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ABSTRACT

This paper explores the degree to which short-term forecasts with global models might be improved if

clouds were fully included in a data assimilation system, so that observations of clouds affected all parts of the

model state and cloud variables were adjusted during assimilation. The question is examined using a single

ensemble data assimilation system coupled to two present-generation climate models with different treat-

ments of clouds. ‘‘Perfect-model’’ experiments using synthetic observations, taken from a free run of the

model used in subsequent assimilations, are used to circumvent complications associated with systematic

model errors and observational challenges; these provide a rough upper bound on the utility of cloud ob-

servations with these models. A series of experiments is performed in which direct observations of the model’s

cloud variables are added to the suite of observations being assimilated. In both models, observations of

clouds reduce the 6-h forecast error, with much greater reductions in one model than in the other. Im-

provements are largest in regions where other observations are sparse. The two cloud schemes differ in their

complexity and number of degrees of freedom; the model using the simpler scheme makes better use of the

cloud observations because of the stronger correlations between cloud-related and dynamical variables

(particularly temperature). This implies that the impact of real cloud observations will depend on both the

strength of the instantaneous, linear relationships between clouds and other fields in the natural world, and

how well each assimilating model’s cloud scheme represents those relationships.

1. Why observations of clouds are not included in
present-day assimilation systems

Accurate weather forecasts rely to a large extent on

obtaining accurate estimates of the instantaneous state

of the atmosphere as initial conditions for the forecast

model. Those initial conditions are produced using data

assimilation, a process that combines observations with

short-term forecasts to produce an estimate of the state

that is as close as possible to the observations while

remaining consistent with the error statistics of the model

and the observations.

In the context of data assimilation, the complete de-

scription of all prognostic variables at all locations is

called the ‘‘state vector,’’ while the (possibly trans-

formed) subspace of this state adjusted during assimi-

lation is called the ‘‘control vector.’’ For models of the

earth’s atmosphere the state vector comprises the values

of wind velocity, temperature, and water vapor (or related

quantities such as vorticity, divergence, and potential

temperature) in each model grid cell. In comprehensive

models the state vector also includes variables related to

clouds, typically the concentration of one or more spe-

cies of condensed water (liquid, ice, or the combination).

Models may also include some representation of the

subgrid-scale distribution of cloud condensate, the simplest
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of which is the proportion of the grid cell occupied by

clouds, usually called the ‘‘cloud fraction.’’ In the global

models with which we are concerned, the equations

linking these variables to the rest of the state vector

include the effects of both explicit processes (e.g., con-

densation via large-scale cooling) and parameterized

processes (e.g., detrainment from moist convection), and

different cloud schemes are coupled more or less loosely

to the rest of the model state.

Although clouds may be part of the state vector,

clouds are shunned in most assimilation systems: cloud

variables are not part of the control vector, nor are ob-

servations of cloud quantities typically included in the

observing network. There are both theoretical and

practical reasons for this, most of which are discussed in

the review paper by Errico et al. (2007). Among the most

daunting are the difficulties inherent in observing clouds,

including non-unique relationships between observables

and cloud variables and the difficulty of obtaining repre-

sentative measurements in highly variable cloud fields. In

addition, the parameterizations that connect cloud vari-

ables to other aspects of the model state, especially in global

models, contain thresholds and strong nonlinearities. This

implies that cloud variables are likely to violate many of

the principles underlying operational data assimilation

methods, including linear relationships between variables

(as expressed by the covariance matrix) and a Gaussian

distribution of model background and observational errors.

Progress has been made recently in using ‘‘cloud-

affected’’ observations. At the European Centre for

Medium-Range Weather Forecasts, for example, experi-

ments have been done in which a diagnostic cloud scheme

(Tompkins and Janisková 2004) determines cloud prop-

erties and their effect on the predicted satellite infrared

radiance observations during the minimization steps of

a variational assimilation scheme, leading to reduced er-

rors in temperature and humidity fields (Chevallier et al.

2004). Experiments with other observation types in global

models have had a more neutral impact (Benedetti and

Janisková 2008). To date, however, clouds have been

omitted from the control vector in global data assimila-

tion, so that the model’s clouds in an analysis are poten-

tially inconsistent with the rest of the model’s state.

This inconsistency may not be a problem. Clouds react

quickly to environmental conditions. They are produced

chiefly by grid-scale (parameterized) physics (Tiedtke

1993; Wilson et al. 2008) and are not subject to large-scale

balance constraints (Errico et al. 2007). All these factors

imply that clouds in a large-scale model may come along

for the ride if the rest of the model state is accurate.

But data assimilation is, after all, designed specifically

to wring the maximum amount of information from every

observation, and there may be benefits to including the

cloud state in assimilation that have yet to be uncovered.

In cloud-scale models (i.e., those in which clouds are ex-

plicitly resolved) the assimilation of cloud observations can

lead to improved estimates of the model state (Vukicevic

et al. 2004, 2006), and one can imagine that some of this

benefit might be available to global models with parame-

terized clouds.

Here we investigate the amount by which short-range

forecasts produced by global models might be improved

by fully including clouds in the data assimilation process,

both by assimilating observations of clouds and by in-

cluding the cloudy part of the model state in the control

vector. We examine two global models using two dif-

ferent cloud schemes within a single ensemble data

assimilation system. We consider the best-case scenario

in which the assimilating model is assumed to be perfect

and the cloud variables used in each model’s state

vector are observed directly. The resulting impact of

cloud observations on the state estimates in the two

models are an optimistic estimate of what may be ach-

ieved in more realistic situations, with real cloud ob-

servations and imperfect models. The next section

provides an overview of the two models and the data

assimilation system. This is followed by a description of

perfect model experiments that assess the improvement in

analyses and short-range forecasts stemming from the

assimilation. The final section describes the practical rel-

evance of our results.

2. Perfect model experiments with two forecast
models and a single data assimilation system

Current data assimilation systems may be divided into

two broad categories: those based on variational analyses

and those based on ensemble filters (Evensen 1994;

Houtekamer and Mitchell 1998). Variational systems are

more common in operational centers, but the two fami-

lies are competitive in performance (Houtekamer and

Mitchell 2005; Kalnay et al. 2007; Buehner et al. 2010).

One important distinction is that ensemble assimilation

systems do not require an adjoint or tangent-linear ap-

proximation to the forecast model. This is particularly

attractive when assimilating clouds because the thresh-

olds and strong nonlinearities in most cloud schemes

make adjoints especially hard to construct. From a prac-

tical point of view, too, the ability to use ensemble as-

similation schemes without having to build an adjoint also

makes it relatively easy to use different forecast models

and/or different cloud schemes with little additional ef-

fort. We have taken advantage of this simplicity to couple

two global models of the atmosphere to a single ensemble

data assimilation system, allowing us to examine the po-

tential benefits of assimilating cloud observations with
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two different cloud schemes using uniform observational

networks and data assimilation algorithms.

a. Two global forecast models

One model is the Community Atmosphere Model

(CAM) 3.5.06, a descendent of version 3 of the atmo-

spheric component of the National Center for Atmo-

spheric Research (NCAR) Community Climate System

Model (Collins et al. 2006). The most significant differ-

ence with respect to CAM 3 is the change to a latitude–

longitude version of the Lin–Rood finite volume dynamical

core (Lin and Rood 1996; Lin 2004). The default ver-

sion of this core includes both algebraic and Fourier polar

filters; we have opted to use only the latter to avoid in-

frequent, but large, transient oscillations in wind speed at

the transition between the filters [see Fig. 8 in Anderson

et al. (2009)]. CAM 3.5.06 also includes small changes to

the convection and cloud schemes. We run the model with

a grid spacing of 1.98 3 28. The cloud scheme contains

separate prognostic equations for cloud liquid and ice

water content (Boville et al. 2006); cloud fraction is de-

termined diagnostically.

The second model is an interim version of the At-

mospheric Model (AM) developed at the Geophysical

Fluid Dynamics Laboratory (GFDL). This is a descen-

dent of the atmospheric component of the atmosphere–

ocean model CM2.1 (Delworth et al. 2006) that couples

the physics parameterizations developed for atmo-

sphere model (AM2; GFDL Global Atmospheric Model

Development Team 2004) to another variant of the Lin–

Rood finite-volume core, this one on a 28 3 2.58 grid. The

cloud scheme follows Tiedtke (1993) and includes prog-

nostic equations for cloud fraction as well as cloud liquid

and ice water contents.

b. An adaptable data assimilation system

We use AM2 and CAM in conjunction with the Data

Assimilation Research Testbed (DART; Anderson

et al. 2009). DART is a flexible ensemble data assimi-

lation system that can be coupled to new models rela-

tively easily. The experiments described below use an

ensemble adjustment Kalman filter (EAKF; Anderson

2001) and 80 member ensembles. We assimilate obser-

vations in 6-h time windows centered on 0000, 0600,

1200, and 1800 UTC. The influence of observations is

localized (Gaspari and Cohn 1999) to limit spurious

correlations that might arise due to sampling from small

ensembles, and the prior distribution of model states is

inflated by an amount that adapts in space and time

(Anderson 2007, 2009). Inflation is normally used to

prevent systematic model errors and nonlinearities from

causing the ensemble to drift far from the observations,

so that the latter are rejected; in equilibrated perfect

model experiments inflation is needed, in principle, only

to account for sampling error due to the finite ensemble

size and should normally be quite near one.

We developed this combination—the DART data

assimilation system coupled to two models normally

used to make climate projections rather than weather

forecasts—specifically to understand the role that cloud

schemes play in determining the utility of cloud ob-

servations. We do not expect that we have obtained

optimum forecasts. The data assimilation system, for

example, has not been carefully tuned to work with ei-

ther model (and, in fact, this is the first time AM2 has

been coupled to a data assimilation system at all). Nei-

ther of our forecast models is operational and, though

variants have been tested using short forecasts from

externally imposed initial conditions (see, e.g., Xie et al.

2008; Hannay et al. 2009), the models were developed to

make climate projections, and neither has been used

routinely as part of a data assimilation/forecasting cycle.

As we show below, the benefit of accounting for clouds

during data assimilation depends on the details of the

model (and, presumably, the data assimilation system,

observation networks, etc.). Our results illuminate cer-

tain classes of behavior but do not quantitatively predict

the benefit in other circumstances.

c. Generating perfect observations

We assess the maximum benefit that might be provided

by cloud observations using perfect model experiments

(i.e., observing system simulation experiments with in-

terpolated identity observations). These use a single in-

tegration of the predictive model as the ‘‘truth’’ from

which synthetic observations are obtained. Perfect model

experiments eliminate systematic differences between

model and observations. They also remove many of the

observational problems associated with interpreting cloud

observations during data assimilation, especially those

related to representativeness and nonlinear forward op-

erators. This maximizes the benefit of real cloud obser-

vations to each model (subject to further tuning of the

model for forecasts and its integration with the data as-

similation system).

We consider two sets (networks) of observations. Con-

ventional observations include measurements of wind

velocity components u and y, temperature T, and specific

humidity q obtained from radiosondes; wind velocity and

temperature from commercial aircraft [i.e., the Aircraft

Communications and Addressing System (ACARS)]; and

estimates of wind velocity obtained from satellite cloud

tracking. Observation locations, times, and variances

come from the metadata describing the observations used

in the National Centers for Environmental Prediction

(NCEP) reanalysis (Kistler et al. 2001) for July 2007.

948 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



Synthetic observations of cloud quantities are made

on a regular geodesic grid with a spacing of roughly 28 at

the equator, so that there is a maximum of one obser-

vation per model grid cell and roughly 1200 observation

locations globally. Identity observations are produced

for the cloud variables used to describe the model state,

that is, cloud liquid and ice specific humidity (ql and qi,

respectively) in both models and cloud fraction cf in

AM2. Observations of clouds are produced at 300, 500,

700, and 900 hPa from the model state at the center of

each time window. The error (standard deviation) in liq-

uid and ice water contents is specified as 10% of the value

of the observation, with a minimum of 1026 kg kg21,

while the error in cloud fraction is 5%, ramping linearly to

1% when cloud fraction is within 10% of its upper or

lower bound. These error estimates are arbitrary, though

they do reflect the fact that cloud fraction, which relies

only on distinguishing clouds from clear air, is easier to

observe than any continuous variable.

Synthetic observations are created from a free run of

the model. We advance a single copy of the model be-

tween observation times 6 h apart using boundary con-

ditions and other forcings from July 2007; the state of

this realization is treated as ‘‘truth.’’ For each observa-

tion in each network, we use the appropriate forward

operator (i.e., linear interpolation) to predict the value

of the observation from the model state, then add ran-

dom noise consistent with a Gaussian distribution of

errors with variance specified by the observation error

variance. This produces synthetic observations consis-

tent with both the time-evolving state of the model

and with the uncertainty associated with each observa-

tion. Cloud water and ice contents are positive definite,

so they must be set to 0 where the synthesized obser-

vations (truth plus observational noise) are less than 0,

while cloud fraction is also bounded above. These trun-

cations introduce small biases in the synthesized obser-

vations that we have ameliorated somewhat by using the

variable error estimates described in the previous para-

graph.

3. The impact of assimilating cloud observations

a. Generating test ensembles

We begin with ensembles that represent each model’s

climatological spread during July. We construct these

ensembles by extracting the conditions on 1 July for each

year of a 20-yr simulation and integrating the ensemble in

5-day increments until we have 80 sets of initial conditions.

We spin up the assimilation system from this climatolog-

ical state by assimilating the synthetic conventional obser-

vations described in section 2c for 10 days. (We made the

somewhat arbitrary decision to exclude specific humidity

observations, but this has very little effect, as shown in

section 3c.) The ensembles begin to equilibrate with re-

spect to the observations within a few days (Fig. 1): the

RMS difference in all quantities between the ‘‘truth’’ and

the ensemble mean prior (6-h forecast) distribution de-

creases with time and is still decreasing slowly at the end

of 10 days. (Full equilibration takes about a month.)

Biases (not shown) are small (’5%–10% of the RMSE at

any given time), which reflects the fact that the observa-

tions are constructed so that the model has no systematic

errors.

Median inflation approaches a value slightly greater

than unity as the ensembles move toward equilibration,

again because the observations are constructed so as to

have no systematic errors. Figure 2 shows the inflation

for T; inflation is quantitatively similar for different

variables at corresponding times and locations. During

the first few assimilation cycles, however, the inflation is

greater than one, particularly for AM2. Climatological

ensembles are broad by construction; to the extent that

the distributions are also non-Gaussian, one expects

model background error estimates to be larger than

optimal. Under these circumstances observations are

weighted too heavily and the ensemble spread reduced

too aggressively. Inflation is then needed in subsequent

assimilation cycles because the observations appear to

be improbable. This issue is more pronounced for AM2

than for CAM.

The assimilation process accounts for errors in both

model and observations when fitting the model ensem-

ble to the observations, so we expect the RMSE and

ensemble spread of observed variables to be commen-

surate with each other in perfect model experiments. It

is a little surprising, then, that the ensemble spread in

AM2, particularly in T, is markedly smaller than the

RMS (Fig. 1). Inflation could cause this behavior, but it

is quite near one for most of the time period (Fig. 2).

This difference more likely reflects the fact that the lo-

calization half-widths are the same (0.2 rad) in both

experiments. The localization scale is chosen to maxi-

mize the utility of observations while minimizing sam-

pling errors from finite ensembles, and there is no

a priori reason to expect the same value to work equally

well in both models. In particular, deficient spread in

AM2 is consistent with that model having correlations

more localized in space than in CAM because the re-

lationships among variables are more nonlinear and/or

higher-dimensional. We have chosen to live with the

suboptimal performance of the DART 1 AM2 system,

rather than tuning the localization scales for each model,

so that results for the two models can be compared di-

rectly.
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Ensemble data assimilation determines the covari-

ances between state variables as a function of time and

space from the ensemble itself, then adjusts all variables

consistent with the observations, the observation errors,

and the background errors (as modeled by the ensemble

covariance). This means that estimates of all quantities,

including those not directly observed, are improved by

observations (as long as the covariances between these

quantities are nonzero). In particular, errors in specific

humidity and cloud water content decline as the en-

semble adjusts to the observations over time (Fig. 1),

though the RMSE, particularly for cloud quantities, is

much larger than the ensemble spread. These im-

provements suggest that the converse will also hold,

that is, that sufficiently accurate observations of cloud

parameters may also improve estimates of the overall

state of the model.

b. Correlations between cloud and other
control variables

One primary difference between clouds and other

parts of the model state has to do with spatial scale:

cloud variables in global models are largely determined

by grid-scale processes (parameterizations), while the

relationships between temperature, pressure, and winds

reflect physics on synoptic scales resolved on the model

grid. To the extent that cloud processes are localized in

space, one can imagine that correlations between cloud

variables and temperature, winds, and humidity, might

FIG. 1. Ensemble spread (dashed lines) and RMS differences between the 6-h forecast prior ensemble mean and the

single-model realization used as ‘‘truth’’ (solid lines) when conventional observations of temperature and wind velocity

are assimilated in perfect-model experiments. Results from CAM are shown in red; AM2 is in blue. The initial en-

sembles reflect climatology. The ensembles come into equilibrium with the observations over the space of a few days,

though errors are still decreasing slowly even at the end of the 10-day window. Observations of T, u, and y also loosely

constrain both water vapor specific humidity q and cloud water specific humidity ql, because these quantities are

correlated with the observed quantities. Ensemble spread in temperature is deficient (i.e., substantially smaller than the

RMS error) for AM2; this likely indicates that the assimilation would benefit from increased localization.
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also be strongly localized, and hence for observations of

clouds to have minimal impact on other aspects of the

state during data assimilation. But this fear turns out to

be unwarranted. Figure 3 shows the increments, com-

puted at the last time step of the equilibration runs de-

scribed above, in T and ql due to individual observations

of T and ql in CAM. These example observations are

made at an arbitrary level within a synoptic storm, and

localization is not applied. The increments are pro-

portional to the correlation of the field being incre-

mented with the variable being observed. Temperature

is autocorrelated across much larger spatial scales than

ql, consistent with the primary control of ql by small-

scale processes. Nonetheless, observations of T and ql

influence each other across multiple grid points, which

further supports the idea that observations of ql have the

potential to decrease the overall error in the analysis.

These correlations also suggest that simply including

clouds in the control vector might also increase analysis

and forecast skill, since observations of T, say, produce

better estimates of cloud specific humidities, and hence

better estimates of diabatic heating due to cloud pro-

cesses such as precipitation. We return to this point

below.

c. Assimilating observations of clouds

We evaluate that potential by assimilating a range of

additional observation types beginning on day 11. The

simplest case adds conventional observations of specific

humidity q. We also perform assimilations adding, in

turn, cloud liquid water specific humidity ql, cloud ice

water specific humidity qi (for both models), and cloud

fraction cf for AM2 alone.

Root-mean-square errors in 6-h forecasts of all vari-

ables continue to decrease slowly with time (Fig. 4) as

the runs continue to equilibrate, but adding observations

of q alone does not strongly affect the assimilation: the

RMSE in all variables is only 1%–2% smaller than in

parallel runs (not shown) that neglect q. The ensemble

spread in q remains deficient in both models. This is

because the observational error specified by NCEP,

which ranges from 0.001 to 0.01 kg kg21, is substantially

larger than the RMS error, and assimilating many ob-

servations, even those with large error, acts to reduce

the spread even if the bias or RMSE is unaffected [see,

e.g., Eq. (18) in Anderson (2003)]. For AM2 the RMSE in

q is notably larger at 0000 and 1200 UTC than at inter-

vening times (i.e., the trace of RMSE is somewhat jag-

ged in Fig. 4); this is the result of variable observation

density (observations of q in our network are an order of

magnitude less numerous at 0600 and 1800 UTC than at

0000 and 1200 UTC) and more rapid error growth in the

q field in AM2 than in CAM.

Assimilating observations of cloud variables reduces

the RMSE of all state variables in 6-h forecasts in both

models, but the benefit is much larger in CAM than in

AM2. Figure 5 shows the decrease in RMS error in 6-h

forecasts (the prior ensembles), expressed as the ratio of

the error in assimilation cycles that make use of cloud

observations to those that do not (i.e., the experiments

shown in Fig. 4). Assimilating observations of ql using

CAM reduces the error by roughly 20% for all variables

by the end of the 10-day experiment. The amount of

benefit increases with time, suggesting that the in-

formation added by cloud observations persists in both

time and space. Results using AM2 are more mixed. As

with CAM, much of the benefit of cloud observations in

AM2 can be realized using a single kind of observation

(ql or cf), although observations of qi do reduce the error

in qi itself. But improvements in forecasts of q and ql in

AM2, though measurable, are much more modest than

in CAM, and the amount of inflation in AM2 increases

with the density of cloud observations being used

(Fig. 6). This suggests that the linear correlations be-

tween cloud and other state variables are weaker and/or

more localized in AM2 than in CAM, since numer-

ous weakly correlated observations act to erroneously

FIG. 2. Median value of adaptive inflation applied to the tem-

perature field. Inflation is in units of relative variance, and values

are similar for all model variables. Inflation is normally used to

account for systematic model error; our experiments use synthetic

observations constructed without such error, so inflation values

larger than unity indicate the degree to which the model and as-

similation are well-tuned to each other, particularly with respect to

localization. Large values of inflation for AM2 in the first day or two

suggest that climatological ensembles are poorly fit with Gaussian

distributions.
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decrease the ensemble spread1 requiring inflation to

compensate. Continued application of inflation also in-

creases the RMSE by increasing the ensemble spread,

thereby giving too much weight to the observations; by

the end of the 10-day window this effect is large enough

to substantially reduce the benefit brought about by

assimilating cloud observations.

Observations of cloud fraction are at least as effective in

reducing error in AM2, in which this variable is prognostic,

as are observations of cloud water. This is encouraging

since cloud fraction, which requires only the ability to dis-

tinguish clear and cloudy skies, is substantially easier to

observe than cloud water or ice concentrations.

The value of the cloud observations is greatest where

other observations are more sparse. Figure 7 shows the

zonally averaged benefit of assimilating ql, expressed as

the ratio of the RMS error in runs in which ql is assimi-

lated to those in which it is not, averaged over the last five

days of the runs shown in Fig. 5. The amount of benefit

depends on the variable in question but is uniformly

largest in the Southern Hemisphere, especially south of

308S, where all other kinds of observations are sparse. But

the benefit does not derive solely from having any kind of

FIG. 3. Increments in temperature T and cloud liquid specific humidity ql due to individual observations of these

variables in CAM in a synoptic storm over the Pacific Ocean. Increments are shown in plan view at the observation

elevation (;788 hPa), and localization has not been applied. The top-left and bottom-right figures are proportional

to the autocorrelation of T and ql; autocorrelation scales for ql are much smaller than for T because ql is primarily

determined by grid-scale processes. The top-right and bottom-left figures are proportional to the correlation of the

variables with each other. These figures illustrate how observations of T can improve the analysis of ql (see Fig. 1) and

why observations of ql might improve the analysis of T.

1 When an observation is perfectly correlated with a state vari-

able, there is no sampling error in the regression used to update the

state variable ensemble given increments for the observed variable.

As the expected correlation between an observation and a state

variable goes to 0, the signal-to-noise ratio in the computation of

the regression also goes to zero. The result is that observations that

are weakly correlated with a state variable are expected to cause

large erroneous reductions in the state variable’s variance.
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observation in these poorly observed parts of the globe.

We have performed (but do not show) experiments in

which synthetic GPS radio occultation observations

(Anthes et al. 2008) provide about the same number of

quasi–uniformly spaced observations as does our cloud

network; these bring about half the benefit (decrease in

RMSE) as do our cloud observations.

The covariance between cloud and other state variables

is more localized in space than, say, temperature and other

state variables (see Fig. 3), and the fact that clouds are

dominated by parameterized rather than resolved pro-

cesses (i.e., there are no large-scale, long-time balance re-

quirements for clouds) means that correlations are also

more localized in time. This implies that most of the benefit

from using cloud observations comes from their impact on

other state variables. We have found this to be true: runs

with CAM (not shown) in which cloud observations are

assimilated but clouds are not included in the control vector

FIG. 4. Ensemble spread (dashed lines) and RMSE

when conventional observations of temperature, wind

velocity, and specific humidity are assimilated in perfect-

model experiments. Assimilation begins from the final

state of the ensemble shown in Fig. 1. Root-mean-

square errors decrease with time as the ensemble

continues to equilibrate with the pseudo-observations;

observations of q decrease the global RMSE by just 1%–

2%. Large observational errors keep the spread in q de-

ficient, while faster error growth in the q field in AM2

than in CAM is responsible for the larger RMSE at 0000

and 1200 UTC (when the prior was updated with re-

latively few observations) than at 0600 and 1800 UTC.

These runs are the baseline against which improvements

due to assimilating new observations are measured.
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perform comparably to the runs shown here. The impli-

cation is that including cloud observations in existing data

assimilation systems may be beneficial independent of

whether the control vector is expanded to include clouds.

4. From perfect models toward the imperfect world

Our results imply that short-term forecast skill might

be improved if observations of clouds were fully included

in data assimilation systems, meaning that clouds are

observed directly and, secondarily, are included as part of

the assimilation control vector. The greatest benefit is

achieved where other observations are sparse, so, as with

any new kind of observation, the utility of the measure-

ments depends on the network to which the new obser-

vations are being added. The amount of benefit depends

strongly on the cloud scheme used by the model, as we

discuss in more detail in the next paragraph. Additional

FIG. 5. Improvement in 6-h forecast skill when as-

similating cloud observations, expressed as the ratio of

the RMSE in assimilation cycles that include cloud-

related observations to those that do not (e.g., the baseline

time series shown in Fig. 4). Vertical scales vary among

the five graphs, and values of 1 indicate no reduction in

RMSE. Assimilating observations of ql improve CAM

forecasts of all variables, and the benefit increases with

time; adding observations of qi adds relatively little

additional skill. Improvements in AM2 are more mod-

est, and in one case (e.g., T during the last few days)

observations of ql degrade forecast skill. Assimilating cf

in AM2 provides as much benefit as assimilating ql.
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factors will contribute to the challenge of assimilating

cloud observations operationally, including model bias,

questions of representativeness, and the difficulty of re-

lating available cloud observations to model state. To

quote one of the referees of this paper, ‘‘the devil is in the

details,’’ and there remains a large distance between our

experiments and the assimilation of real observations of

clouds into an operational forecast model. Nonetheless,

our results allow us to draw several practical conclusions.

Cloud observations are much more effective at re-

ducing errors in CAM than in AM2. Some of this dif-

ference may be attributed to the assimilation system not

having been tuned carefully to either model, and par-

ticularly to our use of a localization scale that is larger

than optimal for AM2. In addition, Fig. 3 suggests that

covariances between cloud and other variables extend

across smaller spatial scales than those among more

traditional state variables, even in CAM, so that it may

be useful to localize the impact of cloud observations

more strictly than other observations. But some of the

difference between CAM and AM2 almost certainly lies

in differences in the schemes controlling the evolution of

clouds in each model. In particular, AM2’s cloud scheme

has an additional degree of freedom—a prognostic equa-

tion for cloud fraction in addition to the equations for

cloud water and ice. In the climate simulations for which

these models are designed, AM2’s cloud field is in some-

what better agreement with observations than CAM

(Pincus et al. 2008), but the additional degree of freedom

appears to weaken the instantaneous correlations between

cloud and other variables on which data assimilation re-

lies, which makes observations of cloud less useful in re-

ducing analysis and forecast errors in AM2 than in CAM.

Thus a cloud scheme that produces more accurate fore-

casts may not be the cloud scheme best suited for use in

data assimilation (Tompkins and Janisková 2004) in a

perfect-model setting. Real observations of clouds will be

useful only if 1) covariances between clouds and other

variables in nature are strong enough over large enough

scales to be resolved by the model and 2) the model is able

to faithfully reproduce those covariances. We infer, too,

that the utility of observations related to highly parame-

terized processes depends more strongly on the details of

the forecast model used in the assimilation system than for

observations related to resolved dynamics.

FIG. 6. Median value of adaptive inflation applied to the tem-

perature field during assimilation with varying sets of cloud-related

observations. Inflation values for CAM (red lines) are near unity in

all circumstances: when not assimilating any cloud-related obser-

vations (solid line), assimilating cloud liquid water specific humidity

ql (long dashes), or assimilating ql and cloud ice specific humidity qi

(medium dashed lines). For AM2, however, the amount of inflation

increases as the number and diversity of observations increase. (Blue

lines indicate experiments analogous to those performed with CAM;

green and purple lines indicate experiments involving cloud fraction

cf .) This indicates that correlations between cloud-related variables

and other aspects of the model state are smaller in AM2 than in

CAM, so that observations tend to reduce the ensemble spread,

which then requires larger values of inflation.

FIG. 7. Ratio of root-mean-square error in the prior distribu-

tion, as a function of latitude, during the last 5 days of assimilation

cycles that include observations of ql to those that do not use these

observations. Ratios less than unity indicate the degree to which

including cloud observations improves the 6-h forecast. CAM is

used as the forecast model. Improvements in T are shown as solid

lines, q as dashed lines, and ql as dotted lines. Cloud observations,

which are spaced evenly over the globe and available every 6 h,

improve the forecasts most where conventional observations are

sparse, especially in the Southern Hemisphere and near the northern

polar regions.
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We have used interpolated identity observations (i.e.,

observations that map directly onto state variables),

and, for clouds, the distance between what can be ob-

served and how the clouds are represented in a model

can be particularly large. Many observation types, in-

cluding observations of cloud optical thickness or liquid

water path, integrate cloud properties vertically within

a column. Unfortunately, integral measures have not

been particularly effective at improving assimilation

performance (Geer et al. 2008). Clouds in nature are

variable on scales much smaller than are resolved by

even high-resolution forecast models. This is why clouds

in global models are so sensitive to the details of the

cloud parameterization, but it is also why obtaining

representative observations of clouds for practical use is

so difficult (Errico et al. 2007).

Cloud fraction is perhaps the exception: this quantity

may be observed fairly well using a range of instruments,

since segregating clear and cloudy skies is a far simpler

observational task than determining the value of a con-

tinuous variable like specific humidity, and values are

naturally representative of an area mean. Since obser-

vations of this quantity improve 6-h forecasts with AM2

at least as much as assimilating observations of cloud

liquid, one can imagine that assimilating cloud fraction

(in models where this value is prognostic) from the top

of the atmosphere down to and including the level of the

highest cloud observed (so that masking of low clouds by

higher clouds is not an issue) might be a first practical

step.
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