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ABSTRACT 19 
The suitability of an empirical multivariate red noise (AR1) model, or linear inverse 20 

model (LIM), as a benchmark for decadal surface temperature forecast skill is 21 

demonstrated. Constructed from the observed simultaneous and one-year lag covariability 22 

statistics of annually-averaged sea surface temperature (SST) and surface (2m) land 23 

temperature global anomalies during 1901-2009, the LIM has hindcast skill for leads 2-5 24 

and 6-9 years comparable to and sometimes even better than skill of the CMIP5 model 25 

hindcasts initialized annually over the period 1960-2000, and has skill far better than 26 

damped persistence (e.g., a local univariate AR1 process). Over the entire post-1901 27 

record, the LIM skill pattern is similar but has reduced amplitude. Pronounced similarity 28 

in geographical variations of skill between LIM and CMIP5 hindcasts suggests similarity 29 

in their sources of skill as well, supporting additional evaluation of LIM predictability. 30 

For forecast leads above 1-2 years, LIM skill almost entirely results from three non-31 

orthogonal patterns, one corresponding to the secular trend and two more, each with 32 

about ten year decorrelation time scales but no trend, that represent most of the 33 

predictable portions of the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal 34 

Oscillation (PDO) indices, respectively. As found in previous studies, the AMO-related 35 

pattern also contributes to multidecadal variations in global mean temperature, and the 36 

PDO-related pattern has maximum amplitude in the west Pacific and represents the 37 

residual after both interannual and decadal ENSO variability are removed from the PDO 38 

time series. These results suggest that current coupled model decadal forecasts may not 39 

yet have much skill beyond that captured by multivariate red noise. 40 
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1. Introduction 41 

The decadal prediction problem has been in an embryonic stage for decades. To progress, 42 

we could simply apply the climate community’s long experience in understanding 43 

seasonal-to-interannual variability and improving its prediction to decadal time scales. 44 

For example, a wide array of both physical and empirical methods has been used to make 45 

ENSO forecasts (e.g., review by Latif et al. 1998). Statistical forecasts are relatively easy 46 

and economical to perform, and their skill can be sufficiently high that they are useful 47 

both in their own right and as benchmarks for more complex numerical models (e.g., 48 

Livezey 1999; van Oldenborgh et al. 2005; Laepple et al. 2008; Krueger and von Storch 49 

2011). 50 

It seems reasonable then that a similar two-pronged approach of physical and 51 

empirical methods could advance decadal prediction. This is not to say that improvement 52 

will or can occur as readily as for seasonal forecasting. One concern is that, while ENSO 53 

provides a well-defined interannual phenomenon understandable as the result of a defined 54 

mechanism (e.g. delayed oscillator theory, recharge-discharge mechanism), there do not 55 

yet appear to be so clearly defined decadal phenomena, at least in the Pacific. Large-scale 56 

patterns such as the Pacific decadal oscillation (PDO; Mantua et al. 1997) do not 57 

dominate decadal variability to the same degree as ENSO dominates interannual 58 

variability, and moreover may represent the superposition and/or convolution of a few 59 

mechanisms (e.g., Schneider and Cornuelle 2005; Newman 2007), including the low-60 

frequency or reddened tail of interannual phenomena (e.g., Newman et al 2003b; Vimont 61 

2005), rather than the result of one identifiable physical process. The effects of 62 

anthropogenic climate change complicate comparison between models and observations, 63 
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and how to distinguish natural from anthropogenically-forced decadal variability is a 64 

fundamental problem (Solomon et al. 2011). 65 

Currently a number of modeling centers have carried out decadal “hindcasts” as 66 

part of CMIP5 (Taylor et al. 2012). It is an important long-range goal of climate 67 

diagnosis to provide insights that will help improve decadal forecasts from these 68 

CGCMs. Here, we diagnose annual to decadal variability and predictability, both 69 

unforced and forced, with an empirically determined linear model of the observed 70 

system.  71 

2. Multivariate red noise 72 

Climate variability is often characterized by a notable separation between the 73 

dominant time scales of interacting processes. For example, compared to much longer 74 

ocean timescales, weather varies so rapidly that it has almost no memory. Weather 75 

forcing of the ocean can then be approximated as white noise forcing of a damped 76 

integrator, or univariate red noise for an anomaly scalar time series, the simplest null 77 

hypothesis of climate (Hasselmann 1976). When extended to the more general case of 78 

anomalies representing many evolving regional patterns of climate variables, this 79 

approximation based on time scale separation becomes multivariate red noise. As 80 

opposed to its univariate counterpart, multivariate red noise contains both stationary and 81 

propagating anomaly patterns (so that scalar indices derived from it can have spectral 82 

peaks) and allows for non-symmetric dynamical relationships (so that despite the lack of 83 

exponential modal instability, some anomalies experience significant but transient growth 84 

and evolution over finite time intervals). A nonlinear system usefully approximated by 85 

multivariate red noise can be said to be “predictably” linear. 86 
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Linear inverse models (LIMs; Penland and Sardeshmukh 1995), which 87 

empirically determine multivariate red noise from observations, provide excellent 88 

approximations of observed Pacific SST anomaly evolution on time scales ranging from 89 

weeks to years. Newman (2007) (hereafter N07) found that a LIM constructed from 90 

annually-averaged tropical and North Pacific SSTs reproduced observed tropical-North 91 

Pacific relationships on decadal time scales better than most CMIP3 coupled GCMs. 92 

Subsequent studies have had similar success in the Atlantic (Hawkins and Sutton 2009, 93 

Zanna 2012) and both ocean basins (Vimont 2012).  94 

In this paper, the N07 analysis is extended to a state vector constructed from 95 

global SSTs and surface land temperatures. The resulting LIM is shown to have skill 96 

comparable to three CMIP5 decadal hindcast models that used yearly start dates for the 97 

period 1960-2000. The sources of this skill are diagnosed, and evaluated in the context of 98 

simpler climate indices. 99 

3. Data and model details 100 

Datasets used in this study were SSTs from the Hadley Sea Ice and Sea Surface 101 

Temperature analysis (HadISST; Rayner et al. 2003) and surface (2m) land temperatures 102 

from the University of East Anglia Climatic Research Unit (CRU) TS 3.1 dataset 103 

(Mitchell and Jones 2005) during the period 1901–2009. Monthly data were interpolated 104 

onto 2º latitude x 5º longitude gridboxes. Anomalies were determined by removing the 105 

climatological monthly mean from data that was temporally smoothed with a 12-month 106 

running mean. This aids our analysis, which does not consider seasonality. However, 107 

seasonality is likely still relevant to decadal variability (e.g., Newman et al. 2003b; 108 

Vimont 2005). Data were prefiltered in an EOF space retaining about 81% of the SST 109 
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and 62% of the surface land temperature variances. SST EOFs were determined within 110 

ice-free regions only; the remaining ocean regions were regressed onto the SST PCs to 111 

provide complete spatial coverage. 112 

The multivariate AR1 process for an anomaly state vector x, 113 

x(t +1) =G1x(t)+σ (t) ,   (1)       (1) 114 

is the integrated solution of the dynamical system 115 

� 

dx
dt

= Lx + ξ     (2) 116 

forced by white noise ξ , where G1 = exp (L) and t is measured in years. N07 determined 117 

(2) from Pacific SSTs and we have likewise determined it from global SSTs (not shown). 118 

When including surface land temperatures, however, a few eigenmodes of L decorrelate 119 

too rapidly to be sampled at 1-year intervals, so here we take the simpler route of instead 120 

determining (1) from observations. Note, however, that from both (1) and (2) the best 121 

forecast x̂(n) from initial conditions x(0) for a lead of n years is 122 

x̂(n) = [G1]
nx(0) ,    (3) 123 

and the lag covariance statistics of x over a n year interval is  124 

C(n) = [G1]
nC(0)     (4) 125 

where C(n) = x(t + n)x(t)T and C(0) = x(t)x(t)T . This allows us to still make 126 

forecasts using the LIM and to test its assumption of predictably linear dynamics, and the 127 

eigenmodes of L are still relevant since they are also the eigenmodes of G1. 128 

The leading 11/6 EOFs of anomalous SSTs/surface land temperatures were 129 

retained for the model, with the corresponding principal components (PCs) defining a 17-130 

component state vector x(t). 131 
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Finally, the LIM must be tested on independent data, so estimates of G1 and of 132 

hindcast skill were cross-validated: the data record was sub-sampled by withholding 10% 133 

of it; then anomalies, EOFs and G1 were recalculated from the remaining 90%; finally, 134 

hindcasts were generated for the independent period. The procedure was repeated for the 135 

entire record. LIM hindcast skill was determined from these jack-knifed hindcasts, with 136 

hindcasts verified against the complete (untruncated in EOF space) gridded observations. 137 

EOF truncation was chosen to maximize globally averaged squared anomaly correlation 138 

skill of 1-2 yr cross-validated hindcasts, but results are fairly insensitive to this parameter 139 

choice. Additionally, linearly detrended data from the entire record was used with the 140 

same EOF truncation (albeit recalculated EOFs) to construct a second “detrended LIM”.  141 

Hindcasts from the LIM are compared to hindcasts from three CMIP5 CGCMs: 142 

HadCM3 (DePreSys), MPI-ESM-LR, and GFDL-CM2p1. These models were chosen 143 

since they were the only available models whose hindcasts were initialized yearly rather 144 

than every five years. Skill was determined from the bias-corrected ensemble mean for 145 

each hindcast initialization. 146 

4. Results 147 

4.1 Testing the empirical model 148 

We first test the assumption of linear dynamics underlying the LIM. Figure 1 shows the 149 

observed lag-autocovariance for n = 2, 4, 6, and 8 years compared to that predicted by 150 

(4). Generally, the match is quite good and confirms that the LIM reproduces the 151 

statistics of evolving surface temperature anomalies over the 20th century, with 152 

deficiencies over Northern Europe and some parts of North America. Also, the LIM 153 
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captures the 2-year lag anti-correlation in the tropical eastern Pacific but underestimates 154 

its amplitude, likely because some subsurface ocean anomalies are needed in addition to 155 

SST to completely represent ocean state evolution within the LIM on time scales greater 156 

than a year (Newman et al. 2011). Still, the LIM does implicitly include those subsurface 157 

effects that are linearly related to SST (Penland and Sardeshmukh 1995), in contrast to a 158 

physical dynamical model in which the evolution of the state vector is governed only by 159 

explicitly represented interactions among its components. 160 

4.2 Skill of LIM and CMIP5 decadal hindcasts 161 

Figure 2 shows skill measured by local anomaly correlation for hindcasts averaged over 162 

leads of 2-5 (left panels) and 6-9 (right panels) years. The top two rows show that the 163 

LIM sets a much higher benchmark for skill than does damped persistence (i.e., a grid-164 

space univariate AR1 model). Additionally, for yearly start dates from 1960-2000, skill 165 

of LIM decadal hindcasts is comparable to and sometimes better than skill from CMIP5 166 

decadal hindcasts. Maxima (e.g., tropical Indian and Atlantic oceans, central North 167 

Atlantic, southwestern US, east central Asia) and minima (e.g., eastern equatorial and 168 

Northeast Pacific, western South America, off US Atlantic coast) of skill often coincide 169 

between the LIM and CGCM hindcasts, both those shown here and those documented in 170 

other studies (e.g., van Oldenborgh et al. 2012; Kim et al. 2012). LIM can thus serve as a 171 

benchmark for decadal forecast skill. 172 

Hindcast skill for the Atlantic Multidecadal Oscillation (AMO) and PDO indices 173 

is shown in Fig. 3; for comparison, root-mean-squared error (rmse) is also displayed. 174 

Here, the AMO index is the area-weighted North Atlantic mean SST, between 0ºN and 175 

60ºN, minus the global mean SST (Trenberth and Shea 2006; van Oldenborgh et al. 176 
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2012), and the PDO index is the projection of SST on the leading EOF of monthly 177 

detrended North Pacific SST anomalies between 20ºN and 60ºN (Mantua et al. 1997). As 178 

previously found for CMIP5 hindcasts (Guemas et al. 2012; Kim et al. 2012; van 179 

Oldenborgh et al. 2012), LIM AMO skill is generally higher than PDO skill, which drops 180 

off very rapidly for leads greater than a year. The LIM again clearly provides a more 181 

stringent decadal forecast test than persistence (here determined from the indices time 182 

series and not the gridded values), except for short lead PDO forecasts, with skill that is 183 

generally higher (although not significantly so) than the CGCMs. Even global mean 184 

temperature hindcast skill is generally comparable. 185 

4.3 Diagnosing forecast skill 186 

Since the geographical variations of skill are often similar between the LIM and CGCMs 187 

hindcasts, it seems possible that the sources of skill for CGCMs are largely the same as 188 

for the LIM, despite very great differences in model construction. The LIM’s low order 189 

and simplicity makes it straightforward to assess surface temperature decadal 190 

predictability. For an infinite ensemble of a perfect model, forecast skill measured by the 191 

average anomaly correlation 𝜌!(n) between forecast and verification anomalies is also a 192 

function of the forecast signal-to-noise ratio S at lead time n:  193 

𝜌!(𝑛) =
!(!)!

[!!!(!)!]!/!
   (5) 194 

(Sardeshmukh et al. 2000). In the LIM, ensemble spread (due to noise) is assumed to 195 

converge to climatology with increasing n but to be state-independent; so on average S is 196 

directly related to stronger predictable signal determined from (3) (Newman et al. 2003a). 197 

For leads under about 3 years, transient anomaly growth due to interference of the non-198 
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orthogonal eigenmodes is important, but at longer leads forecast skill is higher for those 199 

initial states that project more strongly on the least-damped eigenmodes of L.  200 

The three leading eigenmodes of L are shown in Fig. 4 along with their associated 201 

projection coefficient time series. The leading eigenmode, stationary with a very long e-202 

folding time (eft), appears to represent the global secular trend pattern. The second/third 203 

eigenmode pair nominally propagates, but effectively consists of two distinct quasi-204 

stationary patterns since the period is very much greater than the 11-year eft. This 205 

eigenmode pair represents decadal variability, primarily over the Atlantic (most energetic 206 

phase) and over the Pacific (least energetic phase); it has no overall trend and is also 207 

recovered as the leading eigenmode pair for the detrended LIM, albeit with an eft of 208 

about 9 yrs. The time series in Fig. 4d is reminiscent of the AMO. Additionally, since 209 

Fig. 4c has a large global mean component, its variation gives rise to multi-decadal 210 

fluctuations of the global mean temperature that reduce the warming between about 1945 211 

and 1990 and enhance it before and after this period (not shown), consistent with some 212 

recent studies (e.g., Ting et al. 2009; DelSole et al. 2011; Wu et al. 2011). In the Pacific, 213 

Fig. 4e is very similar to the second leading eigenmode of the N07 LIM, which was the 214 

residual of the PDO once ENSO influences were removed. Note that this pattern has 215 

relatively larger amplitude in the western North Pacific, a region whose potential 216 

importance to PDO-like variability has also been highlighted by earlier studies [e.g., see 217 

review by Kwon et al. 2010]. The remaining eigenmodes all have efts shorter than three 218 

years, including the “interannual ENSO” (Fig. 5g) and “decadal ENSO” (not shown, but 219 

similar to N07) eigenmodes that have efts of 1.5 and 2 yr, respectively. The relatively 220 

short decorrelation time scale but high variability of this eigenmode (Fig. 5h) limits 221 
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predictability both along the equatorial east Pacific and in the Northeast Pacific (as in 222 

N07); in essence, on decadal time scales ENSO is noise (Solomon and Newman 2011). 223 

The impact of these eigenmodes upon hindcast skill over the entire 1901-2009 224 

record was explored by creating several different sets of hindcast initializations, each 225 

with nonzero projections on different subsets of the eigenmodes. Figure 5 shows that 226 

almost all of the total hindcast skill (top panels of Fig. 5) can be recovered for hindcasts 227 

initialized with data projected on the leading three eigenmodes alone (middle panels of 228 

Fig. 5). Figure 6 shows the impact of the least damped eigenmodes on climate index skill. 229 

As in Fig. 5, almost all skill is retained for hindcasts initialized with the leading three 230 

eigenmodes only, except where ENSO eigenmodes also impact PDO skill (Fig. 6a) 231 

primarily at shorter leads. Longer-range PDO skill is related to the least energetic phase, 232 

while AMO skill (Fig. 6b) is related to the most energetic phase. Global mean 233 

temperature skill (Fig. 6c) is mostly due to the leading eigenmode, but also has a 234 

contribution from the most energetic phase since it contributes to both the AMO and 235 

global mean. Note also that hindcast skill of the “detrended LIM” and full LIM is almost 236 

identical for both the AMO and PDO indices; in fact, hindcast skill of both indices is 237 

about the same whether or not the leading eigenmode is included in initializations of the 238 

full LIM. Apart from these indices, however, much of the LIM skill appears due to the 239 

trend (cf. top and bottom panels of Fig. 5), or alternatively the leading eigenmode, as has 240 

also been suggested for the CGCMs (van Oldenborgh et al. 2012). 241 

5. Concluding Remarks 242 

A multivariate red noise (AR1) model, empirically constructed from annually averaged 243 

surface temperature observations using a one-year lag, has been shown to be a more 244 
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suitable benchmark for decadal forecasts than damped persistence. In fact, it appears that 245 

CMIP5 CGCM decadal hindcast skill does not notably exceed that expected from a 246 

predictably linear dynamical system. To the extent that LIM and CGCM skill are 247 

comparable, both in amplitude and in geographical variation, the much simpler LIM can 248 

also be used to diagnose sources of forecast skill for both forecast systems.  249 

Estimates of decadal predictability from even 100 years of data are necessarily 250 

limited (e.g., Wunsch 2012), so it is important to view the results of this paper with some 251 

caution. In the LIM we obtained, virtually all long-range skill comes from the leading 252 

three eigenmodes with longest e-folding times. The leading eigenmode represents the 253 

global secular trend pattern while the next eigenmode pair represents decadal variability. 254 

Note that this eigenmode pair does not propagate with a multidecadal period, but instead 255 

has a sufficiently long e-folding time that it varies on a multidecadal timescale. The most 256 

notable deficiency in CGCM hindcast skill compared to the LIM appears to be related to 257 

this eigenmode over the Pacific. It is interesting that the similar eigenmode found in the 258 

Pacific-only LIM was poorly simulated in all the CMIP3 pre-industrial control and 259 

historical model simulations (N07; Solomon et al. 2011). Whether the global version of 260 

this eigenmode continues to be poorly represented by the CMIP5 models, and if so, why, 261 

is a subject for further investigation. 262 
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7. Figure captions 352 

Fig. 1. Observed (left) and difference between observed and LIM predicted (right) 353 

surface temperature lag-covariance for lags of (top) 2 years (middle) 4 years and (bottom) 354 

six years. Contour interval is 0.05 K2; zero contour is removed for clarity and negative 355 

values have dashed contours. 356 

Fig. 2. Local anomaly correlation of hindcasts averaged over leads (left) years 2-5 and 357 

(right) years 6-9, for the CMIP5 models, damped persistence, and the LIM, for hindcasts 358 

initialized yearly from 1960-2000. Contour interval is 0.1 with negative values indicated 359 

by blue shading. Shading of positive values starts at 0.1; redder shading denotes larger 360 

values of correlation. 361 

Fig. 3. Left panels: anomaly correlation skill comparison for a) PDO and b) AMO 362 

indices, and c) global mean temperature, from hindcasts initialized in the years 1960-363 

2000, calculated as described in the text. Using the lag-1 autocorrelation to roughly 364 

estimate degrees of freedom, a value of r ~ (0.4,0.55,0.55) is 95% significant (different 365 

from 0) for panel (a,b,c). Right panels: same but using root-mean-squared error (rmse) as 366 

the skill measure for d) PDO, e) AMO, and f) global mean temperature. Damped 367 

persistence is determined from the lag-1 autocorrelation of the observed index time 368 

series, not from local gridded values (as in Fig. 2) which would yield lower index skill. 369 

Fig. 4. (a-f) Leading empirical eigenmodes, with their associated projection coefficient 370 

time series (determined by the projection of the data on the corresponding adjoint). (g-h) 371 

Most energetic phase of eigenmode pair 9/10, which corresponds to “interannual ENSO,” 372 

and its time series (least energetic phase not shown). Contour interval is the same in all 373 



18 

left panels. Sign is arbitrary but is consistent with coefficient time series. Red (blue) 374 

shading represents positive (negative) values. Also shown are the e-folding times (eft) for 375 

the eigenmodes, and period (T) for the propagating eigenmodes. Note that in general 376 

these eigenmodes do not correspond to the EOFs, which are constrained to be orthogonal. 377 

Fig. 5.  Top: LIM hindcast skill for the 1901-2009 period for hindcasts averaged over 378 

leads of (left) 2-5 years and (right) 6-9 years. Middle: Difference between the skill of the 379 

LIM hindcasts for the 1901-2009 period (i.e., top panels) and a second set of LIM 380 

hindcasts where the projection of the initial conditions on only the three leading 381 

eigenmodes (Figs. 4a-f) is retained. Bottom: Detrended LIM hindcast skill for the 1901-382 

2009 period for hindcasts averaged over leads of (left) 2-5 years and (right) 6-9 years 383 

(verified against detrended data). 384 

Fig. 6. LIM skill of a) PDO and b) AMO indices, and c) global mean temperature, for 385 

hindcasts where different initial conditions are used, for the 1901-2009 period. Also 386 

shown in all three panels is the detrended LIM skill. See text for description. 387 
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 389 
Fig. 1. Observed (left) and difference between observed and LIM predicted (right) 390 
surface temperature lag-covariance for lags of (top) 2 years (middle) 4 years and (bottom) 391 
six years. Contour interval is 0.05 K2; zero contour is removed for clarity and negative 392 
values have dashed contours. 393 
  394 
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  395 

 396 
   397 

Fig. 2. Local anomaly correlation of hindcasts averaged over leads (left) years 2-5 and 398 
(right) years 6-9, for the CMIP5 models, damped persistence, and the LIM, for hindcasts 399 
initialized yearly from 1960-2000. Contour interval is 0.1 with negative values indicated 400 
by blue shading. Shading of positive values starts at 0.1; redder shading denotes larger 401 
values of correlation. 402 
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 404 
Fig. 3. Left panels: anomaly correlation skill comparison for a) PDO and b) AMO 405 
indices, and c) global mean temperature, from hindcasts initialized in the years 1960-406 
2000, calculated as described in the text. Using the lag-1 autocorrelation to roughly 407 
estimate degrees of freedom, a value of r ~ (0.4,0.55,0.55) is 95% significant (different 408 
from 0) for panel (a,b,c). Right panels: same but using root-mean-squared error (rmse) as 409 
the skill measure for d) PDO, e) AMO, and f) global mean temperature. Damped 410 
persistence is determined from the lag-1 autocorrelation of the observed index time 411 
series, not from local gridded values (as in Fig. 2), which would yield lower index skill. 412 

c!

a!

b! e!

f!

d!



22 

 413 
Fig. 4. (a-f) Leading empirical eigenmodes, with their associated projection coefficient 414 
time series (determined by the projection of the data on the corresponding adjoint). (g-h) 415 
Most energetic phase of eigenmode pair 9/10, which corresponds to “interannual ENSO,” 416 
and its time series (least energetic phase not shown). Contour interval is the same in all 417 
left panels. Sign is arbitrary but is consistent with coefficient time series. Red (blue) 418 
shading represents positive (negative) values. Also shown are the e-folding times (eft) for 419 
the eigenmodes, and period (T) for the propagating eigenmodes. Note that in general 420 
these eigenmodes do not correspond to the EOFs, which are constrained to be orthogonal. 421 
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 423 
Fig. 5.  Top: LIM hindcast skill for the 1901-2009 period for hindcasts averaged over 424 
leads of (left) 2-5 years and (right) 6-9 years. Middle: Difference between the skill of the 425 
LIM hindcasts for the 1901-2009 period (i.e., top panels) and a second set of LIM 426 
hindcasts where the projection of the initial conditions on only the three leading 427 
eigenmodes (Figs. 4a-f) is retained. Bottom: Detrended LIM hindcast skill for the 1901-428 
2009 period for hindcasts averaged over leads of (left) 2-5 years and (right) 6-9 years 429 
(verified against detrended data). 430 
 431 
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 432 
 433 
Fig. 6. LIM skill of a) PDO and b) AMO indices, and c) global mean temperature, for 434 
hindcasts where different initial conditions are used, for the 1901-2009 period. Also 435 
shown in all three panels is the detrended LIM skill. See text for description. 436 
 437 


