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ABSTRACT

This work uses long-term lidar and radar retrievals of the vertical structure of cloud at the Atmospheric

Radiation Measurement (ARM) program’s Southern Great Plains site to evaluate cloud occurrence in

multiyear runs of a cloud system–resolving model in three configurations of varying resolution and sophis-

tication. The model is nudged to remain near the observed thermodynamic state and model fields are pro-

cessed to mimic the operation of the observing system. The model’s skill in predicting cloud occurrence is

evaluated using both traditional performance measures that assume ergodicity and probabilistic measures

that do not require temporal averaging of the observations.

The model shows considerable skill in predicting cloud occurrence when its thermodynamic state is close to

that observed. The overall bias in modeled cloud occurrence is relatively small in all model runs, suggesting that

this field is relatively well calibrated. The Brier scores attained by all configurations also suggest considerable

model skill. Greater differences in performance are found between seasons than between model configurations

during the same season, despite substantial differences between the computational costs of the configurations.

Several significant seasonal dependencies are identified, most notably greater conditional bias, but better timing,

of boundary layer cloud in winter, and substantially less conditional bias in high cloud during summer.

1. Systematic evaluation of cloud-scale models

Cloud-scale models, such as cloud system–resolving

models (CSRMs) were originally developed to investi-

gate cloud-scale processes and were used to simulate a

relatively narrow range of situations. Their success at

simulating observations, especially by comparison with

parametric representations taken from global models

(Randall et al. 2003), has led them to be used as a bridge

between global models and observations (Randall et al.

1996) and to provide a basis for parameterizations in

global models (Lock et al. 2000). Multiscale models of

the atmosphere take this logic to its extreme and use

a CSRM within each grid cell to replace existing pa-

rameterizations. As a result, multiscale models use the

CSRM in circumstances far beyond those in which they

have been evaluated.

Most CSRM evaluations are made using relatively

short case-study periods for which detailed observations

are available and, because computational cost is not the

driving factor, the model may be run at high spatial

resolution. When CSRMs are used in global models,

however, they are run at much lower resolution, and

model performance at these resolutions is not a fore-

gone conclusion. CSRMs used in global models are also

subject to a much wider range of atmospheric conditions

than are explored in most case studies, and evaluation of

the CSRM should logically follow suit.

What observations may be used to evaluate CSRMs

over such a wide range of conditions? One possibility is

the ground-based measurements made at observatories

operated by the Atmospheric Radiation Measurement

(ARM) and Cloudnet programs. These sites combine

retrievals from upward-pointing active remote sensing

instruments (radars and lidars) to produce long-term,

high-frequency records of the vertical structure of

clouds (e.g., Clothiaux et al. 2000). The main difficulty

with using these observations is that they are pointlike,

whereas model predictions are defined at the larger

spatial scales of model domains.
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Pointlike measurements are usually compared to the

output of large-scale models by invoking the ergodic

hypothesis, which asserts that observations averaged

over time are equivalent to the spatial mean of the field.

This approach relies heavily on identifying optimal av-

eraging scales because the ergodic hypothesis fails if

significant differences exist between the spatial and

temporal statistics of cloud in either the model or the

observations, making the application of many measures

at best difficult and often inappropriate.

An alternative is to apply probabilistic techniques

developed to verify ensemble forecasts (Jakob et al.

2004). These techniques are well established in nu-

merical weather prediction but have seldom been ap-

plied to cloud models. They are conceptually appealing

because they bridge the disparities of scales without

reducing the information content of the observations

or relying on time averaging. However, it is not clear

if this approach has any demonstrable advantage in

practice, or even if the measures are sensitive enough

to distinguish between the performances of different

models.

Here we use both traditional and probabilistic methods

to evaluate the performance of a CSRM in predicting

cloud occurrence under a wide range of atmospheric

conditions. We consider three model configurations

of varying spatial resolution and sophistication to

quantify trade-offs between model performance and

computational cost. We focus on forecasts of cloud

occurrence and its mean field (cloud fraction) as op-

posed to continuous fields (e.g., liquid water content)

in order to reduce observational uncertainties. We also

map the model forecasts to the observations by account-

ing for instrument sensitivity and other observational

artifacts.

Section 2 gives details of the CSRM runs, including

the nudging used to keep the model near the observed

thermodynamic state. Section 3 describes the methods

that we use to make modeled and observed cloud data

more comparable. Section 4 compares various measures

used to evaluate model performance; these methods are

applied to model predictions using three configurations

in section 5. Section 6 discusses the results and offers

some possible explanations for the main findings.

2. Multiyear simulations using three model
configurations

We evaluate the performance of the System for At-

mospheric Modeling (SAM; Khairoutdinov and Randall

2003) at ARM’s Southern Great Plains (SGP) site. SAM

is the CSRM component of the multiscale form of the

National Center for Atmospheric Research (NCAR)

Community Atmosphere Model (CAM); this combi-

nation is known as the ‘‘super-parameterized’’ CAM

(SP-CAM; Khairoutdinov et al. 2005).

We run the model for three years (1999–2001) using

estimates of the surface fluxes of latent and sensible

heat, large-scale advective tendencies of temperature

and moisture, and horizontal winds derived using vari-

ational analysis (Zhang et al. 2001; Xie et al. 2004). The

forcing data do not provide estimates of condensate

advection.

We run SAM in three configurations: (i) a standard

configuration like that used in SP-CAM, namely, a

32-column 2D domain, oriented east–west with Dx 5

4 km and 28 vertical levels; (ii) a much higher spatial

resolution (Dx 5 Dy 5 500 m) 128 3 128-column, 3D

domain with 64 levels, which is capable of better-

resolved dynamics and is large enough to simulate deep

convection; and (iii) a configuration with the same low

spatial resolution of the standard model, but which in-

cludes an intermediate prognostic high-order closure

(IPHOC) of turbulence to improve the representation

of shallow cumulus and its transition to deep convection

(Cheng and Xu 2008). IPHOC treats subgrid-scale trans-

port and, in particular, allows for subgrid-scale fractional

cloudiness.

All configurations have cyclic boundary conditions

and use a stretched vertical grid, such that the spacing

between levels increases with height and is typically

100–500 m in the planetary boundary layer (PBL). The

domain extends to ;28 km. Newtonian damping is ap-

plied to the upper 1/3 of the model domain to suppress

gravity waves (Khairoutdinov and Randall 2003).

Instantaneous model output is collected hourly, pro-

ducing ;2.6 3 104 values at each model level in each

column of the domain. More frequent sampling is not

warranted: observations of cloud occurrence have au-

tocorrelation values of .0.6 below 11 km and .0.7 in

the PBL at time lags of an hour.

Our goal is to assess the model’s ability to predict

cloud occurrence when the thermodynamic state is

correctly specified. In free model runs, however, signif-

icant biases in thermodynamic fields appear within a

matter of weeks, even when the model is forced with

observed fluxes and advective tendencies (Khairoutdinov

and Randall 2003). To keep these biases manageable, we

nudge the model’s temperature field toward the obser-

vations with time scale tT chosen on the basis of 15 long

model runs covering a wide range of tT. Our selection of

tT 5 24 h balances the magnitude of the temperature

errors with the need to keep the nonphysical nudging

term as small as possible compared to the advective

tendency (Ghan et al. 1999). Winds are nudged on a 2-h

time scale (e.g., Khairoutdinov and Randall 2003); this

2926 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66



accounts for the absence of a pressure gradient term in

the model’s momentum equation. Water vapor is not

nudged because it is already heavily constrained by sur-

face precipitation.

3. Reducing the gap between models and
observations

We evaluate model predictions of cloud fraction using

instantaneous binary observations of cloud occurrence

from the ARM program’s Active Remotely Sensed

Cloud Locations (ARSCL) lidar and radar cloud-

boundaries product (Clothiaux et al. 2000). The obser-

vations are quite dense in the vertical and each model

layer contains multiple observations. We verify fore-

casts using observations closest to the model levels; in

the absence of systematic correlation between clouds in

nature and the location of the model grid levels in the

vertical, this is equivalent to averaging the observed

binary field over model layers and rounding to 0 or 1.

a. Mapping modeled cloud to observed cloud

We use ‘‘instrument simulators’’ (e.g., Klein and Jakob

1999; Bodas-Salcedo et al. 2008) to convert the conden-

sate fields predicted by SAM into clouds masks that

would be observed by ARSCL. At each time step we

predict the radar reflectivity and lidar signal that would

be measured in each column of the model domain, rep-

licate the logic employed by ARSCL to discriminate

clouds and precipitation, and form a cloud mask com-

parable to the observations.

We simulate the reflectivities observed by ARM’s

35-GHz millimeter cloud radar (MMCR) using the

QuickBeam radar simulator (Haynes et al. 2007).

QuickBeam uses profiles of temperature, relative humid-

ity, and the mixing ratio of each hydrometeor species

to compute the radar reflectivity that would be ob-

served by a ground-based instrument, accounting for

attenuation of the radar beam by atmospheric gases

and hydrometeors. Radar reflectivity is computed for

every column in the model domain at each hour us-

ing the instantaneous fields. Calculations employ pre-

computed look-up tables in place of exact Mie calculations;

this introduces reflectivity errors typically less than 2 dB

(Haynes et al. 2007). The radar cloud mask is con-

structed by comparing the simulated reflectivity in each

column to the instrument detection threshold dBlim 5

log10(z20) 2 50, for z in km (P. Kollias 2007, personal

communication). When the reflectivity exceeds this

threshold we say that the radar would have detected

cloud.

ARSCL uses optical lidar retrievals to detect thin

clouds and to distinguish falling precipitation from

clouds (Clothiaux et al. 2000). We approximate this

process by computing the lidar extinction coefficient

kext and using this to determine when a lidar signal

would be detected and when it would be attenuated.

SAM uses bulk microphysics schemes and so does not

predict particle sizes. However, it does use CAM’s ra-

diation scheme, which specifies the effective droplet

radius over land as a function of temperature. We use

this value of re to infer the droplet number density N

from local cloud liquid and cloud ice concentrations.

Assuming a scattering efficiency of 2 gives kext ’ 2pr2
eN,

and we define cloud occurrence (according to the lidar)

whenever kext . 0. At any given altitude, the beam is

assumed to be fully extinguished whenever the optical

depth exceeds 2.

The IPHOC scheme used in one of our model runs

predicts, among other quantities, the subgrid-scale dis-

tribution of total water content p(qt) within each of

SAM’s grid cells and a corresponding subgrid-scale cloud

fraction pc 5 p(qc . 0). We treat subgrid-scale cloudiness

using a single-sample version of the Monte Carlo tech-

niques used in global models (e.g., Klein and Jakob 1999;

Räisänen et al. 2004). For each model column at each

time we generate a random number r 2 [0, 1]. Cells

within the column are clear where r , 1 2 pc and cloudy

otherwise; cloudy cell condensate amounts are scaled by

1/pc to preserve the cell mean. This approach uses the

maximum overlap assumption, and results using random

overlap are essentially the same. IPHOC does not treat

precipitation, so we define a probability of precipitation

using the greatest pc above each level to which it is ver-

tically connected.

The lidar and radar cloud masks are merged to pro-

duce a final mask. This takes the value of the lidar mask

when and where the lidar is known not to have been

attenuated; otherwise, the value of the radar mask is

used. The domain mean of this mask, computed at each

model level at each observation time, is the probability

of cloud p (or cloud fraction) that we evaluate against

the dichotomous observations.

b. Sensitivity to assumptions

Radar reflectivity can be strongly influenced by the

choice of drop size distribution (DSD). Our assumptions

are consistent with those used elsewhere in SAM: we use

the cloud drop and ice crystal size from the radiation

scheme and ensure that precipitating hydrometeors fol-

low the exponential Marshall–Palmer distribution (see

Marchand et al. 2009). We assume exponential and log-

normal DSDs for cloud ice and liquid, respectively. The

QuickBeam radar simulator further assumes that all

condensed species are spherical with density dependent

on diameter only.
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These assumptions do not impact the results we show

below. The underlying reason for this can be inferred

from Fig. 1, which shows a probability distribution

function (PDF) of ;2.7 3 106 of the ;2.4 3 107 re-

flectivities simulated for a 2D model run. The remaining

values, all of which are ,2100 dB, are assumed clear, a

priori. Shown for comparison is the radar detection

threshold dBlim. With very few exceptions, the simulated

reflectivities computed from the CSRM fields are either

much greater than or much less than the detection

threshold.

We have performed similar calculations using other

plausible DSD assumptions (e.g., modified gamma cloud

liquid and exponential ice as a function of temperature

alone; Haynes et al. 2007). Although this changes some

of the simulated reflectivities, most differences occur in

values that are far away from the threshold, so our bi-

nary masks are not sensitive to them. At almost all al-

titudes, ,0.1% of the binary decisions differ from those

using the original DSD assumptions, with a maximum of

between 1%–5% above 10 km in one test.

4. Measures of model performance

Performance metrics can sometimes be broken down

into components estimating different aspects of a

model’s predictive ability. These are referred to as at-

tributes (Murphy 1993) and in this work we make use of

four, as follows: Bias is the correspondence between the

mean forecast and mean observation. Reliability (REL)

is the correspondence between the conditional mean

observation and the conditioning predictions and so

measures conditional bias; REL reduces to the usual

(overall) bias in the absence of any conditioning. Res-

olution (RES) is the ability to resolve observed events

into subsets with characteristically different outcomes.

For a binary field this is exactly equivalent to skill in

predicting the timing of events. Uncertainty (UNC) is

the variance of the observations and is therefore inde-

pendent of the model; large values of UNC make skillful

forecasts difficult.

The RES of short-term weather forecast models

is typically an order of magnitude less than their REL

(Stanski et al. 1989). Unlike RES, REL can be im-

proved with a posteriori calibration, wherein forecast

probability values are statistically relabeled to improve

correspondence with the observed field (Atger 2003).

For this reason RES is regarded as the more intrinsic

measure of model performance, but reducing REL is

usually given priority.

a. Mean squared error and Brier’s probability score

A traditional measure of a model’s performance in

predicting a continuous variable x is the mean squared

FIG. 1. The distribution of radar reflectivities (normalized by the total number of values

.2100 dB), which we simulate with QuickBeam using cloud liquid, cloud ice, rain, snow, and

graupel from all columns of a 2D 3-yr model run. The detection threshold dBlim (dashed curve

with asterisks) does not pass through the most populated regions of the distribution. The rel-

ative number per model level (solid curve with asterisks) is normalized by the number oc-

curring at the most populated level, which is close to 1 km.
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error (MSE). Although this can be defined using ex-

pectations of a general estimator, in practice, it is more

often defined for continuous variables only and bro-

ken down into terms of bias and random error as

MSE 5 var(p� x) 1 (p� x)2, where p denotes predic-

tion, the overbar denotes the temporal mean, and var is

the variance.

How can we compute the MSE of a predicted con-

tinuous variable where the individual observations o,

like ARSCL, are dichotomous (i.e., 1 if the event occurs

and 0 if it does not)? The usual solution is to transform

the observations into a continuous field by invoking the

ergodic hypothesis and averaging the observations over

some time period, sampled by m observations. This

makes sense if the temporal (observational) and spatial

(model) statistics are approximately equivalent; it also

requires the identification of an appropriate choice of m.

Our results below are based on hourly averages of ob-

servations made every 10 s, chosen to match the hourly

time scale on which model data is reported; so we use

m 5 360.

Alternatively, we can use the instantaneous, dichot-

omous observations to calculate the Brier score b:

b 5
1

N
�
N

i
(p

i
� o

i
)2. (1)

The Brier score is used frequently in the verification of

operational numerical weather prediction models. Al-

though they are often discussed separately, b can be

defined as a limiting case of the MSE. As we decrease

the averaging period, so that m / 1, we find that the

mean over this period xi / oi, the ith instantaneous

observation; that is,

lim
m!1

(MSE) 5
1

N
�
N

i
(p

i
� o

i
)2

5 b, (2)

where pi is the probability of the original dichotomous

event occurring.

In this work we exploit a decomposition of b into

components measuring key attributes of model perfor-

mance, namely b 5 REL 2 RES 1 UNC. More for-

mally, by dividing the probability range [0, 1] into K

probability classes (bins), we can write

b 5
1

N
�
K

k
n

k
[(p

k
� o

k
)2 � (o

k
� o)2] 1 o(1� o), (3)

where ok is the mean observed frequency of occurrence

for the kth class, containing nk events, and o is the ob-

served climatology; other decompositions are also pos-

sible (Murphy 1996). The best possible value is b 5 0,

wherein REL 5 0 and RES 5 UNC. However, this

perfect score is only attainable by a model predicting

(correct) extreme probabilities of 0 or 1, making the

predictions deterministic; we can think of this as the

asymptotic limit of a probabilistic model making in-

creasingly confident predictions (Toth 2003).

Values of b typically lie in the range [0.10, 0.25] for

numerical weather model forecasts and scores .0.3 (in

most cases) represent poor predictions; scores for fore-

casts of rare events tend to be better and will usually

be ,0.10 (Stanski et al. 1989). High skill is implied by

b , UNC.

b. Scores for a wide range of nudging time scales

To give us some idea of how much variation to expect

in the skill scores for the CSRM, we compute the bias,

random error, MSE, and Brier score and its components

for a set of 2D model runs using various nudging time

scales tT. The results, shown in Fig. 2, indicate the range

of scores that might be expected among simulations with

a range of skills.

The similarity between the MSE of the temporal

cloud fraction and b is very evident; both scores have

almost identical variation with z and tT. This means that

averaging the observations over time produces similar

results to averaging over the model’s domain (i.e., the

ergodic hypothesis holds in these simulations). In turn,

this validates our use of the MSE and its components

here.

Above 9 km, the mean bias grows rapidly with tT and

correlates with a monotonically increasing negative

model bias in T (not shown), although the MSE con-

tinues to be dominated by its random component s2.

The mean bias, REL, and s all increase with tT, but

timing, as indicated by RES, is similarly poor for all tT.

At lower altitudes, RES decreases steadily with tT and

demonstrates a larger range than REL.

5. Model skill in three configurations with varying
computational cost

Here, we compare the performances of the 2D, 2D 1

IPHOC, and 3D model configurations. The 3D run is

approximately a factor of 1000 more computationally

expensive than the standard 2D run, and the IPHOC run

around a factor of 4. One might reasonably imagine the

scores of these configurations to reflect this. Figure 3

shows the aggregate scores and Fig. 4 shows those for

events restricted to the periods April–September and

October–March, which we refer to as summer and

winter, respectively.
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a. Aggregate scores

The long-term performance of all three configurations

is similar as measured by any score (see Fig. 3). The bias

is low in all runs, suggesting that cloud is reasonably well

calibrated overall; consequently, almost all of the MSE

consists of random error. At many altitudes, the Brier

scores attained by all configurations suggest consider-

able skill, with better performance below 8 km where

b , UNC.

In all configurations, the greatest conditional biases

(REL) are seen for high cloud, particularly so in the

IPHOC and 3D runs between 10 and 13 km. The 3D run is

the most conditionally biased in the PBL; however, in all

runs, bias here is typically a factor of 3–4 less than for high

cloud. Performance in timing (RES) has a pronounced

maximum in the PBL and drops off rapidly above 9 km.

b. Seasonal scores

Model performance during summer and winter is

markedly different, regardless of model configuration.

The relative differences between the runs are also sea-

sonally dependent (see Fig. 4). In fact, differences in skill

between seasons are typically greater than differences

between configurations during the same season. Given

the range of computational costs of the configurations,

this is surprising.

FIG. 2. Performance scores of 14 separate 3-yr runs at the SGP, each using different nudging periods, tT (note that inf denotes no

nudging of T ). Overall bias, s, and MSE are with respect to observed temporal (hourly) cloud fraction. All other measures are with respect

to observed instantaneous cloud occurrence. The dashed line in the plot of Brier score is UNC. Horizontal value ranges are fixed to allow

direct comparison with the other figures and to be the same for REL and RES.
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Model errors are typically greater in winter than in

summer; the most notable exception to this is worse

timing below 9 km in summer. At some altitudes (e.g.,

PBL for the 3D run) the overall bias is comprised of

opposing seasonal biases.

We now look in more detail at conditional bias and

timing as a function of p close to 1 km and 10 km. These

altitudes are of interest for a number of reasons: (i) they

are close to the maxima in observed cloud; (ii) large

seasonal differences in performance occur here; (iii)

relatively large differences exist here between the scores

of different model configurations; and (iv) the variance of

observed cloud (UNC) is approximately the same for the

boundary layer and for high cloud, which means that the

Brier scores at these altitudes are directly comparable.

By conditionally sampling the observations using the

forecasts of cloud fraction (i.e., the probability of cloud,

p), we can construct attribute diagrams for each altitude

and season (Fig. 5). The diagrams plot observed fre-

quencies of cloud occurrence against the corresponding

forecast probabilities, as well as forecast distributions

and observed climatologies. The diagrams are aug-

mented with information about the relative contribu-

tions that each range of p makes to the conditional bias

(REL), which is ideally zero, and the skill in timing

(RES), which is ideally large.

c. Skill as a function of forecast cloud fraction

Extra wintertime conditional bias in the PBL and

high cloud are two of the main seasonal differences

FIG. 3. Performance scores of 3-yr runs with different model configurations: (i) standard 2D domain, (ii) 2D 1 IPHOC, and

(iii) higher-resolution 3D domain. All runs use tT 5 24 h.
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identified by the scores; here, we investigate which

parts of the forecast distribution are responsible. For

high cloud, all configurations overforecast most p (in-

dicated by values lying below the 1:1 line of the attri-

bute diagrams), particularly in winter. In the PBL, all

configurations overforecast mid–high p, but also un-

derforecast low p (above the 1:1 line), particularly in

summer.

In summer, high cloud is actually most conditionally

biased in the 3D run. This is due to both the extra

overforecasting of mid–high p (i.e., greater REL for

this range of p) and the greater population of this

probability range, rather than to predicting more p 5 1

events, which occur more often in the other model runs.

Even though slightly more cloud is observed at 10 km in

the summer, in all runs the number of p 5 1 predictions

at this altitude is an order of magnitude less than in

winter.

In all runs, high cloud is substantially more condi-

tionally biased (greater REL) in winter than in summer.

No rapid increase in overforecasting occurs for high p (a

distinctive feature of the summertime attributes dia-

gram) but the contributions from this range (high p) are

responsible for the seasonal differences. The greatest

contributions to REL are for p 5 1 predictions because

these are more numerous—IPHOC forecasts most and

is therefore the most biased here. Although we do not

show the attributes diagram for 7 km, the 3D run per-

forms best here, and IPHOC performs worst (see Fig. 4),

because of the extra number of p 5 1 predictions in the

FIG. 4. As in Fig. 3, but restricted to events from April to September (dashed), covering boreal summer, and events from October to March

(solid), covering boreal winter. See the comment on horizontal value ranges in Fig. 2.
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FIG. 5. Augmented attributes diagrams covering boreal summer and winter for high and low cloud. The distance of

the solid lines from the 1:1 line indicates reliability (REL) and their distance from the observed climatologies (blue

dashed line) indicates resolution (RES). Solid lines within the shaded regions demonstrate positive skill. Contri-

butions from each of the K probability bins were defined in Eq. (3). Ideally, RELk is 0 and RESk is large.
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3D run, since the observed frequencies corresponding to

these predictions are similar in both runs.

For any given season, the timing of cloud is remark-

ably similar in all runs; the smallest seasonal differences

are at 10 km. Here, most contributions to good timing

(high RES) come from forecasts of clear sky, interme-

diate cloud fractions in summer, and 100% cloud frac-

tions in winter.

The PDFs of wintertime forecasts in the PBL are

similar to those of high cloud, with the conditional bias

again being determined by the number of high p pre-

dictions; however, here the 3D run is worst because it

has the greatest number of p 5 1 forecasts. In the PBL,

the greatest number of clear and least mid–high p fore-

casts occur during summer, which consequently dem-

onstrates the least conditional bias in all configurations.

Generally, more seasonal differences in timing are

seen in the PBL than aloft, with greater contributions

being made by predictions of clear and overcast skies

(p 5 0, 1) in winter than in summer. This gives rise to the

better timing of wintertime cloud here, most of which

is attributable to the increased number of predictions of

high p. The same explanation also applies to the worse

timing found in most cloud below 9 km in summer.

6. Discussion and conclusions

a. How skilled is this cloud-resolving model at
predicting cloud occurrence?

Figure 3 demonstrates that SAM has considerable

skill in predicting cloud occurrence at the ARM SGP

site, when the thermodynamic state is constrained to

remain near the observations. Bias in modeled cloud

occurrence is relatively small for all three model con-

figurations, suggesting that this field is relatively well

calibrated. The Brier scores attained by all configura-

tions also suggest considerable model skill at many al-

titudes, when compared to those typically achieved by

numerical weather models (Stanski et al. 1989). Verifi-

cation of model skill across such a wide range of atmo-

spheric states puts the use of CSRMs as benchmark

calculations, or as components in multiscale models, on

a firmer footing. However, this is only true to the extent

that the model can be relied upon to maintain a realistic

thermodynamic state in the absence of nudging. We are

currently working to chart model skill as a function

of forecast lead time in unconstrained versions of the

model and to investigate how tightly this skill is coupled

to errors in temperature and humidity.

The similar behavior of the MSE and b for cloud oc-

currence suggests that the ergodic hypothesis holds for

these simulations. This means that we can approximate

the first few statistical moments of the instantaneous,

spatial cloud fraction with pointlike, temporal cloud

fraction and vice versa, thus validating the application of

the traditional measures. We do not expect that this

result is universally true.

Model skill varies substantially between seasons, as

judged by comparison of the skill in a single configura-

tion run across a large range of nudging time scales. This,

together with the range of scores seen for different

nudging time scales, suggests that the scores (particu-

larly REL and RES) are sufficiently sensitive to be able

to identify differences in model performance and in-

creases our confidence in interpreting similar scores as

real similarity in model performance rather than as a

lack of precision of the measures.

b. Model skill and computational cost

Model skill in each of the three configurations is re-

markably similar, despite a wide range in the computa-

tional cost (reflecting the conceptual sophistication or

spatial resolution) among the configurations. Although

CSRM behavior can depend strongly on dimensionality

in some circumstances (e.g., Petch and Gray 2001; Petch

2006), our results are consistent with multiweek studies

of SAM (Khairoutdinov and Randall 2003). While this

result is favorable for use of this CSRM in SP-CAM, it

also suggests that the cloud model’s deficiencies are

deeper than can be ameliorated by simple changes.

One might expect a strong dependence on spatial

resolution or dimensionality, since moving from 2D to

3D or increasing spatial resolution allows for a better

representation of model dynamics, but this is not re-

flected in the skill scores for different model configura-

tions. We hypothesize that the distribution of cloud

is quite sensitive to the model thermodynamic state,

which is constrained to be roughly the same in all three

configurations.

Some of the similarities found could also be attribut-

able to the effects of nudging. However, low correlations

(,0.2) between pointwise thermodynamic and cloud

errors (not shown) suggests that cloud errors are not

significantly influenced by nudging temperature.

It is also possible that all configurations show approxi-

mately equal skill because we are only looking at (binary)

cloud occurrence and that differences may exist in the

structure of the (continuous) hydrometeor fields. How-

ever, the mean total condensate is very similar in all three

cases (not shown), suggesting that this is not the case.

Errors in the forcing data could also have such a large

influence on thermodynamics that they reduce scores

enough to hide comparatively smaller interconfigura-

tional differences. Sources of error include the use of

area-averaged surface precipitation, which has the most

influence over advective tendencies, and spatial-scale-
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aliasing in fields with large subgrid-scale variability, such

as water vapor and winds, and severe weather. This

might be explored by constructing multiple physically

consistent sets of forcing data, spanning the range of

uncertainty in the observed fields (Zhang et al. 2001),

which could be used to drive a CSRM ensemble to study

sensitivities to observational uncertainty (Hume and

Jakob 2007).

Skill scores such as MSE and the Brier score are

metrics without much diagnostic utility and so are mute

on the subject of what changes might improve model

performance. Model developers must find other sources

of inspiration in their efforts to improve the model. Once

candidate improvements have been identified, however,

skill scores provide an objective, context-independent

way of evaluating any improvement in performance.

In the future, probabilistic metrics could also be applied

to other CSRM fields, both binary (e.g., types of precipi-

tation) and continuous (e.g., cloud liquid and ice content).

c. Model skill and seasonality

In these simulations the model shows greater differ-

ences in performance between seasons than between

model configurations during the same season, despite

substantial differences between the computational costs

of the configurations. In particular, there is greater

conditional bias but better timing of PBL cloud in winter

and substantially less conditional bias in high cloud

during summer.

During winter, there is more stratiform cloud in the

PBL and large-scale frontal cloud systems, whereas in

summer, there is more small-scale shallow convection,

deep convection, and anvil cirrus. The local and more

intermittent nature of summertime cloud may be the

main reason for worse timing in the summer season.

The contribution that clear-sky predictions make to the

timing of low cloud is greater in winter than in summer

because the mean observed cloud fraction is higher in

this season. Conditional sampling on variables relevant

to the predominant cloud type may shed some light on

the mechanisms responsible.

Little cloud is observed above 10 km in winter, but

more occurs in summer; it is interesting that the greatest

interconfigurational differences in conditional bias are

found here, such that more sophisticated configurations

are most biased. Inspection of the attribute diagrams for

these altitudes (not shown) confirms that this is due to the

extra number of 100% cloud fraction predictions, com-

pared to those of the standard 2D configuration—more

such predictions are actually made in winter, however,

more so in all runs. Identification of the circumstances

under which the 3D and IPHOC runs produce extra very

high cloud may provide further insight.
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