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Abstract 

Linear stochastically forced models have been found to be competitive with comprehensive 

nonlinear weather and climate models at representing many features of the observed 

covariance statistics and at predictions beyond a week. Their success seems at odds with the 

fact that the observed statistics can be significantly non-Gaussian, which is often attributed to 

nonlinear dynamics. The stochastic noise in the linear models can be a mixture of state-

independent ("additive") and linearly state-dependent (“multiplicative") Gaussian white 

noises. It is shown here that such mixtures can produce not only symmetric but also skewed 

non-Gaussian probability distributions if the additive and multiplicative noises are correlated. 

Such correlations are readily anticipated from first principles. A generic stochastically 

generated skewed (SGS) distribution can be analytically derived from the Fokker-Planck 

equation for a single-component system. In addition to skew, all such SGS distributions have 

power-law tails, and a striking property that the (excess) kurtosis K is always greater than 1.5 

times the square of the skew S.  Remarkably, this  K-S inequality is found to be satisfied by 

circulation variables even in the observed multi-component climate system. A principle of 

“Diagonal Dominance” in the multi-component moment equations is introduced to 

understand this behavior. 

 

To clarify the nature of the stochastic noises (turbulent adiabatic versus diabatic fluctuations) 

responsible for the observed non-Gaussian statistics, a long 1200-winter simulation of the 

northern winter climate is generated using a dry adiabatic atmospheric general circulation 

model forced only with the observed long-term winter-mean diabatic forcing as a constant 

forcing. Despite the complete neglect of diabatic variations, the model reproduces the 

observed K-S relationships, and also the spatial patterns of the skew and kurtosis of the daily 
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tropospheric circulation anomalies. This suggests that the stochastic generators of these 

higher moments are mostly associated with local adiabatic turbulent fluxes. The model also 

simulates fifth moments that are approximately 10 times the skew, and probability densities 

with power-law tails, as predicted by the linear theory.  
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1. Introduction 

Although the governing equations for weather and climate evolution are obviously 

nonlinear, in many contexts the evolution of anomalies (departures from a background 

state) is well approximated by linear equations of the form 

dx

dt
  =   A x +    fext  +   B !  "   D     (1) 

where x(t) is an N-component anomaly state vector, fext(t) is an N-component external 

forcing vector, ! is an M-component noise vector of independent Gaussian white noises 

with zero mean, A(t) and B(t) are N!N and N!M matrices, and D(t) = <B!>  is an N-

component expected mean noise forcing vector (which we retain for future reference 

even though it is strictly zero here). The equations for all classical free and forced linear 

wave dynamics in the climate system may be cast in this form, as may also those for the 

evolution of small-amplitude forecast errors, important in modern data assimilation 

techniques. The traditional use of linear models in such contexts has advanced both basic 

understanding and practical applications, but has stopped short of claiming that observed 

full-amplitude anomalies also obey such equations. Evidence has steadily accumulated, 

however, to support even this latter stronger claim, especially for “coarse-grained” 

anomalies averaged over various time and space scales. This evidence has come from a 

wide range of studies demonstrating the approximate linearity of the global climate 

response to combinations of radiative forcings (e.g. Knutson et al 2006, and references); 

the approximate linearity of the global atmospheric response to tropical SST changes 

(e.g., Barsugli and Sardeshmukh 2002, Schneider et al 2003, Barsugli et al 2006); the 
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approximately linear dynamics of seasonal tropical SST anomalies (Penland and 

Sardeshmukh 1995); the competitiveness of simple linear seasonal forecast models with 

global coupled climate models (Saha et al 2006); the approximately linear evolution of 

weekly-averaged atmospheric circulation anomalies (Winkler et al 2001, Newman and 

Sardeshmukh 2008); and the competitiveness of Week 2 and Week 3 linear forecast 

models with comprehensive numerical weather prediction (NWP) models (Winkler et al 

2001, Newman et al 2003). Even on the time scales of daily weather, linear stochastically 

forced (LSF) models of the form (1), although not as accurate as NWP models for daily 

predictions, are realistic enough to capture many features of the second-order statistics of 

observed synoptic variability, such as the geographical structures of eddy variances and 

covariances and momentum and heat fluxes (e.g., Farrell and Ioannou 1995, Hall and 

Sardeshmukh 1998, Whitaker and Sardeshmukh 1998, DelSole 2004).  

In light of these and many other studies, the relevance of LSF dynamics even in the 

chaotic nonlinear climate system seems undeniable. Indeed without it, the plethora of 

diagnostic studies of weather and climate variations (and of weather and climate model 

errors) based on linear regressions and correlations would have limited value. The basic 

premise in (1) concerning the dynamics of “coarse-grained” anomalies is that the coarse-

grained nonlinear tendency terms, associated primarily with fluxes by unresolved eddies, 

can in principle be linearly parameterized in terms of the coarse-grained anomalies, and 

the unparameterized remainder can be treated as stochastic white noise.  It is important to 

recognize that the matrix A in (1) is therefore in general not that obtained by directly 

linearizing the governing equations but also includes such linear flux parameterizations, 

and the matrix B accounts for the amplitude and correlation structure of the 
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unparameterized remainder as a “stochastic parameterization”. Procedures for estimating 

these matrices directly from data, as well as for testing the validity of (1), are called 

Linear Inverse Modeling (Penland 1989), and are discussed in detail in Penland and Ghil 

(1993), Penland and Matrosova (1994), Penland and Sardeshmukh (1995) and Winkler et 

al (2001).   

An attractive feature of the LSF approximation (1) is that the moment equations for the 

evolving probability density functions (PDFs) are closed, i.e. equations for the higher-

order moments involve moments of the same or lower order. Specifically, the equations 

for the first moment <x>(t) and the second moment C(t) =  < x x
T 

>  are  

d

dt
< x >  =  A < x >  +  fext

d

dt
  C      =  A C  +  C  A

T
 +  Q  +  < x > fext

T
   +   fext < x

T
>

  (2) 

where Q  =  B B
T , and angle brackets <  > denote expected values. The centered second 

moment C' = < x'x'
T 

> of the departures x' = x " <x> is related to  C  as  C' = C ! < 

x><x
T 

>. Note that these linear equations for <x> and C are applicable to the moments of 

the marginal (i.e. unconditional) PDF p(x) as well as the conditional PDF p(x(t)|x(0)) of 

x(t) given x(0), that is, to the moments of the observed as well as forecast probability 

distributions. They can therefore be used to model and predict those PDFs without having 

explicitly to generate ensembles of integrations as in traditional ensemble forecasting 

techniques using GCMs. In the simplest scenario in which A, B, and fext are constant, the 

stationary solutions to (2) may be written as 
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< x >  =  ! A
!1

 fext          

dC

dt
  =  0  =    A C  +  C  A

T
 +  Q +  < x > fext

T
   +   fext < x

T
>

 (3a) 

for the marginal moments,  and 

x̂ '(t)  !  < x '(t) |  x '(0) >        =  e
At
x '(0)    

Ĉ(t)  !  < (x̂ '" x ') (x̂ '" x ')
T

 >  =  C '" e
At
C 'e

A
T
t
 
                   (3b)  

for the conditional (i.e. forecast) moments of the departures x' of x from the mean forced 

anomalous state <x> in (3a). If x is Gaussian, then given that Gaussian PDFs are 

characterized completely by their first and second moments, these equations (and more 

generally, equations (2)) provide a complete description of system variability and 

predictability. This, together with the fact that LSF models are also typically of vastly 

lower dimension (N < 100, M < 100) than GCMs provides a strong incentive to 

determine what aspects of the real nonlinear climate system can and cannot be captured 

by such models.         

LSF models (1) are consistent with Gaussian statistics. The reasons for this are two-fold. 

First, because of averaging, the PDFs of the coarse-grained anomalies for which (1) is 

appropriate are approximately Gaussian. This is a direct consequence of the Central Limit 

Theorem, which dictates that the probability distribution of an average of a sufficiently 

large number (in practice, often less than 30) of independent and identically distributed 

but not necessarily Gaussian variables is approximately Gaussian. The statistics of 

monthly and longer averages in the climate system are indeed approximately Gaussian 

(Stephenson et al 2004, Penland and Sardeshmukh 1995). Second, since any linear 
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combination of Gaussian variables is also strictly a Gaussian variable, the dynamics of 

such variables are consistent with LSF dynamics. Thus if x(t) in (1) is Gaussian, and fext(t) 

is either constant or Gaussian, then dx/dt and therefore x(t+#t) is Gaussian, and a 

dynamical evolution consistent with Gaussian statistics is attained. In a nonlinear system 

in which A depends on x, dx/dt is not Gaussian even if x(t) is Gaussian, and an evolution 

consistent with Gaussian statistics is not guaranteed.  

Gaussian statistics thus imply LSF dynamics. But do non-Gaussian statistics necessarily 

imply nonlinear dynamics? In particular does the existence of skewness, demonstrating 

an asymmetry in the statistics of opposite-signed anomalies, necessarily establish the 

nonlinearity of the underlying dynamics? This is our primary concern in this paper. The 

issue is not only of fundamental but also practical interest. For example, even if LSF 

models are competitive with nonlinear GCMs at representing observed second-order 

statistics and second-order measures of forecast performance such as r.m.s. errors and 

anomaly correlations, one may still wonder if they can remain so at representing the 

higher-order moments of the marginal and forecast probability distributions. In particular, 

one may wonder if they are capable of representing the tails of the marginal and forecast 

distributions, and therefore the likelihood of extreme weather and climate events.  

The issue would be moot if the PDFs of the observed circulation were Gaussian. As 

mentioned above, the PDFs of monthly and  longer-term averages are almost Gaussian, 

but the PDFs of the less coarse-grained weekly averages are appreciably non-Gaussian 

(Sura et al 2005, and references), and those of daily averages are even more so. Figure 1 

shows the skew S and (excess) kurtosis K of the observed daily-averaged 300 mb 
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vorticity in the northern winters of 1970-1999. Both quantities are large in the 

hemispheric jet stream waveguide (Hoskins and Ambrizzi 1993, Borges and 

Sardeshmukh 1995, Branstator 2002) and have a coherent geographical structure. (For 

reasons that will become clearer below, detailed assessments of the statistical significance 

of such higher moments are not a major concern of this paper. We note in passing that 

similar patterns of K and S were obtained using subsets of the data and also by White 

(1980) using a different and smaller dataset).  Figure 2 displays the results of Figure 1 in 

the form of a scatter plot.  A remarkable tendency toward a parabolic relationship 

between K and S is evident. Similar remarks may also be made concerning the non-

Gaussian character of, for instance, sea surface temperature (SST) variability in the 

eastern tropical Pacific: the PDFs are almost Gaussian for 3-month averages (Penland and 

Sardeshmukh 1995), appreciably non-Gaussian for monthly averages (Hannachi et al 

2003), and substantially non-Gaussian for daily averages, with a similar remarkable 

tendency toward a parabolic K-S relationship (Sura and Sardeshmukh 2008).    

LSF models of the form (1) can generate non-Gaussian statistics, but only if fext(t)  is non-

Gaussian. One may expect some non-Gaussianity, for example, from slow non-Gaussian 

variations of natural and anthropogenic radiative forcings. Similarly, insofar as tropical 

SSTs may be considered as “forcing” the extratropical circulation, the PDFs of the 

extratropical circulation may be influenced by the non-Gaussianity of the tropical SSTs. 

Such mechanisms, however, do not solve the problem of explaining the non-Gaussianity 

of x but merely shift it to explaining the non-Gaussianity of fext. Since our concern here is 

with the implications of non-Gaussian statistics for the linearity or nonlinearity of the 
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internal system dynamics, we will henceforth ignore such external generators of non-

Gaussian variability and assume that fext. is either constant or Gaussian.  

Our goal in this paper is to show that non-Gaussian statistics can be reconciled with LSF 

dynamics through a relatively minor extension of (1): by allowing the stochastic forcing 

amplitude matrix B to depend linearly on the system state. Specifically, we consider the 

implications of its elements Bim being of the form 

Bim (x,t) =  Gim (t) +  Eijm (t) x j
j

!      .               (4a) 

In the following, we will refer to the stochastic forcing  B!  as being purely “additive” if 

E is zero, and purely “multiplicative” if G is zero. If Gim and Eijm are nonzero but not for 

the same noise component !m, we have an uncorrelated mixture of additive and 

multiplicative noises. If Gim and Eijm are both nonzero for some noise components !m, we 

have correlated additive and multiplicative (“CAM”) noise. An important aspect of CAM 

noise forcing is that its expected mean "noise-induced drift" D is not zero in (1), but as 

shown below in section 2, is related to the noise parameters as   

� 

Di(t) =  
1

2
Eijm (t)Gjm (t)

m

!
j

!    .      (4b) 

We will show how CAM noise occurs naturally in a quadratically nonlinear dynamical 

system, such as the climate system, through terms involving x and rapidly decorrelating 

system components that may be approximated as noise.    
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We will see that additive plus uncorrelated multiplicative noise can produce symmetric 

non-Gaussian, but not asymmetric (i.e. skewed) PDFs. To generate asymmetric PDFs, 

one must have CAM noise. We will also see how this necessitates modifying the moment 

equations (2) due to the so-called “noise-induced drift” (of which D(t) represents the 

expected mean), but the equations remain linear and closed as before. However, since the 

modified stochastic forcing can generate non-Gaussian statistics, those moment equations 

no longer provide a complete description of system variability and predictability. We will 

seek some insight into the higher moments by investigating the simplest LSF system with 

CAM noise, a 1-d system (with N=1, M=2) of the form 

dx

dt
  =   Ax +   b !

1
 +  (Ex + g) !

2
 "  

1

2
Eg    ,   (5) 

in which A,  b,  E and g  are all scalar constants, and the last term on the right hand side 

explicitly represents the mean noise-induced drift as in (4b). Note that A is negative in 

(5), and without loss of generality,  b and E are positive; however g can be positive or 

negative. We will show that the higher moments of this system are interrelated in a 

remarkably simple way, and can account for the parabolic K-S relationship in Figure 2. 

Further, we will derive the full PDF of this system from the corresponding Fokker-Planck 

equation and show that in addition to being skewed, it has power-law tails, whose 

existence is also often associated with nonlinear dynamics.  We will then demonstrate the 

relevance of this generic univariate “Stochastically-Generated-Skewed (SGS)” PDF even 

in the real multivariate climate system. 
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Finally, we will seek to clarify the physical nature of the stochastic noise responsible for 

the observed non-Gaussian circulation statistics. We are especially interested in 

determining if it is associated primarily with adiabatic or diabatic noise, i.e. with 

turbulent adiabatic fluxes or rapid diabatic forcing variations. To this end we will 

examine a long 108000-day perpetual winter simulation (equivalent to 1200 90-day 

winters) generated by Sardeshmukh and Sura (2007) using a dry adiabatic GCM forced 

only with the observed time-mean diabatic forcing as a constant forcing. We will assess 

to what extent this constant-forcing simulation captures the non-Gaussian statistics shown 

in Figs 1 and 2.  

The paper is organized as follows. We begin in section 2 with a derivation of the moment 

equations for LSF systems with the extended stochastic forcing (4), and highlight the 

necessity of CAM noise to generate skew. In this context we also note an inconsistency in 

the explanation of the skew of weekly-averaged circulation anomalies offered by Sura et 

al (2005) in terms of pure multiplicative noise. In Section 3 we discuss how the existence 

of CAM noise may be justified in the climate system with quadratic nonlinearities and 

“slow” and “fast” system components. Section 4 follows with a detailed analysis of the 

generic 1-d system (5) with CAM noise. Section 5 presents results from the long 

adiabatic GCM simulation and compares them with observations. To understand the 

remarkable consistency of the observational and GCM-simulated higher-order statistics 

with those of the generic 1-d system, we introduce in section 6 a principle of increasing 

“diagonal dominance” in the higher-order moment equations of multi-component LSF 

systems. Concluding remarks, including a brief discussion of how the 1-d approximation 
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may be exploited to estimate the probabilities of extreme weather and climate anomalies, 

follow in section 7.    

 2. Moment equations for the extended system 

For any dynamical system of the form 

 

dx

dt
  =   A(x,t) +   B(x,t) !   ,     (6) 

where A is an N-component vector, B is an N!M matrix, and ! is an M-component 

vector of Gaussian white noises (in the Stratanovich sense) that are independent and 

delta-correlated in time as <!
m
(t)!

m
( "t )> = # (t $ "t ) , the Fokker-Planck Equation (FPE) 

for the evolution of the probability density p(x,t | x
0
,t
0
)   may be written  

 

!p
!t

 =  "  
!
!x

i

A
i
+

1

2

!B
im

!x
j

B
jm

m

#
j

#
$

%
&

'

(
) p

*

+
,
,

-

.
/
/i

#   +  
1

2

!2

!x
i
!x

j

B
im

B
jm
p( )

m

#
j

#
i

#  .   (7) 

For convenience we will henceforth utilize Einstein’s notational convention of assuming 

summation over repeated indices; the cumbersome summation signs then become 

redundant. This enables (7), for instance, to be written in the more compact form  

 

!p
!t

 =  "  
!
!x

i

A
i
+

1

2

!B
im

!x
j

B
jm

#

$
%

&

'
( p

)

*
+
+

,

-
.
.

  +   
1

2

!2

!x
i
!x

j

B
im

B
jm
p( )   .              (8) 
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For a linear stochastically forced system with 
 
A(x,t) = A(t)x + fext (t) ! D(t)  as in (1) 

and 
 
B(x,t) = B(x,t)  as in (4), the FPE is 

!p
!t

 =  "  
!
!xi

Aij +
1

2
EikmEkjm

#
$%

&
'(
x j +

1

2
EijmGjm + fext( )

i
" Di

)

*
+

,

-
. p

/
0
1

21

3
4
1

51
+

1

2

!2

!xi!x j
BimBjm p( )  

       =  "  
!
!xi

Mij x j + fext( )
i

)* ,- p{ }   +   
1

2

!2

!xi!x j
BimBjm p( )  

    (9) 

where Mij = Aij + 0.5EikmEkjm . From this the equations for the first two (marginal as well 

as conditional) moments of x may be derived as 

 

d

dt
< x >  =  M < x >  +  fext

d

dt
  C      =  M  C  +  C  M

T
 +  !Q   +  < x > fext

T
   +   fext < x

T
>

              (10) 

where 
 

!Qij  =  GimGjm  +   EikmCklEjlm . One can now see why D in (1) must be of the form 

(4b), since any other choice results in <x> being nonzero even in the absence of external 

forcing.  

Note that equations (10) are of identical form to (2), except that A and Q are replaced by 

M and 
 
!Q . In the simplest scenario in which A, G, E and fext are constant, the solutions to 

(10) are also identical to those in (3a) and (3b), with A and Q again replaced by M and 
 
!Q , 

except that the equation for the growth of the forecast error covariance Ĉ(t)  (the second 

equation in (3b)) can no longer be expressed in the same elegant analytic form.  
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The extension to state-dependent noise in (4) thus preserves the linear and closed 

character of the equations for the first and second (and also higher-order) moments. 

Crucially, the extended system still responds linearly to external forcing, and the 

prediction of the expected future state given an initial state is still a linear prediction. 

This extension is thus completely consistent with all the accumulated evidence cited in 

the previous section in support of the LSF approximation. However, it now also allows 

for the representation of non-Gaussian statistics, especially of odd moments such as 

skew.  This is most easily understood by revisiting (4). For pure additive or multiplicative 

noise, or for any uncorrelated mixture of the two, the magnitude of the stochastic forcing 

B is symmetric with respect to the sign of x; there is therefore no mechanism in (1) to 

generate skew in the absence of external forcing. For CAM noise, however, the 

magnitude of B is not symmetric with respect to the sign of x. This introduces an 

asymmetry in (1) and can generate skewed statistics even in the absence of external 

forcing.  

To account for skewed statistics in a linear framework, one therefore needs CAM noise. 

In this context it is interesting to recall the study of Sura et al (2005), who proposed an 

explanation of the skew of observed wintertime 7-day running mean tropospheric 

circulation anomalies in terms of pure multiplicative noise. Specifically, they sought to 

understand the departure from Gaussianity of the joint PDF of the two dominant EOFs of 

750 mb streamfunction (see Figure 3) in terms of the statistics of the least damped 

eigenmode of the barotropic vorticity equation linearized about the long-term mean flow 

(Borges and Sardeshmukh 1995), if the mode is steadily forced and stochastically 
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damped (i.e. if stochastic perturbations are introduced in its damping rate). Their model 

may be expressed in our notation as  

dx

dt
  =   A x +    fext  +   Ex!   ,     (11) 

where x is a 2-component vector whose components x1 and x2  represent the amplitudes 

of the real and imaginary parts of the least damped eigenmode, A is a constant 2!2 matrix 

with elements  [ -r -$ | $ -r ]  corresponding to the real and imaginary parts of the 

corresponding eigenvalue,  and E  is a 2!2 identity matrix multiplied by the amplitude of 

the scalar Gaussian white noise  ! ,  Sura et al experimented with various ad hoc choices 

of fext before finding a joint PDF of x1 and x2 whose departures from Gaussianity capture 

the essence of the observed departures, as shown in Figure 3. The result is indeed 

remarkable, especially given the simplicity of (11). However, it is not internally 

consistent. Briefly, the model cannot generate skew without fext, since  (11) is then 

exactly symmetric with respect to the sign of x, but with a nonzero fext, the expected mean 

anomaly <x> cannot be zero, because (10) implies 

  < x >  =   ! M
!1

  fext  ,       where    M  =  [A + 0.5E
2
]   .  (12) 

Such a pure multiplicative noise model cannot therefore explain the skew of centered 

anomalies with zero mean, as in the observational panel of Figure 3. The difficulty does 

not arise in a CAM noise model, since it can generate skew even in the absence of 

external forcing.   
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3. Justification of CAM noise 

The existence of CAM noise can be anticipated in any quadratically nonlinear dynamical 

system with "slow" and "fast" system components, usually associated with relatively long 

and short correlation time scales. To see this, consider the evolution equation for the full 

state vector X  in the form 

dXi

dt
= Lij X j + NijkX jXk + Fi  ,     (13) 

where X
i
 is the ith component of X, the first and second terms on the right are the linear 

and quadratically nonlinear adiabatic tendencies (in which we include linear and 

quadratically nonlinear damping terms), and all other tendencies are represented by the 

"external" forcing 

� 

F
i
. Writing X

i
 as a sum of mean and anomaly parts, X

i
= X

i
+ !X

i
, the 

equation for the anomalies may be expressed as 

d !Xi

dt
= [Lij + (Nijk + Nikj )Xk ] !Xj  +  Nijk ( !Xj !Xk " !Xj !Xk ) +  !Fi   . 

Let X consist of slow components x and fast components y, so that  !X
T
=  [ !x

T
 !y

T
]  and 

X
T
=  [x

T
 y

T
] .  Then the equation for the anomalous slow components may be written 

d !xi

dt
  =       [Lij + (Nijp + Nipj )yp ] !x j                                       

             +  [(Nijp + Nipj ) !x j + {Lip + (Nijp + Nipj )x j}] !yp   "  (Nijp + Nipj ) !x j !yp        

             +  Nipq ( !yp !yq " !yp !yq  )   +  Nijk  ( !x j !xk " !x j !xk   )  +  !fi       

    (14)  
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Now let Nijp + Nipj = Eijp ,   Lip +  (Nijp + Nipj )x j  = Gip ,  and (Nijp + Nipj ) !x j !yp  = Di . Further, 

approximate Nipq ( !yp !yq " !yp !yq  )  asHij !x j +Girzr , where H and G are linear operators and z 

is a noise vector, and where the index r uniquely identifies each combination  of p and q. 

Finally, let  Lij + (Nijp + Nipj )yp + Hij = Aij  . Then neglecting the nonlinear terms involving 

x’x’ in (14), we obtain 

d !xi

dt
  =      Aij !x j   +  (Eijp !x j +  Gip ) !yp    "  Di     +  Girzr  +  !fi              (15) 

Dropping the primes on x' for clarity, defining fext = fi', and also defining an extended 

noise vector !T
=  [ "y T

 z
T

]  with M = P+R components, we finally arrive at the form 

dxi

dt
  =      Aij x j   +  (Eijmx j +  Gim ) !m    "  

1

2
EijmGim    +  (fext )i              (16) 

which is identical to (1) with B and D as in (4).  

It is important to appreciate that it is approximating the fast variables y' and z in (15) as 

stochastic noise !  in (16) that enables the mean noise-induced drift Di in (15) to be 

represented as in (4b), and to close the moment equations as in (10). Otherwise the slow-

fast variable separation inherent in (6) and the FPE are not valid. The conditions under 

which the components of a dynamical system may be separable into slow and “fast 

enough” components in this sense, as well as procedures for classifying specific system 

components as such, have been the subject of many theoretical and empirical studies (e.g. 

Khas'minskii 1966, Papanicolaou and Kohler 1974, Hasselmann 1976, Penland 1996, 
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Winkler et al 2001, Majda et al 2003, Gardiner 2004, Franzke et al 2005). Our intention 

is not to pursue a similar specific classification here but merely to highlight how CAM 

noise occurs naturally in a quadratically nonlinear system with a slow-fast separation of 

time scales. Indeed the above considerations make it easier to justify CAM noise than 

either pure multiplicative noise or uncorrelated additive and multiplicative noise.    

In the climate system, the quadratically nonlinear tendency terms are mostly associated 

with adiabatic fluxes, and the "external" forcing term F in (13) represents a combination 

of internal diabatic interactions and truly external forcing. In reality, therefore, F also 

depends on the system state. For small perturbations around X , we may write 

 

!Fi    =   Fi (X) " Fi   !    (fext )i  +  
#Fi

#Xj X

!Xj   +  
1

2

#
2
Fi

#Xj#Xk X

( !Xj !Xk " !Xj !Xk )       (17) 

Decomposing X' into slow and fast components and following a similar development to 

that from (14) onward, one can see how F' can also give rise to CAM noise components. 

We will present evidence in section 5 that this source of CAM noise is, however, 

relatively minor compared to that associated with rapidly varying adiabatic fluxes for the 

generation of the non-Gaussian statistics shown in Figures 1 and 2. 

 4. A generic 1-D linear system with CAM noise 

Having seen that the extended stochastic forcing (4) provides a mechanism for a linear 

system to have non-Gaussian statistics, we now address the issue of what specific types 

of non-Gaussian statistics it can generate. This can be helpful in discriminating between 
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this and nonlinear dynamical mechanisms of non-Gaussian variability. We are especially 

interested in determining if CAM noise can account for the parabolic K-S relationship in 

Fig 2. To this end we consider the simplest possible 1-d system with CAM noise, as in 

(5). The integrated FPE for that system may be written 

[ Mx ] p  =   
1

2
 
d

dx
 [ (E

2
x

2
+ 2Egx + g

2
+ b

2
) p ]  ,   (18)  

where M = A + 0.5 E
2
  <  0. Equation (18) may be used to obtain expressions for the n-th 

order moments < x
n
>  by multiplying by x

n!1
and integrating over x. For the first two 

moments, this yields < x >  =  0  and < x2
>  =  !

2
 =  " (g

2
+ b

2
) / (2M + E

2
) . For the 

higher moments, we obtain 

M +
n !1

2

"
#$

%
&'
E

2(

)
*

+

,
- < x

n
>  =  !  

n !1

2

"
#$

%
&'

2Eg < x
n!1

> + (g
2
+ b

2
) < x

n!2
>() +,  .            (19)    

Note that in general,  M + 0.5(n !1)E2"# $%  is negative for < x
n
>  to exist. Using (19) to 

obtain expressions for < x
3
>  and 

� 

< x
4

> , and remembering that the skew S and excess 

Kurtosis K are defined as S  =  < x
3
> /!

3
 and K  =  < x

4
> /!

4
 " 3 , gives after some 

manipulation, 

K  =  
3

2
 

1+!

1+ (3 / 2)!

"

#
$

%

&
'  S

2
  +  3 

1+ (1 / 2)!

1+ (3 / 2)!
 (  1

"

#
$

%

&
'      )    

3

2
 S

2      ,         (20) 
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where  ! = E
2

/ M  < 0 . The inequality in (20) exists because  both ratios involving % are 

greater than 1  (see also Sura and Sardeshmukh 2008). Note that the equality K  =  1.5 S
2  

is satisfied only for E = 0,  in which case it reduces to a triviality  0 = 0 .  

Thus, regardless of the model parameters, K exceeds 1.5 S
2
 in a 1-d LSF system with 

CAM noise. This is a simple and specific prediction of the character of non-Gaussian 

variability. And remarkably, the points in Figure 2 satisfy this K-S inequality with the 

same parabolic dependence of K on S, albeit with a small negative bias.  

One can similarly make specific predictions for the other moments using (19). For 

example, the fifth moment of x must satisfy 

µ
5
!
< x

5
>

" 5
       

>   10S + 3S
3
  for  S > 0

<    10S + 3S
3
 for  S < 0

 
#
$
%

               (21) 

We will attempt to verify this prediction of the 1-d model in section 5.  

Finally, we consider the stationary probability density of the 1-d system (5), obtained by 

solving for p(x)  in (18) as  

 

p(x) =  
1

N
 (Ex + g)

2
+ b

2!" #$
 

1

%
&1

exp & 
2g

%b
 arctan

Ex + g

b

'
()

*
+,

!

"
-

#

$
.  ,   (22) 

where N  is a normalization constant which ensures that p(x) integrates to unity (See also 

van Kampen 1981, Muller 1987). This PDF is clearly skewed if g ! 0 , and has a unique 
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maximum at x
max

= Eg / (M ! E
2
) . We will refer to it as the generic “Stochastically-

Generated-Skewed (SGS)” probability density function. In addition to skew, the SGS 

distribution also has power-law tails, since for large magnitudes of x we have 

 

p(x) !  x
 2

1

!
"1#

$%
&
'(
exp " 
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!b
 arctan

Ex

b

#
$%

&
'(
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,
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 2
1
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"1#
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!b

#
$%

&
'(

 ,  (23) 

where the !(+) sign in the exponential factor obtains for large positive (negative) x. 

Remembering that " is negative, this means that if g is positive, p is greater for large 

positive x than for large negative x, but has the same exponent of the power-law tail. We 

will attempt to verify this specific prediction of the 1-d model also in the next section. 

Before ending this section, we note that (5) is the simplest but not the only possible 

stochastically forced 1-d system with deterministic linear dynamics that can have non-

Gaussian statistics. The most general such system is the linear system  

dx

dt
 =   Ax +   [(Emx + gm )

2
+ cmx]  !m

m

"  #  
$

2
 +  fext          (24) 

perturbed by so-called "radical noise", where ! = E
m
g
m
+ 0.5c

m( )" , and where to 

avoid confusion we have discontinued the use of the Einstein summation convention. 

Equation (5) is a special case of (24) with c
m
!  0 , fext !  0 , and 2-d noise with 

components #1 and #2. Defining E
2
= E

m

2

! , G
2
= gm

2

! , and M = A + 0.5E
2
< 0 , 

the integrated Fokker-Planck equation (18) is modified in this more general case to  
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Mx + fext[ ]  p =  
1

2
 
d

dx
 [ (E

2
x

2
+ 2!x +G

2
) p ]                       (25) 

Note that  < x >  =  ! M
!1

 fext , so the system still responds linearly to external 

forcing, and the prediction of the expected future state given an initial state is still a linear 

prediction. To describe the dynamics of centered anomalies with zero mean, we set 

fext = 0 , as in (5). Following a development very similar to that from (19) to (22), one 

can then derive similar equations for the relationships between the moments, and also 

solve (25) directly for the PDF (see Appendix). Importantly, the K-S relationship 

K  !  1.5 S
2  and the µ

5
! S  relationship (21) remain valid in all cases, but the PDF can 

differ from (22). Our chief motivation for introducing this more general process (24) 

here, however, is to point out that if there is no multiplicative noise, i.e. if E !  0 , then 

the K"S relationship becomes an equality K  !  1.5 S
2 , which, unlike (20), is valid even 

for nonzero values of K and S.  

If both E !  0 and G !  0 , the solution of (25) with fext = ! / 2  is a Gamma pdf with a 

shape parameter 1/2  and a scale parameter  !" /M .  This result may come as a surprise, 

since Gamma PDFs are usually associated with the squares of Gaussian variables. 

Nonetheless, it could have been readily anticipated from (1). In the 1-d case, for constant 

model parameters and no external forcing in (1), the equation for the square of the state 

variable in (1) can be cast in the form (24) with E = 0 , G = 0 , and fext = ! / 2 .  

Although (24) incorporates interesting extensions of the simple model (5) in the 1-d case, 

we have not pursued them further in this study even though the deterministic dynamics 
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remain linear. This is mainly because it is difficult to justify the relevance of full-fledged 

"radical noise" in the N-d climate system from first principles. As the previous section 

showed, it is easier to justify CAM noise, which is a special case of radical noise, given 

the importance of quadratic nonlinearities in the N-d climate system. One can nonetheless 

imagine the general 1-d linear model (24) being useful in many other contexts than the 

one considered in this study. 

5. Results from a long dry adiabatic GCM simulation with constant forcing 

 

Are the skewness and kurtosis of the daily 300 mb vorticity anomalies shown in Fig. 1 

due to CAM noise, and if so, are they associated primarily with turbulent adiabatic or 

diabatic forcing fluctuations? To clarify this, we examine a long 1200-winter simulation 

of the northern winter climate generated by Sardeshmukh and Sura (2007) using a dry 

adiabatic atmospheric general circulation model forced only with the observed long-term 

winter-mean diabatic forcing as a constant forcing. The model has a T42 spatial 

discretization in the horizontal and 5 levels in the vertical, and is exactly of the form (13), 

but with a prescribed constant forcing F
i
 estimated from observations. Despite the 

complete neglect of forcing variations !F
i

, the model reproduces many second-order 

statistics of the observed atmospheric circulation variability as described fully in 

Sardeshmukh and Sura (2007). Figure 4, shown in an identical format to Figure 1 but 

constructed from the model output, shows that the model also captures many features of 

the observed skewness and kurtosis of the daily 300 mb vorticity anomalies. There are 

some notable areas of discrepancy, especially over the Atlantic sector; to what extent this 

is due to the neglect of !F
i

 or the coarse spatial resolution of the model is unclear at 
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present. Nonetheless, the generally successful simulation of the essential character of the 

observed S and K fields despite the model’s neglect of transient diabatic forcing suggests 

that the stochastic generators of these higher-order vorticity moments are mostly 

associated with turbulent adiabatic fluxes. Furthermore, the fact that the model also 

captures the observed parabolic K-S relationship in Fig 5, consistent with the 1-d theory, 

suggests a dominant role for the local adiabatic fluxes in generating these moments.  

 

One advantage of examining a long 1200-winter simulation is that one can have much 

greater confidence in the statistical significance of the higher-order statistics. Figure 6 

attempts to verify the relationship (21) between the fifth moments and skewness 

predicted by the 1-d theory. (In view of the enormous sampling uncertainties involved, 

we did not attempt to do this with our 30-winter observational dataset). Results are shown 

for the simulated daily 300 mb vorticity as well as the 500 mb geopotential height 

anomalies at all northern hemispheric gridpoints. Figure 6 clearly bears out the prediction 

of the 1-d theory even in the multi-component GCM simulation, which again highlights 

not only the relevance of CAM noise but also the dominance of the local stochastic 

dynamics in generating the higher moments. This is a powerful validation of the linear 1-

d theory.  

 

Figure 7 verifies another major prediction of the 1-d theory, that the PDFs must have 

power-law tails. Here we also attempted a comparison with observations, at two north 

Pacific locations of the largest skew of 300 mb vorticity and 500 mb heights. Our hope 

was that the relatively large deviations from Gaussianity at those locations might generate 
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more statistical confidence in the character of the estimated PDF tails; however we did 

not attempt to put error bars on those tails. The observational PDFs in the left panels of 

Fig 7 do appear to have power law tails, at least on the “fat” tail side.  The right panels 

show the corresponding PDFs from the model simulation, now with error bars. They 

clearly have power-law tails, that remarkably have the same slope as the observed for the 

vorticity PDF, and only a slightly steeper slope than the observed for the geopotential 

height PDF. The model’s power-law tail extends on the "fat" tail side to values of x up to 

7 standard deviations. On the “thin” tail side, the probability densities are so low as to be 

a challenge to estimate even from an 1200-winter long simulation. Still, a hint of a 

power-law dependence, at least for the 300 mb vorticity, is evident in the lower right 

panel of Figure 7, and with the same slope as on the “fat” tail side, as predicted by the 

linear 1-d theory. 

 

6. A principle of “Diagonal Dominance” in the higher-order moment equations    

 

The success of the local 1-d model (5) in explaining the essential character of the 

observed and GCM-simulated non-Gaussian statistics may come as a surprise, given the 

obvious importance of nonlocal dynamics in the multivariate climate system. The key 

point, however, is that this success applies to the understanding and simulation of the 

higher-order non-Gaussian statistics and power-law tails. We argue below that the 1-d 

model (5) becomes progressively better at representing the higher-order statistics of 

multivariate systems through a principle of increasing “diagonal dominance” in the 

higher-order moment equations. 
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Diagonal Dominance refers to the progressively greater importance of the self-correlation 

terms in the higher-order moment equations of multivariate systems. Consider, for 

illustrative purposes, (1) and (4) with fext = 0 and time-independent A, G, E, and D, and 

also in a space in which each system component is normalized by its standard deviation 

so that its marginal PDF is a standard Gaussian with unit variance. The equation for the 

n-th moment < x
i

n
> of the i-th component of x, obtained by multiplying (1) by x

i

n!1
 and 

taking expectation values, is then   

1

n

d

dt
< xi

n
>  =   0    

=     Aii < xi
n
>   +   Aij < xi

n!1
x j >

j" i

#   

+  Gim < xi
n!1$m >

m

#   +  Eijm < xi
n!1
x j$m >

j

#
m

#   !  < xi
n!1

> Di    

 (26) 

where for added clarity we have discontinued the use of the Einstein summation 

convention.  The first term on the right hand side of (26) is a self-correlation term. The 

second term involves correlations between powers of xi and other system components, 

whose magnitudes are generally smaller than unity and become small for large n. To see 

this, consider the regression  xi  = !ijx j  + " ij  of x
i

on 

� 

x j , where |!
ij
| < 1  and ! ij  is 

uncorrelated with x j . Then < xi
n!1
x
j
>  =  < ("ijx j  + # ij )

n!1
x
j
>  !  "

ij

n#1
< x

j

n
> , which 

approaches zero for large n. The second term in (26) is thus small for large n. By a 

similar argument, the contributions to the fourth term from cross-correlations between x
i
 

and x j! i  are also small for large n. This enables the third and fourth terms to be 

approximated and combined as follows:  
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Then, dropping the subscript i for clarity, (26) may be approximated for each component 

x
i
 as 

 

0   !      A < x
n
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+ E
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1
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for large n. And finally, without loss of generality, one may combine all the uncorrelated 

additive noise terms into a single term b&1 and all the CAM noise terms into another term 

(Ex+g)&2 , where &1  and &2  are independent Gaussian white noises, as follows: 
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but this is identical to the equation for  < x
n
>  in the 1-d system (5). The increasing 

importance of self-correlation terms in the higher-order moment equations is thus the 

basic reason for the relevance of the 1-d model (5) in the dynamics of the higher-order 

moments even in multivariate systems.  

 

The fact that the higher-order moment equations are more diagonally dominant also helps 

one understand why the K-S parabolas in Figures 2 and 5 are shifted slightly downward 
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relative to the prediction (20) of the 1-d theory. Let us say that for each component xi of a 

multivariate system, the dynamical equation is (5) with an additional error term 

dx

dt
  =   Ax +   b !

1
 +  (Ex + g) !

2
 "  

1

2
Eg  + error ,       (27) 

where we have again dropped the subscript i for convenience. The moment equations are 

then  <x> = 0  and 
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2      for the first two moments, and 
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for n>2. The quantities ! (n)  represent the error made in < xn > / !
n  by ignoring the non-

local dynamics. From this the local K-S relationship between K and S may be derived as 
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in which, as in (20), the ratios involving % are all greater than unity. We may therefore 

rewrite this as 

K  >    
3

2
  S

2
  +   r ,                      (30)  

where   
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Since diagonal dominance is stronger for the higher moments, we expect that 

� 

|!
(4 )

|  <  |!
(3)

|  <  |!
(2)

|, and therefore the first two terms on the right hand side to 

dominate in (31). As mentioned previously, the first term is always positive. The second 

term is negative if 

� 

!
(2) is positive. One can provide a theoretical argument as well as 

empirical evidence that 

� 

!
(2) is positive. The former relies on the fact the linear operator A 

in (1) is in almost all geophysical contexts a “non-normal” operator that does not 

commute with its transpose. This non-normality of A (which refers to the non-

orthogonality of the eigenfunctions of A and should not be confused with non-

Gaussianity) leads to a greater variance of x than for a “normal” A with the same 

eigenvalues (Ioannou 1995). In most cases, this non-normality is associated with the 

ability of anomalies to draw energy from a background state, of which there is pervasive 

evidence and which is indeed one of the cornerstones of dynamical meteorology and 

oceanography. Most recently, Newman and Sardeshmukh (2008) have confirmed that the 

variance budget of observed extratropical weekly circulation anomalies is dominated by a 

local balance between stochastic forcing and local damping, and that non-local dynamical 

effects increase the anomaly variance at all locations. Such enhancements of variance 

cause the K-S parabola to have a slight negative bias, as evident in Figs 2 and 5. Note, 

however, that the 1.5 S
2
 dependence of K on S is still preserved, consistent with our 

simple analysis here. 

 

7. Discussion and Concluding Remarks 

In this paper we demonstrated that certain types of non-Gaussian statistics are consistent 

with linear stochastically forced (LSF) dynamics with correlated additive and 
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multiplicative (CAM) noise forcing.  In particular, we emphasized that skewed PDFs can 

be reconciled with such LSF models.  We also showed that some remarkable 

relationships found between the third, fourth, and fifth moments, and also power-law 

tails, in both observations and in a long dry adiabatic GCM simulation are consistent with 

the simplest 1-d LSF model with CAM noise. We attributed the 1-d model’s success to a 

principle of increasing "diagonal dominance" in the higher-order moment equations of 

multivariate systems, associated with the increasing importance of the self-correlation 

terms in those equations.  

It should be emphasized that not all types of non-Gaussian behavior observed in the 

climate system may be reconcilable with LSF dynamics with CAM noise. The 1-d model 

predicts, for instance, a unique PDF maximum and therefore cannot account for the 

multiple PDF maxima sometimes claimed to exist in observations and climate model 

simulations (e.g. Hansen and Sutera 1986, Corti et al 1999, Monahan et al 2000, 2001). It 

is likely that multi-dimensional LSF models also cannot account for multiple PDF 

maxima, although we did not actually show this. A clear demonstration of more than one 

PDF maximum has been hindered in previous studies by the sampling uncertainties 

associated with limited observational records and relatively short climate model 

integrations, and also by methodological limitations (e.g. Stephenson et al 2004, 

Christiansen 2005). Very long integrations with state-of-the-art coupled climate models 

could resolve the issue, but the fact that one has to work so hard to show this may be a 

sign that any multi-modality as may be exist is weak and arguably not of great practical 

consequence. It is also noteworthy that Berner and Branstator (2007)  found only 
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unimodal PDFs in the longest integration performed to date, of 14 million days, with an 

(admittedly low-resolution) atmospheric GCM. 

It should also be recognized that the LSF approximation of coarse-grained anomaly 

dynamics is ultimately only an approximation, and like all approximations is not equally 

accurate in all situations. In climatic contexts, its applicability is mostly limited to 

departures from the annual cycle, and does not extend to the annual cycle itself  (Huang 

and Sardeshmukh 2002). Some role for deterministic nonlinear dynamics has also been 

argued, for instance, in tropical SST variability (e.g. Penland and Sardeshmukh 1995, 

Monahan and Dai 2004, An and Jin 2004), extratropical atmospheric circulation 

variability  (e.g. Kravtsov et al 2005, Kondrashov et al 2006, Newman and Sardeshmukh 

2008), and sea surface wind variability (e.g., Monahan 2004). Nonetheless, the LSF 

approximation is a powerful approximation for diagnostic and prediction purposes, 

whose utility has been demonstrated in numerous studies, and also in this paper.   

Perhaps the most important result from our analysis is that LSF models with CAM noise 

can explain skewed statistics. They also make falsifiable predictions, as in (20) and (21), 

of the specific manner in which the kurtosis and fifth moments are related to skew. From 

the evidence presented here, these predictions appear to be borne out both in observations 

and in a dry adiabatic GCM simulation. We are currently unaware of any simple 

nonlinear model with the same ability to explain such relationships among higher-order 

moments. The existence of power-law PDF tails is another prediction of the simple linear 

1-d model (5), that also appears to be borne out in reality and in our GCM simulation. 

While it is true that several types of nonlinear models can also account for power-law 
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tails (see Newman 2005 for a review), our 1-d model can additionally account for the 

differing magnitudes of the positive and negative tails as in lower right panel of Figure 7. 

It is not clear to what extent nonlinear models can do this.   

Finally, our analysis raises the exciting possibility of using the SGS distribution (22) (or 

its extended forms (A1) and (A2)) to estimate and predict the probabilities of extreme 

anomalies. Given the relevance of Diagonal Dominance, we believe that this would 

provide a simple, dynamically justifiable, and arguably more accurate way to estimate the 

tails of anomaly PDFs than direct estimations from short observational records or GCM 

integrations. The key point is not only that one can approximate the distribution of many 

climate variables as an SGS distribution, but also that its parameters can be accurately 

estimated from relatively short observational records or GCM integrations by fitting (5) 

to the observed, simulated, or predicted time series of those variables. This is a topic of 

current research.      
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Appendix 

 

Stationary probability density p(x) of the stochastically perturbed process (24) 

 

The solution p(x) of (25) is different if  E2
G
2  is larger or smaller than ! 2 .   
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< ! 2 , let ! 2
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2  .  Then the solution of (25) is 
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Note that (A1) reduces to (22) for fext = 0 and 2-d noise with (E
1
,g
1
,c
1
) = (0,b,0) and 

(E
2
,g

2
,c
2
) = (E,g,0)  in (24). Also, (A2) reduces to the Gamma probability density  function 

p ~ x
1/2!1

exp[!x / (b / !M )]  for fext = ! / 2  and G ! 0  and E ! 0 in (24). 
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Figure Captions 

 

Fig. 1.  Observed Skewness S and excess Kurtosis K of daily 300 mb vorticity variations 

during the northern winters of 1970-99, estimated using the NCEP/NCAR reanalysis 

dataset. The fields are both colored and contoured for clarity. The contours are drawn 

at intervals of 0.4, starting at 0.2.  

 

Fig. 2.  The S and K values from Figure 1 displayed in the form of a scatter plot.  The solid 

curve is  a parabola K = 1.5 S
2
 ! 0.6. The estimated local 95% confidence intervals 

are indicated in the upper right corner of the figure. 

 

Fig. 3.  Left panel: Departure from Gaussianity of the joint PDF of the principal component 

time series associated with the two dominant EOFs of weekly-averaged 750 mb 

streamfunction anomalies during the northern winters (DJF) of 1950-2002. Right 

panel : Departure from Gaussianity of the joint PDF of the time series of the real and 

imaginary parts of the dominant barotropic perturbation eigenmode of the northern 

hemispheric circulation obtained when it is steadily forced and stochastically damped. 

Adapted from Sura et al (2005). See text for more explanation.  

 

Fig. 4.  As in Figure 1, but obtained from a long 1200-winter simulation of a dry adiabatic 

GCM with  prescribed constant forcing, as described in the text.  

 

Fig. 5.  As in Figure 2 but from the 1200-winter GCM simulation. 
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Fig. 6.  Scatter plots of the fifth moments versus skewness S of the daily 300 mb vorticity 

(left) and 500 mb geopotential height (right) variations in the 1200-winter GCM 

simulation. The straight lines and curves facilitate comparison with the prediction of 

the linear 1-d theory (Eq. 21). The straight lines are 10S; the curves are 10S + S
3
 . 

 

Fig. 7.  Observed (left) and GCM simulated (right) PDFs of standardized daily wintertime 

500 mb geopotential height (upper panels) and 300 mb vorticity (lower panels) 

anomalies at the  locations of largest skew in the north Pacific.  The results are shown 

on a log-log scale, with the probabilities of the negative anomalies (circles) flipped 

over to the positive side for better comparison with those of positive anomalies 

(triangles). The curve in all panels is a reference Gaussian. Results are not shown for 

standardized anomaly magnitudes of less than unity. The straight lines are simple 

linear fits to the PDF tails.  
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Fig. 1.  Observed Skewness S and excess Kurtosis K of daily 300 mb vorticity variations  

during the northern winters of 1970-99, estimated using the NCEP/NCAR reanalysis 

dataset. The fields are both colored and contoured for clarity. The contours are drawn 

at intervals of 0.4, starting at 0.2.  
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Fig. 2.  The S and K values from Figure 1 displayed in the form of a scatter plot.  The solid  

curve is a parabola  K = 1.5 S
2
 ! 0.6. The estimated local 95% confidence intervals 

are indicated in the upper right corner of the figure. 
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Fig 3.  Left panel: Departure from Gaussianity of the joint PDF of the principal component 

time series associated with the two dominant EOFs of weekly-averaged 750 mb 

streamfunction anomalies during the northern winters (DJF) of 1950-2002.  

Right panel : Departure from Gaussianity of the joint PDF of the time series of the 

real and imaginary parts of the dominant barotropic perturbation eigenmode of the 

northern hemispheric circulation obtained when it is steadily forced and stochastically 

damped. Adapted from Sura et al (2005). See text for more explanation.  
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Fig. 4.  As in Figure 1, but obtained from a  long 1200-winter simulation of a dry adiabatic  

GCM with prescribed constant forcing, as described in the text.  
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                    Figure 5. As in Figure 2 but from the 1200-winter GCM simulation. 

 

 

 

 

 

 

 

 

               Simulated daily 300 mb Vorticity   



 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Scatter plots of the fifth moments versus skewness S of the daily 300 mb vorticity 

(left) and 500 mb geopotential height (right) variations in the 1200-winter GCM 

simulation. The straight lines and curves facilitate comparison with the prediction of 

the linear 1-d theory (Eq. 21). The straight lines are 10S; the curves are 10S + S
3.
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Fig. 7.  Observed (left) and GCM simulated (right) PDFs of standardized daily wintertime 

500 mb geopotential height (upper panels) and 300 mb vorticity (lower panels) 

anomalies at the  locations of largest skew in the north Pacific.  The results are shown 

on a log-log scale, with the probabilities of the negative anomalies (circles) flipped 

over to the positive side for better comparison with those of positive anomalies 

(triangles). The curve in all panels is a reference Gaussian. Results are not shown for 

standardized anomaly magnitudes of less than unity. The straight lines are simple 

linear fits to the PDF tails.  

Observed 500 mb height       15N 180 W Simulated 500 mb height      15N 180 W 

Observed 300 mb vorticity   20N 180 W Simulated 300 mb vorticity  20N 180 W 

 


