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Abstract 1 

Marine fisheries management strives to maintain sustainable populations while allowing 2 

exploitation.  However, well-intentioned management plans may not meet this balance as 3 

most do not include the effect of climate change. Ocean temperatures are expected to 4 

increase through the 21st century, which will have far-reaching and complex impacts on 5 

marine fisheries. To begin to quantify these impacts for one coastal fishery along the east 6 

coast of the United States, we develop a coupled climate-population model for Atlantic 7 

croaker (Micropogonias undulatus). The model is based on a mechanistic hypothesis: 8 

recruitment is determined by temperature-driven, overwinter mortality of juveniles in 9 

their estuarine habitats. Temperature forecasts were obtained from 14 General Circulation 10 

Models simulating three CO2 emission scenarios. An ensemble-based approach was used 11 

in which a multimodel average was calculated for a given CO2 emission scenario to 12 

forecast the response of the population. The coupled model indicates that both 13 

exploitation and climate change significantly affect abundance and distribution of 14 

Atlantic croaker. At current levels of fishing, the average (2010-2100) spawning biomass 15 

of the population is forecast to increase by 60-100%. Similarly, the center of the 16 

population is forecast to shift 50-100 km northwards. A yield analysis, which is used to 17 

calculate benchmarks for fishery management, indicates that the maximum sustainable 18 

yield will increase by 30-100%. Our results demonstrate that climate effects on fisheries 19 

must be identified, understood, and incorporated into the scientific advice provided to 20 

managers if optimum exploitation is to be achieved in a changing climate. 21 

 22 
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 25 

Introduction 26 

Overexploitation results in dramatic declines in marine population abundance and 27 

affects overall marine ecosystem structure. Fishing is often the dominant source of post-28 

juvenile mortality for exploited species, causing direct reductions in population 29 

abundance (Myers et al. 1997, Christensen et al. 2003). Most fishing practices truncate 30 

the age and size distribution through increased mortality and size-selectivity, which 31 

potentially reduces reproductive potential of the population because larger females may 32 

produce more and higher quality offspring (O'Farrell and Botsford 2006, Scott et al. 33 

2006). Fishing also impacts marine ecosystems that support fisheries both directly, 34 

through the effects of fishing gear on habitats (Barnes and Thomas 2005, Reed et al. 35 

2007), and indirectly, with the alteration of trophic pathways through the selective 36 

removal of species as targeted catch or bycatch (Jackson et al. 2001, Frank et al. 2005). 37 

Fisheries management strives to balance the exploitation of a select group of species 38 

against the sustainability of marine species and marine ecosystems, as well as the human 39 

communities and economic activity that fisheries and marine ecosystem support ((NRC) 40 

1999, Hilborn et al. 2003). 41 

Environmental variability and climate change also impact marine fisheries (Koster et 42 

al. 2003, Drinkwater et al. in press). Recruitment - the process by which young fish join 43 

the adult or exploited population - is highly variable in most marine fish populations, 44 
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largely as a result of environmental variability (Rothschild 1986). Growth and maturity 45 

rates are also affected by environmental variability including abiotic (e.g., temperature) 46 

and biotic (e.g., availability of food) factors (Brander 1995, Godø 2003). Yet, most 47 

fisheries stock assessments, which form the scientific basis for fisheries management, do 48 

not include the effect of the environment on populations; environmental effects are 49 

assumed to be the same in the future as in the past and thus, are already reflected in the 50 

biological characteristics of the population (Richards and Maguire 1998, Hilborn and 51 

Walters 2004). 52 

Climate change is resulting in long-term increases in temperature, changes in wind 53 

patterns, changes in freshwater runoff, and acidification of the ocean (IPCC 2007b, 54 

Doney et al. 2009). These changes are impacting the abundance, distribution, and 55 

productivity of fishery species directly (e.g. temperature effects on growth) and indirectly 56 

(e.g., changes in ocean productivity) (Stenseth et al. 2002, Perry et al. 2005). Long-term 57 

environmental change creates problems for fisheries stock assessment because the future 58 

environment will be different than the past. Previous estimates of population rates 59 

(growth, reproduction, recruitment) may not be appropriate for the future and thus, even 60 

well-intentioned fisheries management plans may fail because they do not account for 61 

climate-driven changes in the characteristics of exploited populations ((NRC) 1999, Kell 62 

et al. 2005, Kaje and Huppert 2007, Mackenzie et al. 2007, Rockmann et al. 2007). 63 

Incorporating environmental effects in models for exploited fishery populations is not 64 

new (Hilborn and Walters 2004). Although correlative relationships are often used, 65 

numerous studies have indicated that to use environmentally-explicit population models 66 
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in forecasting (predicting the status of the population in the future based on 67 

environmental predictions), requires a mechanistic understanding between environmental 68 

forcing and population dynamics (Myers 1998, Krebs and Berteaux 2006, Hollowed et al. 69 

2009). In the context of climate change, environment-population models have been 70 

developed for fisheries; for example Atlantic cod abundance in the North Sea and the 71 

Gulf of Maine in the future is likely to be lower than currently assessed, raising the 72 

possibility of overexploitation even under management strategies designed to prevent 73 

overfishing unless target levels of exploitation are adjusted accordingly (Clark et al. 74 

2003, Cook and Heath 2005, Fogarty et al. 2008). These studies demonstrate that climate 75 

effects on fisheries have important consequences for the long-term sustainability of 76 

exploited populations. 77 

We examine the effect of climate change on Atlantic croaker (Micropogonias 78 

undulatus, Teleostei: Perciformes: Sciaenidae) based on a mechanistic recruitment 79 

hypothesis. Atlantic croaker is a coastal marine fish inhabiting the east coast of the 80 

United States (Murdy et al. 1997) that supports a fishery of approximately 9,000 metric 81 

tons with a value of approximately 8 million dollars (National Marine Fisheries Service 82 

2008). Atlantic croaker spawn pelagic eggs (~ 1 mm in diameter) in the coastal ocean 83 

during late-summer, fall, and winter. Late-larvae enter estuaries (e.g., Delaware Bay, 84 

Chesapeake Bay, Pamlico Sound) after 30-60 days in the plankton (Warlen 1982), and 85 

juveniles spend their first winter in estuarine nursery habitats (Able and Fahay 1998). 86 

Juvenile survival through the winter is determined by estuarine water temperatures; cold 87 

water leads to low survival, which in turn decreases recruitment to the population. This 88 
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mechanistic recruitment hypothesis is supported by laboratory results (Lankford and 89 

Targett 2001a, b) and field observations (Norcross and Austin 1981, Hare and Able 90 

2007). 91 

We incorporate this hypothesis into a population model with recruitment as a function 92 

of spawning stock biomass and minimum winter temperature. We then couple this 93 

population model with forecasts of minimum winter temperature from 14 General 94 

Circulation Models (GCMs) based on three CO2 emission scenarios. We model the 95 

abundance, distribution and yield of the population under different climate change 96 

scenarios and different fishing rates. We find that both climate and fishing affect the 97 

dynamics of the population and conclude that climate change will have major 98 

consequences for the Atlantic croaker population of the east coast of the United States in 99 

the coming decades. 100 

 101 

Materials and Methods 102 

Climate Models - The Fourth Assessment Report of the Intergovermental Panel on 103 

Climate Change (IPCC) (IPCC 2007b) included simulations from 23 different GCMs run 104 

with standardized CO2 emission scenarios. Here we use 14 of these models (Table 1), and 105 

three emission scenarios: commitment scenario in which atmospheric CO2 is fixed at 350 106 

ppm through the 21st century, the B1 scenario in which CO2 increases to 550 ppm by the 107 

end of the 21st century, and the A1B scenario in which CO2 increases to 720 ppm by the 108 

end of the 21st century (IPCC 2007b). The 14 GCM’s were chosen because the results 109 

are publically available for the three climate scenarios (commit, B1, and A1B) and for a 110 
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retrospective analysis of the 20th century (IPCC Data Distribution Centre, 111 

http://www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html). Also, the models 112 

and scenarios included had simulations through 2100. Some of the models have more 113 

than one run for one or more of the climate scenarios; only one run was included for each 114 

model and scenario to ensure that the models were treated similarly. A comparison of 115 

retrospective 20th century analysis from each GCM and observed minimum winter air 116 

temperatures (1895-2007) was used to bias correct the model results; mean of model 117 

outputs were compared to observations and the difference was added to minimum winter 118 

air temperatures forecasted by the model (comparisons are provided in the Appendix, 119 

Section 1).  120 

Air temperature, which is forecast in most GCMs, is a good proxy for estuarine water 121 

temperatures owing to the efficient ocean-atmosphere heat exchange in estuarine systems 122 

(Roelofs and Bumpus 1953, Hare and Able 2007). Winter air temperature is also strongly 123 

coherent along the U.S. east coast (Joyce 2002) and one location can be used as a proxy 124 

for a larger area (Appendix, Section 1). Thus, minimum winter air temperature in the 125 

Chesapeake Bay region is used as the climate input into the coupled climate-population 126 

model. The Chesapeake Bay region was chosen because this estuary is a major Atlantic 127 

croaker overwintering nursery (Murdy et al. 1997, Able and Fahay 1998).  128 

 129 

Population Model – A finite time step model (Fogarty 1998, ASMFC 2005) was 130 

developed for the population of Atlantic croaker along the mid-Atlantic coast of the 131 

United States. Spawning stock biomass (S) in a given year was calculated as the sum of 132 
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the number of individuals (N) at each age (A) in that year (y) multiplied by a constant 133 

weight-at-age (WA), a constant percent mature at age (MA), and a constant sex ratio 134 

(SR=0.5).  135 

SRMWNS
A

AAAyy ⋅⋅⋅= ∑       (1) 136 

The values for WA, MA, and SR were taken from the most recent Atlantic croaker stock 137 

assessment (Table 2). 138 

The mechanistic hypothesis that recruitment is determined by winter water 139 

temperatures affecting mortality during the juvenile stages was incorporated into the 140 

model using an environmentally explicit stock recruitment relationship. In the model, 141 

numbers-at-age 1 in year y (N1y) equaled recruitment in year y (Ry). Recruitment in year y 142 

was calculated based on spawning stock biomass in year y-1 (Sy-1) with the addition of the 143 

term for minimum winter temperature during year y-1 (Dec) and year y (Jan, Feb, and 144 

Mar) (denoted Ty). 145 

)(
11

1 ε+⋅+⋅−
−

−== yy TcSb
yyy eaSRN      (2) 146 

This form of the stock-recruitment relationship was used because it provided the best fit 147 

to observed data (Appendix, Section 2). The climate effects on the population entered the 148 

model through the temperature term (T). Error in the stock recruitment relationship (ε) 149 

was included formally in the model as a normally distributed random variable 150 

parameterized from the fit of the model to data. 151 

Number-at-age in a given year (NAy) was calculated from number at the prior age in 152 

the prior year (NA-1 y-1) discounted by mortality, which was spilt into two components: 153 
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fishing mortality (F) and natural mortality (M). Fishing mortality is an instantaneous rate 154 

used to calculate how many fish are removed from a population through fishing over a 155 

period of time. Natural mortality is similar but used to calculate how many fish are 156 

removed from a population through natural causes (e.g., predation, disease) over a period 157 

of time. Fishing mortality was multiplied by an age-dependent selectivity coefficient (sA, 158 

Table 2), because younger ages are less susceptible to capture in the fishery compared to 159 

older individuals.  160 

)(
)1)(1(

1 MFs
yAAy

AeNN +−
−−

−=       (3) 161 

The model was implemented for 1900 to 2100 using observed (1900-2007) and 162 

simulated (2008-2100) minimum winter air temperatures. Natural mortality (M) was 163 

assumed to be constant with a normally distributed random component (μ=0.3, σ=0.05); 164 

this value was taken from the recent stock assessment (ASMFC 2005). For model 165 

hindcasts, historical fishing mortality rates (F) were set to levels consistent with the 166 

history of the fishery (Table 3). For model forecasts, rates of fishing (F) ranged from 0 to 167 

1 with a random component (μ=0, σ=0.02). For each climate scenario and GCM, 100 168 

population simulations were calculated to include the variability associated with 169 

stochasticity in natural mortality (M), fishing mortality (F), and the unexplained 170 

variability in recruitment (ε).  171 

The outputs from the coupled model were averaged over time (2010-2100), 172 

because GCMs do not produce annual predictions; i.e., due to random climate variability, 173 

a given year in the model is not expected to match that in nature. The 14 GCMs were 174 

treated as a multimodel ensemble (Reichler and Kim 2008) – the results of the different 175 
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GCMs were combined to make inferences about the effect of climate change on the 176 

Atlantic croaker population. Two approaches were used to evaluate the output of the 177 

coupled model: i) the distribution of model results were compared to past estimates of 178 

spawning stock biomass (1972-2004) and ii) a multimodel mean spawning stock biomass 179 

was calculated for each climate scenario across all 14 GCMs. Our results represent the 180 

mean response of the Atlantic croaker population to several climate change scenarios 181 

over the 21st century for an ensemble of GCMs. 182 

 183 

Distribution Model – The mid-Atlantic croaker stock makes annual south-to north 184 

migrations from wintering grounds off the Carolinas to summering grounds from North 185 

Carolina to New Jersey (Murdy et al. 1997). Atlantic croaker also exhibit onshore-186 

offshore migrations from nearshore and estuarine areas in summer to coastal and shelf 187 

areas in fall (Murdy et al. 1997). We used a multiple-regression approach to model the 188 

mean distance and northern extent of the population as a function of spawning stock 189 

biomass and the previous year’s minimum winter temperature. Mean distance and 190 

northern extent estimates were calculated from data collected by the autumn trawl survey 191 

of the National Marine Fisheries Service (Azarovitz 1981). This survey is based on a 192 

random stratified design, with multiple randomly located trawl stations in each strata, 193 

which are defined by along-shelf regions and bathymetric zones (Azarovitz 1981). 194 

Since the northeast U.S. shelf does not run simply north-south, a curvilinear grid 195 

of distance from Cape Hatteras, North Carolina was developed; the grid approximately 196 

followed the 10 m isobath. This grid was then used to convert each strata average 197 
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location (latitude and longitude) to a strata average along-shelf distance from Cape 198 

Hatteras. Using average catch in each strata and average distance to each strata, we 199 

calculated a weighted-mean distance for Atlantic croaker in each year. We also calculated 200 

weighted standard deviation of distance. Based on the idea that range expands at higher 201 

population sizes (MacCall 1990) and the suggestion that summer distribution may be 202 

influenced by temperatures during the previous winter (Murdy et al. 1997), we developed 203 

an empirical model for mean location (distμ) and its standard deviation (distσ), based on 204 

spawning stock biomass (S) and temperature (T). 205 

22
YuYYuYuuY TeSdTcSbadist ++++= μμ     (4) 206 

22
YYYY TeSdTcSbadist

Y σσσσσσ ++++=     (5) 207 

All potential variations of the above models were fit (y=a+bS; y=a+cT; y=a+bS+cT; etc) 208 

and compared using the Akaike Information Criteria. Evaluation of Akaike weights 209 

indicated that several models were equally supported and thus, we choose to use a multi-210 

model inference procedure (Burnham and Anderson 1998) to determine the parameters of 211 

the statistical model (a, b, c, d, and e). The final empirical model explained 31% and 37% 212 

of the variability in the mean and standard deviation of the annual center of the 213 

population. A logistic regression approach also was developed (Appendix, Section 3); the 214 

results were similar so we only present the results of the multiple regression model. 215 

For distribution forecasts, spawning stock biomass estimates from the coupled 216 

climate-population model were combined with minimum winter temperature estimates 217 

from the GCM scenarios. The outputs from the distribution model were averaged over the 218 

period of 2010-2100, similar to the results of the population model. We used the mean 219 
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and standard deviation models to forecast the mean and northern extent of the population; 220 

the latter was defined as the mean plus 2 standard deviations. In addition to mean center 221 

of the distribution and mean northern extent, the frequency of years with the northern 222 

extent past the Hudson Canyon was quantified. Historically, Hudson Canyon is near the 223 

absolute northern limit of the population and is an important geographic feature on the 224 

northeast U.S. continental shelf separating the Mid-Atlantic region from the Southern 225 

New England region (Sherman 1980). 226 

Using data from the autumn trawl survey is potentially biased by the timing of the 227 

fall migration; as waters cool, adult Atlantic croaker move south (Murdy et al. 1997, Able 228 

and Fahay 1998). Thus, the timing of the survey relative to the timing of the fall 229 

migration confounds the ability to compare distribution among years. Assuming the fall 230 

migration is triggered by temperature, we screened shelf temperatures observed during 231 

each annual survey. There were several years (5 of 33) where temperatures off New 232 

Jersey were cooler than most other years (e.g., <17oC), indicating that fall cooling started 233 

earlier in these years. These cooler years were removed from the analysis in an attempt to 234 

compare the distribution of Atlantic croaker at the same point in the seasonal cycle. 235 

 236 

Yield Analysis - We estimated the fishing rate threshold and yield target under current 237 

conditions and under the three CO2 emission scenarios based on the temperature-238 

dependent recruitment model. The purpose was to calculate management benchmarks for 239 

the population under the different climate change scenarios. The environmentally explicit 240 

stock-recruitment relationship (equation 2), can be linearized:  241 
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Solving for spawning stock biomass (S) results in: 243 
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   (7) 244 

Note that the expression inside the brackets includes spawning biomass-per-recruit (S/R). 245 

Given estimates of the parameters of the recruitment models and standard yield and 246 

spawning biomass-per-recruit analyses (Lawson and Hilborn 1985, Quinn and Desiro 247 

1999), estimates of S/R are substituted for different levels of fishing mortality [here 248 

designated as (S/R)F] to determine the total spawning biomass for each fishing mortality 249 

rate.  Once the total spawning biomass corresponding to a particular level of fishing 250 

mortality (SF) was determined, the corresponding recruitment was obtained by the simple 251 

identity. 252 

)S/R
S = R

F

F
F (

     (8) 253 

The equilibrium yield for each level of fishing mortality was obtained by 254 

combining the yield per recruit at each level of fishing mortality with this predicted 255 

recruitment level to obtain an estimate of the total yield at each level of fishing mortality: 256 

    R (Y/R) = Y FFF      (9) 257 

The fishing rate at maximum sustainable yield (FMSY) is defined as the F resulting in the 258 

maximum sustainable yield (MSY = max(YF)). These equations were applied to the 259 
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average S and R forecasts for each climate scenario resulting is MSY and FMSY for each 260 

climate scenario. 261 

 262 

Results 263 

Environmentally explicit stock recruitment relationship - Observed recruitment of 264 

Atlantic croaker in the mid-Atlantic region is significantly correlated to minimum winter 265 

air temperature (Fig. 1A), strongly supporting the mechanistic recruitment hypothesis. 266 

Including a temperature term in the stock recruitment model provides a significantly 267 

better fit compared to including spawning stock biomass alone (Appendix, Table A2) and 268 

explains 61% of the variance in recruitment (Fig. 1B). Including temperature in the stock 269 

recruitment relationship permitted the detection of a significant compensatory population 270 

effect (e.g., a domed shaped stock recruitment function) that was masked by temperature-271 

driven variability. Simulated recruitment and spawning stock biomass largely overlapped 272 

with spawning stock biomass and recruitment from the stock assessment (ASMFC 2005) 273 

providing confidence that the model captures the large-scale dynamics of the population 274 

(Fig. 1C and 1D). 275 

 276 

Minimum winter temperatures - As the level of atmospheric CO2 increases, GCMs 277 

predict that minimum winter temperatures in the Chesapeake Bay region of the United 278 

States will increase. Under the commit scenario (CO2 constant at 350 ppm), the models 279 

predict little trend in minimum winter temperatures; fluctuations are dominated by 280 

natural variability within the climate system (Fig. 2). In contrast, under the B1 and A1B 281 
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scenarios, the models predict increasing minimum winter air temperatures with values 282 

higher than observed during the 20th century. 283 

 284 

Population abundance - With increasing minimum winter temperatures, the coupled 285 

climate-population model predicts that Atlantic croaker abundance will increase (Fig. 3). 286 

Increased temperatures result in higher recruitment, which leads to higher spawning stock 287 

biomass. At current levels of fishing mortality (F=0.11), all GCMs and all scenarios 288 

predicted higher population abundances than observed since the early 1970’s. Ensemble-289 

mean increases in spawning stock biomass of 63%, 82% and 92% are projected under the 290 

commit, B1, and A1B scenarios. Fishing also influences abundance; as fishing mortality 291 

increases, spawning stock biomass decreases. Counteracting warming, forecast spawning 292 

stock biomass decreases as fishing mortality increases, but even at higher fishing 293 

mortality rates (F=0.4), all GCMs for the B1 and A1B scenarios predict higher population 294 

abundances than observed in the past. These results are intuitive based on the structure of 295 

the model and the relationship between temperature and recruitment, but unless fishing 296 

mortality increases by more than fourfold, the coupled population-climate model 297 

indicates that Atlantic croaker biomass will increase in the future. 298 

The model also allows the effect of climate change on population dynamics to be 299 

quantified relative to the effect of fishing through the comparison of the partial 300 

derivatives of spawning stock biomass (S) relative to climate scenario (C) (
C
S

∂
∂ ) and 301 

fishing (F) (
F
S
∂
∂ ) (Figure 4). As fishing mortality rate increases, 

F
S
∂
∂  decreases. In 302 
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contrast, 
C
S

∂
∂  remains relatively constant over the range of fishing mortality rates. As a 303 

result, at lower fishing mortality rates, the effect of climate is 10-20% of the effect of 304 

fishing, while at higher fishing mortality rates, the effect of climate is 20-30% of the 305 

effect of fishing. In other words, an increase in atmospheric CO2 from 350 to 550 ppm is 306 

approximately equivalent to a 0.2 decrease in fishing mortality rate. This is a substantial 307 

effect given that the estimated range of fishing mortality on Atlantic croaker was 0.03 to 308 

0.49 from 1973-2002 (ASMFC 2005). 309 

 310 

Population distribution - The empirical distribution model predicts that with increasing 311 

minimum winter air temperatures, the range of Atlantic croaker will expand northward. 312 

Fishing also has a strong effect on distribution, because fishing mortality affects 313 

spawning stock biomass (Fig 5). At zero fishing mortality, all climate models and 314 

scenarios forecast a northward shift in the population of 50-200 km; the shift is greater at 315 

higher levels of atmospheric CO2. Likewise, the northern extent of the distribution is 316 

forecast to shift 100-400 km northwards and the frequency north of Hudson Canyon 317 

increases 10-40%, depending on the GCM and CO2 emission scenario. As fishing 318 

mortality increases to 0.1 (the current level) and 0.4, the range expansions are predicted 319 

to be less. At current levels of fishing (0.1), however, all B1 and A1B scenarios and most 320 

commit scenarios forecast a northward expansion of range. At relatively high fishing 321 

mortality rates (0.4), most models predict no change in mean distribution and frequency 322 

north of Hudson Canyon, and only a modest increase in the northern extent of ~ 50 km. 323 
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The ensemble means exhibit the same patterns as described above: with increased 324 

atmospheric CO2 and resulting warming, the Atlantic croaker population will expand 325 

northward if fishing remains at recent levels (Figure 6). The population is predicted to 326 

move 50-100 km northward during the 21st century if fishing remains near 0.1; the 327 

northern limit of the population is predicted to shift 75-175 km northward. Further, 328 

interannual variability is predicted to extend the northern limit of the population past 329 

Hudson Canyon in 10%-30% of the years from 2010 to 2100. Over the past decade, 330 

Atlantic croaker has become a regular fishery species in Delaware Bay and coastal New 331 

Jersey, and our results indicate that this trend will continue and that Atlantic croaker will 332 

be observed more frequently in waters of southern New England in the coming decades. 333 

 334 

Population Yield - A yield analysis based on the coupled climate-population model 335 

estimates that management benchmarks for Atlantic croaker in the mid-Atlantic region 336 

will change dramatically with increasing minimum winter air temperatures. Fishery 337 

benchmarks are biological reference points based on exploitation characteristics of the 338 

population that are used for guidance in developing fishery management strategies 339 

(Restrepo et al. 1998). For Atlantic croaker, thresholds and targets for fishing rate and 340 

spawning stock biomass have been defined relative to an estimated maximum sustainable 341 

yield (MSY) and to the fishing mortality rate (FMSY), which, if applied constantly, would 342 

result in MSY (ASMFC 2005). Based on ensemble averages across all GCM scenarios, 343 

FMSY and MSY increase under all three climate scenarios compared to estimates based on 344 

average minimum winter air temperatures over the past 30 years (Fig. 7). The yield curve 345 
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flattens at higher fishing mortality rates, so comparing FMSY is somewhat arbitrary (a 346 

range of F’s result in similar yields), but forecasted MSY’s are 35%, 73%, and 96% 347 

higher under the commit, B1, and A1B climate scenarios compared to the estimated MSY 348 

based on observed minimum winter temperatures over the past 30 years (Table 4). 349 

 350 

Discussion 351 

We conclude that both fishing and climate change impact the abundance and 352 

distribution of Atlantic croaker along the mid-Atlantic coast of the United States. Climate 353 

change also affects benchmarks used in fisheries management; MSY and FMSY increase 354 

with increasing temperatures. Thus, benchmarks for the mid-Atlantic stock of Atlantic 355 

croaker set without consideration of climate change would be precautionary (Restrepo et 356 

al. 1998). The mid-Atlantic region represents the northern limit of Atlantic croaker and 357 

we forecast that projected temperature increases will have positive effects on the species 358 

in this region (increased abundance and range) not considering other effects of climate 359 

change and ocean acidification (Doney et al. 2009, Drinkwater et al. in press). For species 360 

with populations at the southern end of the distribution, similar modeling has forecast 361 

opposite results. For example, Atlantic cod is predicted to shift northwards becoming 362 

expatriated from the southern New England shelf. Further, the productivity of the cod 363 

fishery in the Gulf of Maine is predicted to decrease (Fogarty et al. 2008). In the instance 364 

of Atlantic cod, benchmarks used in management may be set too high and this may lead 365 

unknowingly to unsustainable management practices even under stringent rebuilding 366 

plans (Fogarty et al. 2008). This contrast illustrates that in any region, some species will 367 
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be positively affected by climate change, while others will be negatively affected. 368 

Further, climate change will affect the benchmarks used in fisheries management. 369 

Understanding and quantifying the effect of climate change on populations in 370 

combination with the effect of exploitation is a major challenge to rebuilding and 371 

maintaining sustainable fisheries in the coming decades. 372 

The coupled climate-population model developed here does not include all the 373 

potential climatic effects on Atlantic croaker. The population model has a number of 374 

parameters, all of which are potentially affected by warming temperatures: recruitment 375 

(included here), weight-at-age, maturity-at-age, natural mortality, fishing mortality, and 376 

catchability. The weight-at-age and maturity-at-age schedules could be linked to 377 

temperature (Brander 1995, Godø 2003). Natural mortality is included as a constant, but 378 

climate change may result in temporally variable predation pressure (Overholtz and Link 379 

2007). Fishing mortality also may vary as fishing communities adapt to climate change 380 

(e.g., (Hamilton and Haedrich 1999, Berkes and Jolly 2001, McGoodwin 2007) and 381 

catchability may change as the population shifts northward, where trawl fisheries become 382 

more prevalent (Stevenson et al. 2004). 383 

In addition to added climate effects in the population model, there are also different 384 

forms of models that could be used. Keyl and Wolff (2008) reviewed environmental-385 

population models in fisheries and found six dominant types: stock-recruit analysis, 386 

surplus production models, age- or size-structured models, trophic and multi-species 387 

models, individual-based models, and generalized additive models. The population model 388 

used here for Atlantic croaker was an age-structured model with minimum winter 389 
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temperature in year y and spawning stock biomass in year y influencing recruitment in 390 

year y+1. Time lags are built into this model since spawning stock biomass is summed 391 

over age-classes, the size of which are dependent on initial recruitment and subsequent 392 

mortality. Time lags also could be incorporated through temperature dependent growth 393 

(weight-at-age) or maturity functions. The distribution model used spawning stock 394 

biomass in year y and minimum winter temperature in year y-1 to predict distribution in 395 

year y. Similar to the population model, time lags are incorporated into the distribution 396 

model through the inclusion of spawning stock biomass. Since Atlantic croaker is a 397 

migratory fish, it is also possible that migrations in previous years affect the distribution 398 

in the current year, resulting in additional time lags that are not considered in the current 399 

effort.  400 

Although our model does not include all the potential complexities, it is based on a 401 

mechanistic recruitment hypothesis that is supported by both laboratory (Lankford and 402 

Targett 2001a, b) and field work (Norcross and Austin 1981, Hare and Able 2007). 403 

Further, the model is consistent with current fishery population models (Hilborn and 404 

Walters 2004) and represents one of the first attempts to link an ensemble of GCMs to a 405 

fish population model for use in fisheries management. The current model explains 61% 406 

of the variability in recruitment (Fig. 1B), 31% of the variability in distribution, and 407 

predicts the general patterns of spawning stock biomass over the last 30 years (Fig 1D). 408 

Additionally, the outputs from 14 GCMs models are all consistent and thus, we have 409 

confidence in our long-term forecasts. 410 
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It is important to note that our effort examines Atlantic croaker at the northern part of 411 

its range (ASMFC 2005). The recent assessment considers two stocks of Atlantic croaker 412 

along the east coast of the United States: a northern stock (considered here) and a 413 

southern stock (not considered). There is evidence that abundance of the southern stock is 414 

decreasing: catch has decreased in southern states and a fishery-independent abundance 415 

index of the southern stock has decreased (ASMFC 2005). These findings are consistent 416 

with the hypothesis that the southern stock is declining and withdrawing northwards in 417 

response to climate change, but this question has not been examined in detailed and there 418 

has been little research on environmental influences on the dynamics of Atlantic croaker 419 

in the southern part of the range. 420 

Our forecasts are on a 50-100 year scale. Fisheries management does not operate 421 

on these scales and shorter-term forecasts are required. The climate modeling community 422 

is focusing great effort on developing decadal scale forecasts that include both externally 423 

forced changes (e.g., CO2 emissions) and internal variability (e.g., Atlantic meridional 424 

overturning circulation, El-Niño Southern Oscillation) (Smith et al. 2007, Keenlyside et 425 

al. 2008). In the future, a range of climate forecasts of the status of fish populations (5-20 426 

years, 20-50 years, 50-100 years) could be provided to scientists, managers, and 427 

fishers(Brander in press) . However, these forecasts need to include both the effect of 428 

fishing and climate on population dynamics (Planque et al. In press). 429 

Quantitative coupled climate-population models for fishery species are tractable, 430 

now, under certain circumstances. In the specific example, the climate-population link 431 

(survival of overwintering juveniles in shallow estuarine systems) is direct and well-432 
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reproduced by current climate models. Winter temperature is an important regulatory 433 

factor in many fish populations (Hurst 2007) and the effort here could be easily extended 434 

to some of these species. Climate-population links for many other species will be 435 

complicated and involve processes that cannot be indexed by air temperature. To develop 436 

climate-population models in these instances, climate models need to represent 437 

mechanistic hypotheses linking the regional oceanic environment to population 438 

dynamics, and ultimately include the interactions between populations and species 439 

(Winder and Schindler 2004, Helmuth et al. 2006, Cury et al. 2008). The development of 440 

such coupled models will contribute to the goal of providing the best scientific advice for 441 

managing fisheries in a future of changing climate (Perry et al. in press), as well as to 442 

future assessments of the effect of climate change on regional resources, ecosystems, and 443 

economies (IPCC 2007a). 444 
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Table 1. List of General Circulation Models (GCMs) used in this study and their 646 

associated modeling centers. Three CO2 emission scenarios from 14 GCMs were 647 

used. Data were obtained from the Model and Data Group (M&D) at the Max-648 

Planck-Institute for Meteorology 649 

(http://www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html). 650 

 651 

Modeling Center General Circulation 
Model 

Bjerknes Centre for Climate Research, Norway BCM2.0 

Canadian Centre for Climate Modelling and Analysis, Canada CGCM3  

Centre National de Recherches Meteorologiques, France CM3 

Australia's Commonwealth Scientific and Industrial Research 
Organization, Australia 

Mk3.0 

Meteorological Institute, University of Bonn, Germany 
Meteorological Research Institute of KMA, Korea 
Model and Data Group at MPI-M, Germany 

ECHO-G 

Institute of Atmospheric Physics, China FGOALS-g1.0 

Geophysical Fluid Dynamics Laboratory, USA CM2.1 

Goddard Institute for Space Studies, USA E-R 

Institute for Numerical Mathematics, Russia CM3.0 

Institut Pierre Simon Laplace, France CM4 

National Institute for Environmental Studies, Japan MIROC3.2 medres 

Meteorological Research Institute, Japan CGCM2.3.2 

National Centre for Atmospheric Research, USA CCSM3 

UK Met. Office, United Kingdom HadCM3 

 652 
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Table 2. Age-specific parameters used in the population model: weight-at-age (WA), 653 

proportion mature-at-age (MA), and proportional availability to fishing-at-age (sA). These 654 

values were taken from the most recent stock assessment (ASMFC 2005). Also included 655 

are the numbers-at-age assumed for 1900 (N1900), the first year of the simulations. 656 

     Age       

Parameter 0 1 2 3 4 5 6 7 8 9 10+ 

WA (kg) 0.05 0.12 0.22 0.32 0.43 0.52 0.61 0.68 0.74 0.79 0.83 

MA (proportion) 0 0.9 1 1 1 1 1 1 1 1 1 

sA (proportion) 0.06 0.50 0.67 0.83 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

N1900 3.4e8 7.5e7 6.8e7 1.3e8 9.2e7 2.7e7 5.6e6 1.7e7 1.1e7 8.2e6 1.7e7 

 657 
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Table 3. Time specific fishing mortality rates (F) used in the coupled climate-population 658 

model. Values from 1900-2005 were used in the hindcasting portion of the model and 659 

values from 2006 to 2100 were used in the forecasting portion of the model. 660 

Years F 

1900-1934 0.2 

1935-1944 0.3 

1945-1954 1.3 

1955-1964 0.8 

1965-1982 0.6 

1983-2005 0.2 

2006-2015 linear between 0.2 and 2016 level 

2016-2100 fixed at a level from 0 to 1 (0.1 step) with 
random annual component (μ=0, σ=0.02) 

 661 

 662 
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Table 4. Ensemble average maximum sustainable yield (MSY) and fishing rate at 663 

maximum sustainable yield (FMSY) based on three CO2 emission scenarios simulated with 664 

14 General Circulation Models (GCMs). Also provided are the values based on the most 665 

recent stock assessment of Atlantic croaker (ASMFC 2005); the values presented here are 666 

slightly different than those presented in the assessment because the model form used 667 

here (an environmentally-explicit Ricker stock-recruitment function) is different than that 668 

used in the stock assessment (a standard Beverton-Holt function). Multimodel ensemble 669 

mean and 95% confidence intervals are provided. 670 

 671 

Scenario FMSY Yield (MSY) (kg) Confidence 
Intervals (kg) 

A1B 0.89 3.67 x 107 3.30-4.07 x 107 

B1 0.78 3.23 x 107 2.90-3.58 x 107 

Commit 0.62 2.52 x 107 2.24-2.82 x 107 

Observed 0.48 1.87 x 107  

 672 
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Figure legends 673 

Fig. 1. Relationship between Atlantic croaker recruitment and minimum winter air 674 

temperature and comparison of observed recruitment and spawning stock biomass with 675 

hindcasts developed from a coupled climate-population model. A) Relationship between 676 

minimum winter air temperature in Virginia and recruitment of Atlantic croaker (r=0.68, 677 

p<0.001).  B) Environmental stock-recruitment relationship for Atlantic croaker (r2= 678 

0.61, p<0.001). Estimates of recruitment are shown for three fixed temperatures. C and 679 

D) Comparison of observed and modeled recruitment and spawning stock biomass from 680 

1973 to 2003 based on the coupled climate-population model. Observed values (black 681 

lines) are from the stock assessment (ASMFC 2005). Modeled values are shown as the 682 

mean ± standard deviation of 100 runs of the coupled climate-population model. 683 

 684 

Fig. 2. Observations and General Circulation Model (GCM) projections of minimum 685 

winter air temperature in Chesapeake Bay region from 1900 to 2100. Results from three 686 

CO2 emission scenarios averaged for 14 GCMs are shown. Long-term trends in 687 

temperature are represented by a 30 point lowess smoother fit to the annual series; these 688 

smoothed trends included a combination of observed and modeled temperatures so the 689 

divergence between observations and models occurs prior to the end of the observations. 690 

Lines represent the multimodel mean of the GCMs and shading represents 95% 691 

confidence intervals. 692 

 693 
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Fig. 3. Forecasts of the effects of climate change on Atlantic croaker spawning stock 694 

biomass for each of 14 General Circulation Models (GCMs) and three CO2 emission 695 

scenarios at three fishing mortalities (F=0, F=-0.1, and F-=0.4). Historical levels (HM) of 696 

spawning stock biomass are shown (1972-2004). 697 

 698 

Fig. 4. A) Ensemble multimodel mean spawning stock biomass (2010 to 2100) for three 699 

climate scenarios (commit, B1, and A1B) and a range of fishing mortality rates. B) 700 

Contours of 
F
S

C
S

∂
∂

∂
∂ , which is a measure of the relative effect of climate compared to 701 

fishing. Arrows along the x-axis indicate the current fishing mortality rate. 702 

 703 

Fig. 5. Forecasts of the effect of climate change on Atlantic croaker distribution in the 704 

mid-Atlantic region of the northeast U.S. continental shelf. Mean location, northern 705 

extant, and frequency north of Hudson Canyon are shown based on three CO2 emission 706 

scenarios from 14 General Circulation Models (GCMs) at three fishing mortalities (F=0, 707 

F=-0.1, and F-=0.4). Historical levels (HM) of distribution measures are shown (1972-708 

2004).. 709 

 710 

Fig. 6. A) Ensemble multimodel mean population location, B) northern extent of the 711 

range (mean + 2 standard deviations), and C) percent of years when northern extent of the 712 

population is north of the Hudson Canyon (distance 600 km). D) Maps of various 713 

distance marks along the continental shelf. The historical values (1972-2004) of mean 714 

location (~240 km), northern extent (~420 km), and proportion of years with the measure 715 
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of northern extent exceeding 600 km (0.09) are shown as dark grey contours. Arrows 716 

along the x-axis indicate the level of current fishing mortality rate.  717 

 718 

Fig. 7. Fishery yield as a function of fishing mortality rate based on the temperature-719 

dependent stock recruitment model (see Fig 1B) and ensemble multimodel mean of three 720 

climate scenarios (commit, B1, and A1B). Yield curves are presented as lines; maximum 721 

sustainable yields (MSY) and fishing rates at maximum sustainable yields (FMSY) are 722 

indicated by triangles. 723 

 724 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Online Appendix 
 
Forecasting the Dynamics of a Coastal Fishery Species Using a Coupled 
Climate-Population Model 
 
Jonathan Hare 1, Michael Alexander 2, Michael Fogarty 3, Erik Williams 4, James Scott 2 
 
1. Background on general circulation models 
2. Choice of a stock recruitment function 
3. Distribution model based on logistic regression 
4. References 
 
1. Background on general circulation models 

Annual minimum monthly winter air temperature was derived from 14 General 
Circulation Models (GCMs, Table A1). Also known as global climate models, GCMs depict the 
climate using a three dimensional grid over the globe, typically with horizontal resolutions 
between 250 and 600 km, 10 to 20 vertical layers in the atmosphere, and as many as 30 layers in 
the oceans. The resolution of these models is coarse and subgrid scale processes (e.g., turbulence 
in the boundary layer, thunderstorms and ocean eddies) are parameterized based on large-scale 
conditions, i.e., variables that are simulated on the model’s coarse grid. Even at coarse 
resolution, the models are run on super computers as the temperature, moisture, salinity, winds, 
ocean currents, etc., are predicted at hundreds of thousands of grid boxes. 

GCMs can be verified by comparing their output to the recent past, e.g., how simulated 
and observed temperatures changed over the 20th century. An exact match between observations 
and model simulations in a given period is not expected because of random fluctuations in the 
climate system. To overcome the influence of random fluctuations in climate, the output of an 
ensemble of model runs (as opposed to a single model run) is generally compared to 
observations.  

All the GCMs used here have simulations for the 20th century. Annual minimum monthly 
winter temperatures (minimum[Dec, Jan, Feb, and Mar]) for the grid cell over southern 
Chesapeake Bay was extracted from the 20th century runs and compared with observed minimum 
winter temperatures for Virginia 
(http://www.sercc.com/climateinfo_files/monthly/Virginia_temp.html). As an example the 
GFDL CM2.1 mean was about 0.5oC lower and the standard deviation was slightly greater than 
observed (Table A2). The mean differences of other models ranged from +10oC to -4oC. These 
mean differences between the climate models and observations were used to bias correct the 
minimum winter air temperatures estimated by each GCM. The smoothed observations indicate a 
long-term cycle in minimum winter air-temperature with high temperatures in the 1940’s and 
low temperatures in the 1970’s; these warm and cool periods have been linked to the Atlantic 
Multidecadal Oscillation (Kerr 2000, 2005). Some of the modeled temperatures do not match 
this long-term trend in observed temperature, but the modeled temperatures seem to exhibit a 
cycle of similar duration and magnitude as observed.  

Prior studies have shown that GCMs generally reproduce the continental-scale trends 
(Randall et al. 2007) and some regional trends (Knutson et al. 2006, Seager et al. 2007). For 
example, the GFDL CM2.1 reproduces the observed warming over the 20th century in the 
subtropical North Atlantic and continental U.S. when anthropogenic forcing is included, but 
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Table A1. List of General Circulation Models (GCMs) used in this study. The institution and 
model name are provided, as are the links to the model metadata. For each GCM, three scenarios 
were used: commit, B1, and A1B. In addition, a 20th century simulation was compared to 20th 
century observations to develop a mean bias correction for each model. All model outputs were 
downloaded from the World Data Center for Climate, IPCC Data Distribution Centre 
(http://www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html) 
 

Bjerknes Centre for Climate Research BCM2.0 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=BCCR_BCM2.0_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CGCM3.1_T47_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=BCCR_BCM2.0_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=BCCR_BCM2.0_20C3M_1 

Canadian Centre for Climate Modeling and Analysis CGCM3  
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CGCM3.1_T47_COMMIT_2 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CGCM3.1_T47_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CGCM3.1_T47_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CGCM3.1_T47_20C3M_1 

Centre National de Recherches Meteorologiques CM3 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CNRM_CM3_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CNRM_CM3_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CNRM_CM3_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CNRM_CM3_20C3M_1 

Australia's Commonwealth Scientific and Industrial Research Mk3.0 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CSIRO_Mk3.0_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CSIRO_Mk3.0_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CSIRO_Mk3.0_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CSIRO_Mk3.0_20C3M_1 

Meteorological Institute, University of Bonn ECHO-G 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=ECHO_G_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=ECHO_G_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=ECHO_G_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=ECHO_G_20C3M_1 

Institude of Atmospheric Physics FGOALS-g1.0 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=FGOALS_g1.0_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=FGOALS_g1.0_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=FGOALS_g1.0_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=FGOALS_g1.0_20C3M_1 

Geophysical Fluid Dynamics Laboratory CM2.1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GFDL_CM2.1_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GFDL_CM2.1_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GFDL_CM2.1_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GFDL_CM2.1_20C3M_1 
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Goddard Institute for Space Studies E-R 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GISS_ER_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GISS_ER_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GISS_ER_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GISS_ER_20C3M_1 

Institute for Numerical Mathematics CM3.0 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=INM_CM3.0_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=INM_CM3.0_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=INM_CM3.0_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=INM_CM3.0_20C3M_1 

Institut Pierre Simon Laplace CM4 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=IPSL_CM4_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=IPSL_CM4_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=IPSL_CM4_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=IPSL_CM4_20C3M_1 

National Institute for Environmental Studies MIROC3.2 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MIROC3.2_mr_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MIROC3.2_mr_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MIROC3.2_mr_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MIROC3.2_mr_20C3M_1 

Meteorological Research Institute CGCM2.3.2 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MRI_CGCM2.3.2_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MRI_CGCM2.3.2_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MRI_CGCM2.3.2_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MRI_CGCM2.3.2_20C3M_1 

National Centre for Atmospheric Research CCSM3 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=NCAR_CCSM3_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=NCAR_CCSM3_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=NCAR_CCSM3_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=NCAR_CCSM3_20C3M_1 

UK Met. Office HadCM3 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=UKMO_HadCM3_COMMIT_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=UKMO_HadCM3_SRESB1_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=UKMO_HadCM3_SRESA1B_1 
               http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=UKMO_HadGEM_20C3M_1 

 
over-estimates warming for the southeast US (Knutson et al. 2007). All climate models have 
biases and several factors may lead to model-data differences including model error, inadequate 
representation of regional processes (e.g., aerosol loading, deforestation/reforestation, irrigation), 
and natural variability (i.e,. the atmospheric circulation over the southeast United States is 
influenced by El Nino and the Atlantic Multidecadal Oscillation). While there are differences 
between the GFDL CM2.1 and the observed annual temperature trends in the southeast U.S., 
there is general agreement between the simulated and observed minimum winter temperature in 
the GCMs considered here (Figure A1 and Table A2). 
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Fig. A1. Distributions of observed and modeled 
reanalysis minimum winter air temperatures and 
comparison of observed and predicted means and 
standard deviations of temperature (top row).  Time 
series of observations and GCM predicted minimum 
winter temperatures. Also shown is the corrected 
model estimate based on adding the mean model-vs-
observation difference to the model. Smoothed 
observations and predictions, with the predictions 
corrected by the mean difference between model and 
observations (bottom row). Results are shown for the 
ECHOG GCM; similar analyses were done for all 
GCMs. Observations are minimum monthly winter 
temperature in Virginia and model results are from the 
grid cell encompassing Chesapeake Bay.  

Although, the analyses above suggest that the climate models reasonably capture the 
minimum monthly winter air temperatures in coastal Virginia, a potential concern is that the 
coupled climate-population model results are specific for this model grid cell. However, there is 
strong concordance in the time series of minimum winter air temperature over the eastern 
seaboard of the United States (Fig. A3) in historical observations and climate model hindcasts 

Table A2. Mean correction bias for each GCM. 
The average simulated minimum winter air 
temperature was compared to the average 
observed minimum winter air temperature over 
the 20th century. The difference in averages was 
added to the GCM simulated minimum winter air 
temperatures. A comparison of standard 
deviations is also provided. 
 

Observed Minimum Winter 
Temperature 

 Mean Standard 
Deviation 

 0.65 2.00 

Difference between observed and 
modeled temperatures 

GCM Mean Standard 
Deviation 

BCM2.0 6.48 -0.59 

CGCM3 -2.55 0.28 

CM3 3.27 -0.37 

MK3.0 -1.84 0.02 

ECHO-G 2.75 -0.51 

FGOALS g1.0 9.94 -0.44 

CM2.1 -0.54 0.21 

E-R -3.71 0.28 

CM3.0 2.78 -0.05 

CM4 4.20 -0.08 

MIROC3.2 8.79 -0.81 

CGCM2.3.2 1.11 -0.42 

CCSM3 3.06 -0.10 

HadCM3 7.80 -0.10 
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Fig. A2. Time series of minimum winter air temperatures from the NCEP Reanalysis for grid 
cells nearest the locations indicated on the map. These data were significantly concordant: the 
pattern of interannual variability was coherent across the time series. 

 
(Table A3). This concordance is expected since prior studies have documented strong 
concordance in interannual winter air temperature over the eastern U.S. (Joyce 2002), estuarine 
water temperatures in the mid-Atlantic (Hare and Able 2007), coastal water temperatures (Nixon 
et al. 2004), and sea surface temperature in the western North Atlantic (Friedland and Hare 
2007). Additionally, minimum winter air temperature is closely related to minimum winter water 
temperature in estuaries along the mid-Atlantic coast (Hettler and Chester 1982, Hare and Able 
2007) owing to the efficient heat exchange between atmosphere and water in these shallow 
systems (Roelofs and Bumpus 1953). Thus, minimum winter air temperatures from Virginia can 
serve as a proxy for coast-wide variability in minimum winter water temperatures. 
 
2. Choice of a stock-recruitment function 

A number of functions have been used historically to model the relationship between fish 
population size and subsequent recruitment (Hilborn and Walters 2004). There also are a number 
of extensions of these functions that include the effect of the environment on recruitment 
(Hilborn and Walters 2004). We evaluated two common stock recruitment functions (Beverton-
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Holt and Ricker) and several 
extensions of these functions 
that include environmental 
effects (Table A4). The Akaike 
Information Criterion (AIC) 
was used to choose the best 
formulation to use in the 
coupled climate-population 
model. Spawning stock 
biomass and recruitment data 
were obtained from a recent 
stock assessment of Atlantic 
croaker (ASMFC 2005) and 
minimum winter air 
temperature in Virginia 
(http://www.sercc.com/climatei
nfo_files/monthly/Virginia_te
mp.html) was used as a proxy 
for water temperature during 
the estuarine juvenile stage 
(Hare and Able 2007). 

The stock-recruitment 
functions were initially fit with 
non-linear algorithms, but 
these algorithms rarely 
converged. As a result, linear 
forms of the stock recruitment 
functions (model 1 and 4, see 
Table A4) were fit using least-
squares regression. The 
environmental extensions of 
the Ricker stock-recruitment model are easily linearized (models 5-11, see Table A4) and these 
models were also fit using least-squares. The environmental forms for the Beverton-Holt model 
(models 2 and 3) are not easily linearized. To fit these models, the standard Beverton-Holt terms 
(a and b) were estimated using the linearized version of the model (model 1), and then a non-
linear fitting algorithm was used to estimate the environmental parameter (c) with the standard 
parameters (a and b) fixed at the appropriate values. Because the linearized forms of the models 
used different dependent variables (1/R for Beverton and Holt and ln[R/S] for Ricker), AIC was 
estimated based on the models predictions of R using the non-linearized forms of the equations, 
with the terms derived from the linearized models. In this way, AIC was calculated based on the 
residual sums of squares of estimated R and observed R. The strength of evidence of the 
alternative models was calculated following (Burnham and Anderson 1998). 

The Ricker stock-recruitment model with a temperature term was the best-supported 
model evaluated (Table A4), with the highest strength of evidence (w=0.619). The models with 
environmental terms were far superior to the standard stock-recruitment models. The relative 
likelihood of the environmental Beverton and Holt model (model 2) compared to the standard 

Table A3. Kendall’s concordance (W) for time series of minimum 
winter air temperatures from locations indicated in Fig. A3. 
Calculations were made for each of the models considered based on 
the 20th century runs. Kendall’s concordance is a non-parametric test 
that measures the degree of agreement between multiple series of 
data: 0 indicates no agreement; 1 indicates perfect agreement. The 
NCEP/NCAR Reanalysis Product was also included in these analyses. 
This product is a gridded dataset based on retrospective observations 
(1948-2006) of a variety of atmospheric variables including surface 
temperature (Kalnay et al. 1996).  
 

General 
Circulation Model W p Years 
NCEP Analysis 0.73 <0.001 1948-2006 
BCM2.0 0.60 <0.001 1850-2000 
CGCM3 0.62 <0.001 1850-2001 
CM3 0.63 <0.001 1860-2000 
MK3.0 0.61 <0.001 1871-2001 
ECHO-G 0.59 <0.001 1860-2001 
FGOALS g1.0 0.64 <0.001 1850-2000 
CM21 0.61 <0.001 1861-2001 
E-R 0.52 <0.001 1880-2004 
HadCM3 0.58 <0.001 1860-2000 
CM3.0 0.40 <0.001 1871-2001 
CM4 0.67 <0.001 1860-2001 
MIROC3.2 0.60 <0.001 1850-2001 
CGCM2.3.2 0.67 <0.001 1851-2001 
CCSM3 0.60 <0.001 1870-2000 
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Beverton and Holt model was ~6000 to 1 (wmodel 2 / wmodel 1). For the environmental Ricker 
(model 5) compared to the standard Ricker (model 4), the relative likelihood was ~10000 to 1. 
Based on these results, model 5 was chosen for use in the population model. Temperature-
dependent Ricker models with higher order terms (model 8 and 9) had moderate strengths of 
evidence (w=0.137 and w=0.181). Model 8 includes a T2 term, which could amplify the effect of 
warming on recruitment at higher minimum winter temperatures. However, over the range of 
temperatures forecasted in the climate models, the higher order models (model 8 and 9) predict 
very similar recruitment compared to the linear model (model 5), so non-linear effects are 
minimal, and thus these were not included in the final model. 
 

Table A4. Akaike Information Criteria values for various models fit to stock (S) and 
recruitment (R) data for the mid-Atlantic stock of Atlantic croaker. Values provided for 
corrected Akaike Information Criteria (AICc), number of parameters in the model including 
the error term (k), the delta-AICc, which is scaled to the minimum observed AICc, and the 
model weights (w), which range from 0 to 1.  
 
No
. Model Linearized Model AICc k ΔAICc W 

1 
aSb

SR
+

=  
S
ba

R
+=

1
 309.1 3 24.6 0.000 

2 
aSb
SeR

cT

+
=  Not linearized 291.5 4 7.0 0.019 

3 
aSeb

SR cT+
=  Not linearized 294.6 4 10.1 0.004 

4 bSaSeR +=  bSa
S
R

+=)ln(  303.4 3 18.9 0.000 

5 cTbSaSeR ++=  cTbSa
S
R

++=)ln(  284.5 4 0.0 0.619 

6 2dTbSaSeR ++=  
2)ln( dTbSa

S
R

++=  306.2 4 21.7 0.000 

7 eSTbSaSeR ++=  eSTbSa
S
R

++=)ln(  293.4 4 8.9 0.007 

8 2dTcTbSaSeR +++=  
2)ln( dTcTbSa

S
R

+++=  287.5 5 3.0 0.137 

9 eSTcTbSaSeR +++=  eSTcTbSa
S
R

+++=)ln(  287.0 5 2.5 0.181 

10 eSTdTbSaSeR +++=
2

 eSTdTbSa
S
R

+++= 2)ln(  295.8 5 11.3 0.002 

11 
eSTdTcTbSaSeR ++++=

2

 
eSTdTcTbSa

S
R

++++= 2)ln(  290.5 6 6.0 0.031 
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3. Distribution model based on logistic regression 

A multivariate regression approach was used to model distribution as a function of 
population size and winter temperature. The hypothesis was that as population size increased and 
winter temperatures increased the mean and northern extent of the population (mean + 2 standard 
deviations) would shift northward. A shift in mean location is not necessarily predicted with 
increasing population size; the mean could remain stationary and the northern and southern 
extents of the population could expand. However, in the case of Atlantic croaker, sampling did 
not occur throughout the range of the population; sampling stopped at a fixed geographic 
location, so an expansion in the southern range would not be observed. Thus as the northern 
range extends and the southern boundary of sampling remains stationary a northward shift in the 
mean location is predicted.  

As an alternative approach to multiple regression for modeling distribution, a logistic 
regression was developed that used the presence / absence at individual trawl stations. First, 
trawl stations were screened to remove stations that sampled deeper than 45 m; this value was 
based on the 5% level of a logistic regression of catch on depth. The logistic regression model 
was used in a form similar to the average distance model. Catch at station s in year Y was 
modeled as the distance of station s in year Y, spawning stock biomass (S) in year Y, and 
minimum winter temperature in year Y: 

 
22

YYYYsYsY TfSSBeTdSSBcdistbacatch ⋅+⋅+⋅+⋅+⋅+=    (6) 
 
The model was fit using the glm [family=binomial(link="logit")] function in R (http://www.r-
project.org/) and an Akaike multi-model inference was used to determine the model parameters. 
The model was then used to forecast Atlantic croaker distribution estimating the distance to the 
50% and 10% catch probability. The results were qualitatively similar to those from the average 
distance approach, with distances decreasing with increasing F and increasing with increasing 
CO2 emissions; we choose to present the results of the multiple regression model. 
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