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ABSTRACT

The usefulness of a distance-dependent reduction of background error covariance estimates in an ensemble
Kaman filter is demonstrated. Covariances are reduced by performing an elementwise multiplication of the
background error covariance matrix with a correlation function with local support. This reduces noisiness and
resultsin an improved background error covariance estimate, which generates a reduced-error ensemble of model
initial conditions.

The benefits of applying the correlation function can be understood in part from examining the characteristics
of simple 2 X 2 covariance matrices generated from random sampl e vectors with known variances and covariance.
These show that noisiness in covariance estimates tends to overwhelm the signal when the ensemble size is
small and/or the true covariance between the sample elements is small. Since the true covariance of forecast
errorsis generally related to the distance between grid points, covariance estimates generally have a higher ratio
of noise to signal with increasing distance between grid points. This property is also demonstrated using a two-
layer hemispheric primitive equation model and comparing covariance estimates generated by small and large
ensembles. Covariances from the large ensemble are assumed to be accurate and are used a reference for
measuring errors from covariances estimated from a small ensemble.

The benefits of including distance-dependent reduction of covariance estimates are demonstrated with an
ensemble Kalman filter data assimilation scheme. The optimal correlation length scale of the filter function
depends on ensemble size; larger correlation lengths are preferable for larger ensembles.

The effects of inflating background error covariance estimates are examined as a way of stabilizing the filter.
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Distance-Dependent Filtering of Background Error Covariance Estimates in an

It was found that more inflation was necessary for smaller ensembles than for larger ensembles.

1. Introduction

Many groups are experimenting with data assimila-
tion schemes for complex numerical weather and ocean-
ographic prediction models where background forecast
error covariances are estimated using an ensemble (e.g.,
Evensen 1994; Evensen and van Leeuwen 1996; Hou-
tekamer and Mitchell 1998, 2001; Burgers et al. 1998;
Mitchell and Houtekamer 2000; Lermusiaux and Rob-
inson 1999; van Leeuwen 1999; Anderson and Ander-
son 1999; Hamill and Snyder 2000; Heemink et al.
2001; Hansen and Smith 2000; Keppenne 2000; An-
derson 2001). Much of this experimentation is based on
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approach is known as the ensemble Kalman filter
(EnKF). The EnKF consists of a set (or ensemble) of
parallel short-term forecasts and data assimilation cy-
cles. Statistics derived from the short-term forecasts are
used to estimate background error covariances during
the subsequent data assimilation step.

Though the ensemble-based data assimilation ap-
proaches such as the EnKF have not been demonstrated
operationally yet, their potential for improving numer-
ical weather prediction has gained them some attention.
One potentially large benefit is that by construction, the
ensemble forecast and data assimilation steps are uni-
fied, so a consistent, reliable, reduced-error ensembl e of
initial conditions may be available for generating en-
semble forecasts (e.g., Hamill et al. 2000; Hamill and
Snyder 2000). This would obviate the need to add struc-
tured or unstructured noise to a control forecast to gen-
erate initial conditions, as is currently done in Europe
and the United States (e.g., Molteni et a. 1996; Toth
and Kalnay 1993, 1997). Further, ensemble-based tech-
niques have two potential advantages over the tradi-
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tional extended Kalman filter (EKF) (Cohn 1997). Com-
pared with the EKF, the cost of ensemble techniques
should be significantly less, since covariances are es-
timated using alimited-size random sample. In the EKF,
error covariances for each model component are prop-
agated using linear tangent and adjoints of the fully
nonlinear model, an exorbitant computational expense
for a high-dimensional model [however, it may be pos-
sible to reduce the computations by computing in are-
duced-dimensional subspace; see, e.g., Fisher (1998)].
In terms of accuracy, ensemble filters may be more ac-
curate than the EKF since covariances are estimated by
propagating model states with a fully nonlinear model
rather than under assumptions of linearity.

Ensemble-based data assimilation approaches offer
the potential of providing better initial conditions than
may be possible using existing methods such as three-
dimensional variational dataassimilation (3DVAR,; Lor-
enc 1986; Parrish and Derber 1992) or four-dimensional
variational data assimilation (4DVAR; Le Dimet and
Talagrand 1986, Rabier et al. 1998). Hamill and Snyder
(2000) showed that the a hybrid ensemble Kalman filter
provided substantial improvements over 3DVAR in a
perfect-model context. Anderson (2001) has done some
preliminary experiments that suggest that an ensemble-
based approach may also be better than 4DVAR.

The relative cost of an ensemble approach versus the
current standard, 4DVAR, is hard to estimate; it may
depend on whether the analysis scheme sequentially
processes the observations (e.g., Houtekamer and
Mitchell 2001) or simultaneously processes them (e.g.,
Hamill and Snyder 2000). As well, it may depend on
the size of the ensemble necessary to provide adequate
background error statistics and the complexity of for-
ward operators (which convert model states to obser-
vations; these operations must be carried out separately
for each ensemble member). Further, the extent to which
each can be parallelized may be quite different. Ensem-
ble forecasts are of course easily parallelizable; one
member forecast can be farmed out to each central pro-
cessing unit. The data assimilation may also be some-
what parallelizable, perhaps using algorithms such as
that suggested by Houtekamer and Mitchell (2001). As
a rough guess, however, one might expect the compu-
tational expense of an ensemble assimilation approach
to be about the same order of magnitude as 4DVAR.

Despite the appeal of ensemble-based data assimi-
lation approaches, thereis much yet to be learned before
any will be considered for operational use. One sub-
stantial problem is caused by using small-sized ensem-
bles to estimate background error covariances. Houtek-
amer and Mitchell (1998) noted that the EnNKF analysis
could be improved by excluding observations greatly
distant from the grid point being analyzed. They con-
cluded that this was because background error covari-
ance estimates generated from a small ensemble often
produced spuriously large magnitude background error
covariance estimates between greatly separated grid
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points; estimates from a larger ensemble showed that
the covariances were actually small. Hence, the analysis
was more accurate when the observations were excluded
than when they were included and assimilated with de-
graded background error statistics. Houtekamer and
Mitchell (2001) have since experimented with filtering
covariance estimates produced by the ensemble using a
““Schur product,” whereby the ensemble-based covari-
ance estimates are multiplied element by element with
a distance-dependent correlation function that varies
from 1.0 at the observation location to 0.0 at some pre-
specified radial distance. They have found that the anal-
ysis errors are substantially improved when this ‘“ co-
variance localization” is incorporated. Also, the anal-
yses were smoother than when observations beyond a
specified distance from the observation were excluded,
and properties of the covariance matrices such as their
conditioning were improved.

This research continues the exploration into the dis-
tance-dependent filtering of covariance estimates gen-
erated by a finite ensemble. Our goal is to understand
why such filtering may be beneficial, how much im-
provement may be expected from filtering, and how this
may change with the size of the ensemble and the ob-
servational data density. To this end, section 2 will dis-
cuss some of the basic aspects of data assimilation when
covariance matrices are estimated using random samples
of the model state. We explain how the noise in the
estimates of covariances can affect the accuracy of anal-
yses and illustrate how such errors will change de-
pending on the ensemble size and the true correlation
structure. This leads us to an understanding of why the
ratio of noise to signal in covariance estimatestypically
varies with distance between the observation location
and the grid point being analyzed. Section 3 provides
a brief review of the two-layer primitive equation (PE)
model and the data assimilation system used in this
experiment, as well as a description of how the co-
variance localization was implemented. Section 4 pro-
vides results from a large set of single-observation ex-
periments with the PE model designed to explore how
the quality of covariance estimates from an ensemble
changes as a function of distance from the observation.
Section 5 describes our tests of the covariance locali-
zation embedded in the data assimilation system of the
PE model. It also discusses the relative improvement
that can be gained by inflating the background error
covariance estimates produced by the ensemble. We
then examine the effects of covariance localization on
the eigenval ue spectrum of the covariance matrices. Sec-
tion 6 discusses these results and concludes.

2. Simple properties of covariance matrices from
random samples

Let us start by trying to understand one of the most
basic effects that an error in the specification of co-
variances in the background error will have on data
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assimilation. Namely, we consider how an error in the
covariance will affect the analysis at a grid point away
from the observation location. We consider the simplest
system possible, a two-dimensional model state with a
single observation and Gaussian statistics. In this sec-
tion, capital letters will denote continuous random var-
iables, and lowercase letters the actual values, and we
will use the nomenclature of Bayesian statistics. Assume
we have a random vector XT = (X7, X}) representing
the unknown true state of the model. We have a sasmple
forecast x> = (xb, x5), denoting the background, or
“first-guess” forecast sample of the true state, with
background error covariance matrix P defined by

m=G%%> 8

2
Cp 03

Thus, in the absence of new observations, we have a
prior probability distribution 7 (XT) ~ N(x®, P®), where
N(a, B) indicates the distribution is normal with ex-
pected value a and variance/covariance B. Assume a
new observation then becomes available. This Y is a
scalar random variable denoting the observation, and
the actual observation isy, taken at the location of the
first component of the state vector. Errors €, for the
observation are defined by €, ~ N(O, o2).

We seek the posterior probability distribution for the
analyzed state conditional on (updated to) the new ob-
servation, w(XT = x|Y = y) = X2 = (X3, X3). It can
be shown that X2 ~ N(x&, P2), where x& = (x2 x3) and

[ Var(X3)  Cov(X3, X3) 2
Cov(X3, X3) Var(X3) @

Thus, the analyzed values and the expected analysis
error variance obtained by updating the background are
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(similar derivations are provided in Daley 1991). Now,
suppose we have an inaccurate estimate P® of the co-
variance matrix P®, where variances are correctly spec-
ified but the covariance has an error, or “‘noise” e, ~
N(O, 7,,):
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We seek to understand the effect on the quality of the
analysisfor x3. If the error €, is uncorrelated with errors
iny, x°, and x&, it can be shown that
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Let us denote 7,,/c,, the “‘relative error’” in the covari-
ance, a measure of noise relative to signal. Notice that
when the relative error is greater than 1.0, the analysis
of x3 is typically degraded by assimilating the obser-
vation y. Notice also that the amount of improvement
or degradation will be proportional to the square of the
covariance c,,. That is, for a given relative error >1.0,
the degradation will be worse for larger covariances.

Given that large relative errors in the magnitude of
background error covariances may degrade the analysis,
we shift focus to understand what can cause such errors
when they are estimated from an ensemble. We examine
this question through some simple experiments with 2
X 2 sample covariance matrices. Again, assumewe have
an ensemble of vector background values x® = (x?, x5)
sampled from XT. Here x? represents the value at the
observation location, and x§ isthe value at some distance
from the observation.

It can be shown that given the true covariance matrix
P> with variances o2 = 1, 03 = n?, true correlation p
= Cowﬁ , X7) (and hence true covariance ¢, =
p\/;% o3 = pm), then the variance 7, of the error in
the calculation of the covariance from a sample ensem-
ble of x is approximately

g% + 0%

Va(e) = ro =0+ (O

for large enough sample sizes n. For brevity, the full
derivation is excluded here. The derivation assumesthat
n random vectors (X8, X5),, ..., (X8 X8), are sampled
from a N(O, P°) distribution. We are interested in the
variance of the estimator # = Un 3, (X% — Xb),
(X5 — X3);, where the overline indicates an expected
value. This would be tedious to calculate, but for large
n, Xt =0and X5 = 0s0 6= 21UnZ, (X2),(Xy),. The
derivation is further simplified by transforming using
two independent variables U and V ~ N(O, 1), where
(X%, = U and (X8, = [pU + (1 — p?)¥2V]n. In this
derivation, it is not necessarily appropriate to assume
as in (3) that the variances are without error. In fact, if
we denote the error in the background state at the ob-
servation location as €, Var(e,) = 2/n.

How do errors change as the true correlation and the
ensemble size changes? Figure 1 shows the correspond-
ing relative error of the covariance, 7,,/c,,. Relative er-
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Fic. 1. Relative errors of ensemble of size n and correlation p.

ror increases greatly as p decreases and as the ensemble
size decreases. Since p typically decreases with increas-
ing distance from the observation, in a numerical weath-
er prediction model, the noise-to-signal ratio would thus
be expected to typically increase with increasing dis-
tance from the observation. (This is, on average, the
case; sometimes there may be large magnitude true cor-
relations over long distances. Section 4 provides some
evidence that this is quite uncommon, however.)

3. Design of the experiment

The experiments conducted here will assume that the
forecast model is perfect. A long reference integration
of the forecast model provides the true state; the assim-
ilation experiments then use that same model, assimi-
lating imperfect observations generated by adding noise
to the true state.

We conducted two general sets of tests, a set of single
observation experiments designed to illuminate the
characteristics of signal and noise in the ensemble, and
a test of analysis accuracy for different observational
networks, different sized ensembles, and different filter
characteristics. For both, a 90-day set of analyses were
computed, updated with new observations every 12 h.

a. Forecast model

Results in the rest of the paper will be based on a
dry two-layer PE model. The forecast model was de-
scribed in Zou et al. (1993). The model state vector
consists of vorticity and divergence spectraat two levels
as well as Exner function 7 at the lower surface and at
an interface. The model is spectral with aT31 triangular
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(a)

Low—Density Network (46 obs)

(b)

FiG. 2. Observation locations for two network configurations. (a)
Lower-density network, (b) higher-density network.

truncation. Thereis asimple, wavenumber-2 terrain, but
there are no land—water interfaces. A fourth-order Run-
ge—Kutta scheme is used for the numerical integration,
there is Ve diffusion, and the model is forced by damp-
ing the interface 7 toward an equilibrium state. Error
doubling times are somewhat slow in this model, slight-
ly greater than 4 days.

b. Observations

Two observational networks with approximately uni-
form data density were tested (Fig. 2). We observed u
and v components of the wind at both model levels and
7 at the lower surface and interface. Observations have
uncorrelated errors. Wind component error variances
were assumed to be 9 m? s—2, Lower boundary 7 var-
iances are assumed to be 0.09 J? kg—2 K2, or about 1
hPa? pressure error variance. Interface 7 variances were
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set to 9.0 J? kg—2 K2, which corresponds to about 1
K2 temperature error variance. These same observation
error variances were used both to generate random ob-
servation errors and were those assumed by the data
assimilation scheme. Observations and new analyses
were generated every 12 h, followed by a 12-h forecast
with the PE model that served as background at the next
analysis time.

c. Ensemble Kalman filter data assimilation system

Notational convention in this section roughly follows
that suggested in Ide et al. (1997). Let X be a random
vector denoting the model state vector, here converted
from spectral componentsto gridded u and v wind com-
ponents at the two model levels, aswell aslower surface
and interface 7. Given a set of control observations y°
of dimension n, and a background forecast x®, we seek
the specific analysis state x2, which is the X that min-
imizes

300 = S0 = xR X~ x)

+(y° = HX)'R(y° — HX)] (V)

(Lorenc 1986). Here PP represents the background error
covariance, and H (here assumed linear) is an operator
that converts the model state to the observation type
and location. Further, R is the n, X n, measurement
error covariance matrix.

Asin Lorenc (1986), it can be shown that the analysis
state that minimizes this functional can be expressed as

Xa8 = xP + PPHT[HPPHT + R](y° — Hx®). (8)

One of the greatest challenges in data assimilation is
formulating a reasonably accurate model of background
error covariances P°. The EnKF presupposes that an
ensemble of background states are available to generate
background covariance estimates. |deally, thisensemble
approximates arandom sample from the probability dis-
tribution of plausible background states given all pre-
viously and currently available observations. To this
end, we used a Monte Carlo procedure similar to that
of Houtekamer and Mitchell (1998). We started with an
ensemble of n analyses at some time t, generated in the
manner described in Hamill and Snyder (2000). These
perturbed analyses were generated by adding random
spatially correlated noise to the an estimate of the truth.
We then repeated the following three-step process for
each data assimilation cycle: 1) Make n forecasts to the
next analysis time, here, 12 h hence. These forecasts
will be used as background fields for n parallel analyses.
2) Given the already imperfect observations at this next
analysis time (hereafter called the *‘control” observa-
tions), generate i = 1, ..., n independent sets of per-
turbed observations y? by adding random noise to the
control observations y°. The noise is drawn from the
same distributions as the observation errors (see section
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3b), and the noise is constructed to ensure that the mean
of the perturbed observations is equal to the control
observation. 3) Perform n objective analyses via (9)
below, updating each of the n background forecasts us-
ing the associated set of perturbed observations. The
analysis equation for the ith member is

Xg = XP + PHT[HPEHT + R]-1(y? — HXP).  (9)

Here x" is the m-dimensional model state vector for the
ith member background forecast of an n-member en-
semble, and x? is the subsequently analyzed state for
the ith member. Then PP is now an approximation of
the background error covariances generated from the
collection of background forecasts. In its most simple
form, PP is approximated by

1
n—1

where x> = 1/n 3", xb is the ensemble mean.

Some additional complexity will be introduced to the
standard EnKF design to deal with the detrimental pro-
cess known as filter divergence (e.g., Houtekamer and
Mitchell 1998; van Leeuwen 1999). In this process, the
ensemble progressively ignores observational datamore
and more in successive cycles, leading to a useless en-
semble. For the EnKF, much of this problem is a con-
sequence of using the ensemble to produce a reduced-
rank representation of background error statistics.

Two potential sources of filter divergence are illus-
trated in Fig. 3. First, the background at the observation
location is adjusted toward the observation only to an
extent consistent with the ratio of background (prior)
and observational covariances. Figure 3a illustrates a
hypothetical posterior probability distribution when
background error covariances are estimated correctly (in
this example, the covariance between the two compo-
nents is zero). If background errors are underestimated,
the observation is comparatively ignored (Fig. 3b) and
the posterior distribution unduly resembles the prior. If
there are directions in phase space where the ensemble
underestimates the true background covariancesbecause
of sampling errors, or at its worst assumes no variance
at all because of the limited span of a finite number of
ensemble members, then the background is not suffi-
ciently corrected back toward the observation in these
directions. Similarly, if the magnitude of background
error covariances between an observation location and
afar-removed grid point are overestimated due to sam-
pling errors, the posterior probability distribution at this
far-removed grid point will be adjusted too much (Fig.
3c). This can generate a posterior probability distribu-
tion that is biased and/or has too little variance. In prob-
abilistic terms, the posterior distribution has insufficient
probability in the region in phase space near to the true
state.

By — jm—@m—ﬁw (10)
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Fic. 3. (a) Hypothetical data assimilation for two-dimensional state vector with an observation in only the x,
component. Heavy lines denote the true background error distribution, or prior (marginal distributions plotted along
each axis). Light solid line denotes marginal distribution for observation. Dot on x, axis denotes value of observation.
Dashed line denotes distribution of the analysis (posterior). (b) As in (a), but assuming the the background error
distribution is underestimated in magnitude. Note that the posterior is shifted very little from the prior. (c) Asin (a),
but where correlations between the two components are overestimated, so the posterior of x, isinappropriately shifted.

In the context of ensemble forecasting, the prior and
posterior are represented by a sample of model states.
Aninitial error in the covariances caused by estimating
them from a small sample can thus create a ensemble
of analyses with a biased mean state and insufficient
variance. During the next forecast step, chaotic dynam-
ics may cause member forecasts to drift yet farther from
the truth. During the subsequent assimilation cycle, the
variance-deficient ensemble thus further underestimates
the background error statistics, disregarding even more
the influence of the new observations. This problem can
progressively worsen, resulting in a useless ensemble
of forecasts.

Many approaches have been suggested to lessen or

prevent the tendency toward filter divergence. One ap-
proach is to localize background error covariances by
applying a Schur product with a correlation function,
as discussed in Houtekamer and Mitchell (2001) and in
greater depth later in this paper. The product of these
two covariance models reduces spurious noise in the
covariances and the resulting tendency toward intro-
ducing unrealistically large analysisincrements far from
the observation (adjusting ensemble members toward
the observations at grid pointswhereit isnot appropriate
contributes to an inappropriate reduction of the analysis
variance).

Another approach that can ameliorate the tendency
toward filter divergence is to use a ‘‘double” EnKF
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(Houtekamer and Mitchell 1998), whereby ensemble
members are kept in two separate batches; the covari-
ance model from one batch is used in the assmilation
of the other. This can help prevent the feedback cycle
toward smaller and smaller background error covari-
ances. Hamill and Snyder (2000) suggested a hybrid
EnKF, whereby covariances are modeled as a combi-
nation of covariances from the ensemble and from a
stationary model like 3DVAR. Neither the double
EnKF nor the hybrid approach are used in this exper-
iment.

Anderson and Anderson (1999) suggested increasing
background error covariances somewhat by inflating
the deviation of background members with respect to
their mean by a small amount. Thisis one approach we
shall follow here. Before the first observation is assim-
ilated in a new cycle, background forecasts deviation
from the mean are inflated by an amount r, slightly
greater than 1.0:

XP — r(xb — X°) + X°b. (11)

Here, the operation — denotes a replacement of the
previous value of x?. Unless noted otherwise, hereafter
r = 1.01 (1 percent inflation each cycle).

As in Evensen (1994) and Houtekamer and Mitchell
(1998, 2001), P* is not computed explicitly by itself.
Rather, for computational efficiency, the matrix opera-
tions PPHT and HPPHT in (9) are computed together using
data from the ensemble of background states. Define

19
AX = = D Hxe,
niza

which represents the mean of the estimate of the ob-
servation generated from the background forecasts.
Then

Because observations were constructed under the as-
sumption of independence of errors, the analysis pro-
duced by the sequential assimilation of observations
should be identical to the analysis produced by assim-
ilating al simultaneously. [We note that this is strictly
true in the context of an extended Kalman filter (e.g.,
Anderson and Moore 1979), but thisisan approximation
in the EnKF Whitaker and Hamill (2001, manuscript
submitted to Mon. Wea. Rev.) explores this in more
depth.] In any case, we assumed this approximation was
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R 1 n . R
PoHT = pae |-= > (xb —x)(Hxt — )|, (12)
and
. 1 2 B P
HPPHT = —=— 30 (Hxb — X )(Hx? — Hx ). (13)
—1liz

The operation pg© in (12) denotes a Schur product (an
element-by-element multiplication) of a correlation ma-
trix S with the covariance model generated by the en-
semble. The Schur product of matrices A and B is a
matrix C of the same dimension, where C;; = A, B;;. For
sequential data assimilation, the function S depends
upon the observation location; it is a maximum of 1.0
at the observation location and typically decreases
monotonically to zero at some finite distance from the
observation. As noted in Houtekamer and Mitchell
(2001) and references therein, the product of a covari-
ance matrix and correlation function isalso acovariance
function. Note that because of our use of a simple H,
involving only grid points near the observation, the
Schur product is not included in (13) (this is a minor
approximation since all values of the correlation func-
tion at these stencil points used in H are ~1.0).

To define the correlation matrix S, we used a fifth-
order function of Gaspari and Cohn (1999), which is
similar to a Gaussian function in shape but compactly
supported, that is, correlations decreased to zero at a
finite radius. Define a length scale I, and let F, =
V10/3 |.. Define ||D;| to be the Euclidean distance
between grid point (i, j) and the observation location.
Then a correlation matrix S is defined for every grid
point (i, j) in the domain according to (i, j) = Q(F.,
[Dyll). Let a = F_,and b = [|Dyll. Then

acceptable here. Thus, each individual observation of
u, v, and 7 at each location were assimilated sequen-
tially. This simplification was attractive; it reduced the
rank of [HPPHT + R] to 1, so computation of itsinverse
was trivial. The sequential processing of observations
also makes application of a correlation function much
simpler, as described below. We note that this manner
of computation is simple and useful for state vectors of
relatively limited dimension and/or a small number of
observations, but for realistic numerical prediction ap-
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plications, many modifications will be necessary (see
Houtekamer and Mitchell 2001 for one possible algo-
rithm).

4. Signal and noise estimates from ensembles

We would like to devel op someintuition about wheth-
er errors in covariance estimates from small ensembles
are especially problematic, and how these errors depend
on distance from an observation. To explore this, we
first generated an ensemble of assimilations over a 90-
day period, assimilating observations every 12 h from
the network shown in Fig 2a. To keep the EnKF from
diverging, covariances were inflated by the factor r =
1.01, and a broad correlation function S was applied,
with I, = 4500 km.

At several points during the data assimilation cycle,
background forecasts were used to generate covariances
for a set of single-observation experiments. Covariance
estimates from a large ensemble (n = 400) were as-
sumed accurate and then used to eval uate the noi se prop-
erties of covariance estimates from a smaller ensemble
(n = 25). Covariance estimates for these single-obser-
vation experiments were then generated as adirect outer
product of member deviations about the ensemble mean,
that is, ps o was not applied in (12) when assimilating
the observation. For the assimilation of a single obser-
vation with known observation variance, the analysis
increment (x® — x®) is then directly proportional to the
background error covariance. Hence, a map of analysis
increments from the 400-member ensemble will be as-
sumed to be related to the “‘true” covariances, that is,
the error is small enough to permit its use for evaluating
the accuracy of covariance estimates from a smaller (n
= 25) member ensemble sampled from this larger en-
semble. As demonstrated in section 2, the rms errors
[square root of Eq. (5)] in covariance estimates should
scale approximately as 1/Vn, so the rms covariance
errors from a 400-member ensemble should actually be
about 1/4 that of a 25-member ensemble.

For these experiments, the normal data assimilation
cycle was interrupted on 25 different case days starting
30 days into the assimilation and with 2% days between
cases. For each case day, 26 independent single-obser-
vation experiments were performed, each at a different
observation location in the domain above 30°N latitude;
this minimum latitude was chosen so that sample points
would be affected by extratropical dynamics and thus
have substantial background errors. The 26 observations
on 25 days thus produced a total of 650 single-obser-
vation experiments. In each experiment, an observation
increment (y° — Hx) of +3Jkg~*K~*in 7 wasinduced
at the interface. This corresponds to an increment of
approximately 1 K. We then kept track of the analysis
increments (x* — x®). A sample of these increments
from each sized ensemble is shown in Fig. 4; note gen-
erally larger increments away from the observation lo-
cation for the 25-member ensemble.

HAMILL ET AL.

2783

Let fo = f.(r, 6,1) represent theinterface 7 analysis
increment from the 25-member ensemble generated for
the ith observation in series of single-observation ex-
periments. Here r denotes the distance from the grid
point to the observation location and 6 the anglein polar
coordinates. Similarly, let f,, represent the analysis
increment from a 400-member ensemble. We assume
the noise N in the 25-member estimate is represented
by N = |f,, — f,| and the true response, or signa
SisS= |f400]|. We will keep track of the 5th, 50th,
and 95th percentiles of N, S, and N/S as a function of
r over the 650 replications.

Figure 5 shows these quantiles of S, N, and N/Sas a
function of the distance from the observations. All quan-
tiles of the typical signal drops off rapidly with increas-
ing distance; the noise is slightly larger near the obser-
vation, but its decrease with distance is much less pro-
nounced than the signal. Of particular importanceisthe
ratio of noise to signal, since as indicated in (4), when
thisratio isgreater than 1.0, assimilating the observation
does more harm than good. By ~5000 km, the median
N/Sis around 1, and beyond this distance the ratio as-
ymptotically approaches a value near 1.5.

Since N/S on average increases monotonically away
from the observation, application of a distance-depen-
dent correlation function that decreases covariance es-
timates monotonically as outlined in section 3c seems
to be a plausible choice for improving background co-
variance estimates and hence the quality of analyses.
There may be some occasional circumstances where
there are truly large covariances between widely sepa-
rated grid points that are anomalously damped by the
localization. The amount of filtering (i.e, the length
scal€) should be tuned so that on average correctly large
covariances are not excessively damped while anoma-
lous ones are damped.

5. Analysis errors with filtered covariances

We examined the accuracy when the filter length
scale was varied while holding the inflation factor
fixed. Similarly, we examined the accuracy as afunc-
tion of the inflation factor while the filter length scale
was held fixed. Ensembles with 25, 100, and 400
members were tested. Forecasts and analyses were
cycled for 90 days, with updates every 12 h. We ex-
amined the analysis error characteristics of interface
7 averaged over the last 60 days of the integration
(errorsin other normswere qualitatively similar). The
filtering used a fifth-order function in Gaspari and
Cohn (1999) as discussed in section 3c.

a. Analysis errors as function of filter length scale

Figures 6a,b present the time average ensemble mean
error for the sparse network (46 observation locations;
Fig. 2a) and the denser network (126 observation lo-
cations; Fig. 2b). The inflation factor r is fixed at 1%.
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(a) Analysis Increment 400 members

Fic. 4. Analysis increments from single observation experiment,
where +3 J kg—* K~ observation increment in 7 was induced at
location designated by dot. Contoursevery 0.01 Jkg—* K. Negative
increments dashed. (a) 400-member ensemble, (b) 25-member en-
semble.

To the right of the dots plotted for a given correlation
length scale in Fig. 6, filter divergence occurred for
tested larger length scales, and the analyses were use-
less.

Figure 6 suggests some interesting characteristics of
the EnKF coupled with the localization of covariances.
First, as expected, the analyses were significantly im-
proved by using more observations. Also note that the
optimal length scale is a function of the size of the
ensemble. Smaller ensembles had a smaller optimal
length scale than for larger ensembles, indicating that
noise in the covariance estimates overwhelms signal at
relatively short distances from the observations when
the ensemble size is small, but for larger ensembles,
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noise does not overwelm signal until much farther from
the observation. This is similar to a result Houtekamer
and Mitchell (1998) found using a cutoff radiusto elim-
inate observations.

We also generated rank histograms (Hamill 2001 and



NovEMBER 2001

Errors, interface m, 46 obs

T T T T T T T T T T

~~

T 25 members (Cl)

¥ F 4

T B 100 members

"o 1.5 7

S — — — 400 members ]

-

N

=

£ -

-

o

<

o

c

o} -

@ Jooe

£ TN e

“ ~<o

c =~ -

Ll b

0.0 1 ! 1 1 1 | i L 1 i
6 912151821 25 30 35 45
Fiter length scale (* 100 km)

Errors, interface 7, 126 obs
T T T T T T T T T T

. |

T 25 members (b)

x ]

I 100 members

(. 1.5¢ 7

g A — — — 400 members

- A

~ b

[ L

£ 1.0 A

t .

o

2 A

© L\\/.

c p

S 0.5F% 7

£ F *'&\' 1

a T e e

2 ez

L‘J == = - <

00Li v v ¢ o 4 ; 1 1

6 912151821 25 30 35 45
Filter length scale (x 100 km)

Fic. 6. () Time averaged ensemble mean error in interface = for
46-observation network as function of correlation length scale of the
filter. (b) Asin (a), but for the 126-observation network.

references therein) as a way of measuring the reliability
of the ensemble. Ideally, asample of forecast valuesfrom
the ensemble and the true state ought to be able to be
considered random samples from the same probability
distribution. If thisistrue, then when the rank of the true
state is compared to an n-member ensemble sorted from
lowest to highest, the rank of the true state should be
equally likely to occur in any of then + 1 possible ranks.
A histogram of the rank of the truth tallied over many
points provides evidence of the reliability of the ensem-
ble. A U-shaped rank histogram (excessive population at
the lowest and highest ranks) indicates insufficient spread
or bias in the ensemble. An excess population at the
middle ranks indicates too much spread.
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Figures 7a,b show rank histograms for the 46- and
126-observation networks, respectively. Rank histo-
grams for the 100- and 400-member ensembles were
generated by taking a subset of 25 of the members, so
that comparisons with the 25-member ensemble could
be facilitated. For the 25-member ensembles, at all but
the shortest tested length scale, rank histograms are
overpopulated at the extreme ranks. This result suggests
that the small ensemble may not be able to correctly
specify error variances over the full range of growing
directions in the ensemble. We will examine this more
in section 5c.

For the 25- and 100-member ensembl es, thereisatrend
toward more population at the extreme ranks as the filter
length scaleincreases. This change from underpopul ation
to overpopulation as filter length increases is a primarily
reflection of differing amounts of variance reduction as-
sociated with different filter lengths. With strong filtering
(ashort I.), only grid points very near the observations
are adjusted during the assimilation, and at the rest, the
origina variance in the background is preserved in the
ensemble of analyses and propagated forward to the next
cycle. Thus, when filter length is shorter than appropriate
for a given sized ensemble, the background covariances
estimated from the ensemble are reduced too much in
magnitude, undercorrecting the analysis far away from
observation locations.

As the length scale of the filter increases, the more
background error covariances from the ensemble are
trusted far from the observation; hence more and bigger
corrections to the analysis are possible. If the covari-
ances are very noisy, though, as shown before, the cor-
rections are inappropriate, and the result is an overly
adjusted, variance-deficient ensemble. In the extreme,
for very long correlation lengths, this can induce filter
divergence. This can be noticed in the rank histograms,
which become increasingly U-shaped as correlation
length is increased.

b. Analysis errors as function of inflation factor

In all of the experiments described above, background
forecast deviations were inflated about their mean by
1% before the data assimilation. It is possible that 1%
is not an optimal factor for all ensemble sizes and ob-
servation densities. It was too computationally expen-
sive to try a range of inflation factors for all of the
correlation length scales. However, we did test a range
of inflation factors for the correlation length scale of
1200 km. The corresponding ensemble mean errors are
shown in Figs. 8ab. The optimal inflation factor is a
function of the ensemble size. For example, with the
46-observation network and the 25-member ensemble,
the analysis can be improved by inflating covariances
by ~2%—4%; for the 100-member ensemble, 1% or 2%
appears optimal, and for the 400-member ensemble, the
0.25%-1.0% inflations produced the best results of those
tested. The minima are less pronounced for the 126-
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observation ensembles, but the patterns are similar. The
rank histograms (Figs. 9a,b) show that, as expected, the
larger inflation factors increase the spread in the ensem-
ble, producing less population at the extreme ranks.
Note that the 1% inflation factor used for producing
Figs. 8 and 9 is nearly optimal for all ensembles; errors
can be decreased by a few percent by choosing a dif-
ferent inflation factor, much less of an improvement than
can be obtained by adjusting the correlation length.

Given that for all filter length scales in Fig. 7, the
rank histograms for the 400-member ensemble were
under populated at the extreme ranks, this suggests that
perhaps the inflation factor is too high. We reran all
400-member ensembl e forecasts with a 0.25% inflation
factor for comparison. The 0.25% inflated ensemble
had flat rank histograms and generally slightly lower
errors, especially for the longer length scales (not
shown).



NovEMBER 2001

Errors, interface m, 46 obs

R (a)

25 members
100 members B

1.2r

. 400 members

Ens. mean error in m (J kg™’ K™)
o
o

0.6 7~ .
0.4 R
0.2 1 ] ! ]

.25 1 2 4 6 8

Inflation factor (percent)

Errors, interface m, 126 obs
1.4 T T T T T T
—~ 25 b
T [ members (b) 1
x 1.2 e 100 members d
'o, — — . 400 members
x -
> 1.0} 1
S 1
£ 1
C O'BT A
(o]
g
Q
c 0.6 j&__/'
O L]
L] + =
E v T
I3 SEEIRVREE e .
"
o
w
0.2 1 | ] \
.25 1 2 4 6 8

Inflation factor (percent)

Fic. 8. () Time averaged ensemble mean error in interface = for
46-observation network as function of inflation factor and ensemble
size. Filter correlation length held fixed at 1200 km. (b) Asin (a),
but for the 126-observation network.

c. Eigenvalue spectra of background error
covariance matrices

We would like to develop a qualitative understanding
of the why certain inflation factors and correlation
length scales are optimal. Some evidence of the defi-
ciencies of small ensembles can be understood from an
examination of the eigenspectrum of background error
covariance estimates and how they change as a function
of ensemble size (P Houtekamer 1999, personal com-
munication). For a small ensemble, the spectrum of ei-
genvalues associated with the leading eigenvectors is
too steep, indicating that there is insufficient projection
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upon many of the smaller eigenvectors of the back-
ground error covariance matrix; as well, these eigen-
vectors may increasingly be in the wrong direction. We
illustrate this problem here by generating covariance
matrices of interface 7 for ensembles of size 25, 100,
and 400, all taken from the experiment with the 400-
member ensemble, a 1.01 inflation factor, and 1200-km
correlation length scale. For each of 24 sample times
(see section 4), a covariance matrix for interface = was
calculated from background forecasts for each ensemble
size without covariance localization, that is, using Eq.
(10). The average spectrum of eigenvalues of these co-
variances is plotted in Fig. 10a. Let us assume that the
larger, 400-member ensemble provides areasonably ac-
curate estimate of the true eigenvalue spectrum. Then
the spectra of the 25- and 100-member ensembles can
be evaluated. Especially for the 25-member ensemble,
thereis an excess of variance at the leading eigenval ues,
less variance at lower eigenvalues, and of course zero
variance beyond eigenvalue 24. One consequence of
deficient, reduced-rank approximation wasillustrated in
Fig. 4, namely, that spurious covariances induce unrea-
sonable corrections to the analysis far distant from the
observation location.

When alocalization is applied to the covariances, the
result is an eigenval ue spectrum that is much flatter (Fig.
10b). The shorter the correlation length, the flatter the
spectrum. Why this is so can best be understood by
considering the localization in its logical limit, a delta
function. This forces all covariances to zero, leaving a
diagonal matrix of variances. The rank of this matrix
would increase to the dimension of the state vector, and
the eigenvalues would be bounded by the largest and
smallest variances. Consider aso the effect of locali-
zation on the analysis increments. Without localization,
the correction of the ensemble at two distant observation
locations still occurs within the same reduced subspace
of the ensemble. With localization, corrections depend
on the observation location, introducing extra degrees
of freedom.

6. Discussion and conclusions

This paper provided a statistically based rationale for
the localization of background error covariances, aspro-
posed by Houtekamer and Mitchell (2001). We dem-
onstrated that the analysis is worsened when the noise
(the error) in a covariance estimate is larger than the
signal (the true magnitude of the covariance). Thisratio
of noise to signal is a function of the size of the en-
semble; there is less noise with larger ensembles. The
ratio of noise to signal is also a function of the mag-
nitude of true correlations between grid points (larger
ratios for smaller correlations). Since the correlation is
typically a decreasing function of increasing distance,
covariances between more distant locations can be ex-
pected to have higher ratios of noise to signal.

To understand how errors in covariance estimates
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vary with distance from the observation, covariance es-
timates were generated from alarge (n = 400) ensemble
and a smaller (n = 25) subset of the 400-member en-
semble (analysis increments were actually generated,
but there is a 1-1 correspondence between the covari-
ances and the increments). These were compared under
the assumption that the covariance estimate from the
large ensemble could be taken as the true covariance.
It was shown that the noise-to-signal ratio for ensemble-

based covariances was typically small near the obser-
vation and increased to 1.0 at approximately 5000 km
from the observation. The ratio of signal to noise con-
tinued to increase beyond this distance. This supported
the proposition that reducing the magnitude of covari-
ance estimates more as the distance from the observation
is increased might beneficially reduce the influence of
Spurious noise.

An EnKF was tested in which the magnitude of co-
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variances were reduced in a distance-dependent manner,
with a greater reduction farther from the observation.
This was done through a Schur product of ensemble
covariances with a correlation function with local sup-
port. Thislocalization of covariances provided anotable
benefit, especially for the network with few observa-
tions. However, the benefit was somewhat smaller for
networks with a greater abundance of observations.

We also examined the effects of inflating covariances
by increasing the deviation of members around the en-
semble mean. We found that the optimal magnitude of
the inflation was afunction of ensemble size; the smaller
the size of the ensemble, the larger the inflation.

An understanding of the dual effects of localization
and inflation was gained through a comparison of the
eigenval ue spectrum of the background error covariance
matrix estimates from small and larger ensembles. It
was found that the eigenvalue spectrum of the smaller
ensembles was too steep, with an excess of variance
associated with the |eading eigenvectors and insufficient
variance with the trailing eigenvectors. The beneficial
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aspects of covariance localization and inflation could be
partially understood by how they changed the eigen-
value spectrum. Localization tended to increase variance
in the tails of the spectrum, while inflation increased
the variance associated with all of the resolved eigen-
vectors.

Overall, the results presented here suggest that a dis-
tance-dependent filtering of covariances may provide
dramatic improvementsto the quality of ensemblesfrom
the EnKF or its variants. It is likely that the cost of
localizing covariances will be significantly less than the
cost of generating alarge enough ensemblefor theerrors
to be similar.

The EnKF approach has yet to be tested in an op-
erational environment, though preparation is under way
for semioperational testing at the Canadian Meterol-
ogical Centre (Houtekamer and Mitchell 2001). Though
there are many issues yet to be fully understood, our
recently submitted work (Whitaker and Hamill 2001,
manuscript submitted to Mon. Wea. Rev.) addresses two
such issues, the effects of noise created by perturbing
the observations in the EnKF and the rectitude of serial
processing of observations. A tremendous amount of
work will be required to determine how best to deal
with model error. Regardless, these preliminary results
and those of other colleagues demonstrate the potential
appeal of ensemble-based data assimilation schemes.
We suggest further testing in more complex models,
including comparisons with 4D-Var.
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