecasts from the 11-member raw
ensemble guidance.

Figure 3: Asin Fig. 2, but for the > 25 mm (12h)-! event. The climatology is
computed separately for each month and each ~1/8-degree grid point location.
Figure 4: Maps of yearly 60-72 h forecast Brier Skill Scores, for probabilistic
forecasts of the > 1 mm (12 h)'! event, generated from (a) analog forecasts with 19
supplemental locations, (b) rank analog forecast with no supplemental locations,
and (c) 11-member raw ensemble.

Figure 5: Asin Fig. 4, but for > 25 mm event.

Figure 6: Reliability diagrams for the > 25 mm event for 60- to 72-h forecasts. (a)
analog forecasts with 19 supplemental locations, (b) rank analog forecast with no

supplemental locations, and (c) 11-member raw ensemble.
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Figure 1. Illustration of the location of supplemental locations and their
dependence on the analyzed precipitation climatology. Colors denote the 95t
percentile of the analysis distribution for the month of January, based on 2002-2013
CCPA data. Supplemental data locations are also shown. The larger symbols indicate
sample locations where supplemental data is sought, and the smaller symbols
indicate the chosen supplemental locations.
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Figure 2: Brier skill scores for the > 1 mm (12 h)-! event over a range of lead times
as a function of the month of the year. (a) Skills of forecasts from the new analog
method with 19 supplemental locations; (b) skills of forecasts from the older rank-
analog method for comparison; (c) skills of forecasts from the 11-member raw
ensemble guidance. (d) skill difference, analog minus rank analog; (e) skill
difference, rank analog minus raw.
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Brier skill scores, > 25mm

(a) Analog, (b) Rank analog
supplemental locations no

supplemental locations (c) Raw ensemble
T T T T T T T T T T T T T I I I I T T T T
Lo N : : Day 0.5-1.0
Day 1.5-2.0] :
Day 2.5-3.0
Day 3.5-4.0f.:..
Day 4.5-5.0
Day 5.5-6.0| :
Day 6.5-7.0} "~
Day 7.5-8.0

19

osf osf

T

08F i | oaf

o> o4
o> o4

Brier Skill Score
Brier Skill Score

(d) Skill difference, (e) Skill difference,

analog - rank analog rank analog - raw
T T T T T T T T T

057

0.4}

o
w

Brier Skill Score
o
o
(9]
o
N

Brier Skill Score

°
i

0.00 - =:

0.0

—0.051

424
425

426  Figure 3: Asin Fig. 2, but for the event of greater than > 25 mm (12 h)-1.
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Brier Skill Scores for 060 to 072-h forecasts, > 1mm event

(a) Analog forecast (with 20 supplemental locations)
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431  Figure 4: Maps of yearly 60-72 h forecast Brier Skill Scores, for probabilistic
432  forecasts of the > 1 mm 12 h-! event, generated from (a) analog forecasts with 19
433  supplemental locations, (b) rank analog forecast with no supplemental locations,
434  and (c) 11-member raw ensemble.
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Brier Skill Scores for 060 to 072-h forecasts, > 25mm event
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437  Figure 5: Asin Fig. 4, but for > 25 mm (12 h)! event.
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Reliability for 060-072-h, > 25mm
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Figure 6: Reliability diagrams for the > 25 mm (12 h)-1 event for 60- to 72-h
forecasts. (a) analog forecasts with 19 supplemental locations, (b) rank analog
forecast with no supplemental locations, and (c) 11-member raw ensemble.
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