27 Stochastic Linear Models of Nonlinear Geosystems

Cécile Penland’

: NOAA/ESRL/Physical Sciences Division, Cecile.Penland@noaa.gov

Abstract. When nonlinearities are strong enough, they can often be treated in terms of lincar
stochastic differential equations. We discuss the conditions under which this can be done, and
illustrate the linear approximation with several examples having varying success. In particular,
we consider the low-dimensional chaotic Lorenz system, a linear process driven by the chaotic
Lorenz system, and the rcal-world application to tropical sea surface temperatures.

1 Introduction: Random Thoughts on Nonlinearity

It has been long known that dynamic systems of different spatial and temporal scales
are often coupled. That is, linear low-pass or linear high-pass filters, while often
useful, are also limited in applicability. Fortunately, if the behavior of the long
timescales is of interest and the detailed behavior of the short ones is less S0, it is
often possible to estimate the effect of the fast processes on the slower ones through
stochastic ~ parameterization. The procedure for developing the stochastic
parameterization of rapidly varying processes is far from arbitrary and requires some
statistical knowledge of the “uninteresting” fast dynamical component.

The very use of the relative terms “fast” and “slow” indicates a separation of time
scales. The limit theorems (Khasminskii 1966; Papanicolaou and Kohler 1974;
Majda et al. 1999) describing asymptotic stochastic behavior quantify time scale
separation by introducing a smallness parameter ¢ into the equations of motion.
Powers of ¢ are written as coefficients of individual terms in the equations and
indicate the rapidity with which these terms’ particular autocorrelation functions
decrease with respect to each other. Although ¢ is a smallness parameter, il is not an
importance parameter; terms multiplied by higher powers of & are not only retained
but represent the “interesting” deterministic dynamics. Said another way, we divide
the dynamical evolution of a system into large effects that don’t last very long and
smaller effects that behave coherently. The short-lasting effects are quantitatively
treated as Gaussian white noise, possibly modulated by the coherent processes, on a
coarse-grained timescale short enough to resolve the slow dynamics but too long to
resolve the details of the fast dynamics. The validity of treating rapidly varying
components as Gaussian white noise requires that the “noise” be the combined
effects of a variety of weakly interacting physical phenomena. This is the reason for
coarse-graining the dynamical equations; the unit of time is large enough that the
integrated effects of unresolved dynamics can be approximated as a Gaussian
stochastic variable (the Central Limit Theorem).

Naturally, the most interesting cases are generally those in which a clear timescale
separation is not possible. There are several ways around this problem, although the
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mathematical underpinnings are not always as rigorous as when the separation is
evident. For example, one might model the stochastic perturbations as red noise with
an appropriate spectrum rather than as white noise (e.g., Horsthemke and Léféver
1984; Newman et al. 1997). This procedure works well as long as one has
knowledge of what that spectrum is, and if one is working on a “forward” problem
that is a priori completely defined. The so-called “inverse problems,” where one

assumes only the basic form of the dynamical equations and estimates the

quantitative description from data, are more difficult.

The difficulty in inverse problems lies in the non-uniqueness of the estimated
results, and this difficulty is an issue whether or not there exists a clear timescale
separation. Even when it is known that a system is governed by a matrix linear
equation, with a coefficient of Gaussian white stochastic forcing varying linearly
with the state vector, one can use sample moments to deduce the matrix coefficient
of the noise only up to an arbitrary orthogonal matrix factor. Further, since this
article deals with systems where the noise is temporally continuous and only
approximately white, there is a noise-induced modification (the so-called “Ito
correction” or “noise-induced drift,” depending on the community) to the systematic
linear feedback involving this unobservable orthogonal matrix (Wong and Zakai
1965; Khasminskii 1966). If one is interested only in the predictability of the system,
or in covariance statistics of the noise, the arbitrary matrix factor is irrelevant.
However, if one is interested in using the results of the inverse model for process
studies investigating the detailed interaction between stochastic and deterministic
dynamics, the arbitrariness can be problematic. In this study, we shall use inverse
modeling to diagnose covariance statistics of a low-order deterministic chaotic
process acting as additive forcing to a linear system, thus avoiding the issue of non-
unique results.

The idea that low-order chaos can act as stochastic forcing is not new. Jarzynski
(1995) has shown that fast deterministic chaos coupled to a slow Brownian particle
drives the slow degrees of freedom toward a state of statistical equilibrium with the
fast degrees. This result is general, and was achieved by analyzing the Liouville
equation for the combined fast-slow system to investigate the probability distribution
of the slow part. In other work, Rodenbeck et al (2001) considered a 9-dimensional
model introduced by Lorenz (1995), coupled to a faster 8-dimensional system. The
important restriction in these studies was the well-separated timescales of the fast
and slow dynamics. And so, since the issue of whether driving chaos is of low or
high dimensionality is not really important to the validity of a stochastic
approximation, we are back to the issue of how far we can go with such an
approximation when the timescales are not well-separated.

Why would one want to do such a thing? Why not just consider the nonlinear
system as a whole? The problem, of course, is in the word “just;” most of the time
we do not know the equations for the full nonlinear system. We may know some of
them, but we should not expect a good description of reality by a geophysical model
confined to those equations that are well understood, when the effect of unknown
processes might be as large as that of the known ones. We can replace the unknown
dynamics with detailed conceptual models based on data, with the added advantage
of being able to analyze these “toy” models in detail. This is an excellent approach as
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long as one is able (o justify quantitatively the rejection of competing possibilities,
but bears the danger of legitimizing unjustified assumptions, depending on how ad
hoc the toy model is. A model ought not be accepted on the basis of a test that can
pass mutually exclusive dynamics. For example, prediction error alone is not always
a good criterion for evaluating competing physical models; for more than a thousand
years before Copernicus, Kepler and Galileo appeared on the scene, Aristarchus’
(4th century BCE) heliocentric model of the solar system was routinely rejected in
favor of Ptolemy’s (2nd century CE) earth-centered model because Ptolemy’s model
predicted planetary positions more accurately.

If there exists a plethora of detailed deterministic models having different
dynamical properties but similar resemblances to observations (this is the case with
El Nifio, for example), it is often useful to step back to the most general description
of that system’s dynamics and use the results of the Central Limit Theorem (CLT) to
devise a rigorous approximation, including an estimation of how accurate the
approximation is on realistic space and time scales. That 1s, “rigorous” does not
always mean “accurate,” or vice versa; it does mean that the conditions for
application of the CLT (see discussion below) are met.

In the following, we shall explore the completely rigorous, but sometimes
inaccurate, approximation that a nonlinear system can be described as a linear
process augmented with stochastic terms resulting from rapidly varying
nonlinearities. It must be emphasized that we are not throwing away the
nonlinearities; we retain them in an approximate form. This approximation cannot be
made arbitrarily, and so we review its methodology in some detail. In particular, we
discuss a test for the validity of the linear approximation that is difficult to pass. This
test is subject to “Type 1 errors,” often rejecting the linear hypothesis when it is true.
Most statistical tests are subject to either Type 1 errors (rejecting the hypothesis
when it is true) or Type 2 errors (accepting the hypothesis when it is false). While
neither type of error is desirable, Type 2 errors are worse. They are also the errors
likely to be made by those who look for evidence in favor of theories rather than for
evidence against them.,

After considering some theoretical aspects of the analysis, we use the familiar
chaotic Lorenz (1963) system to show an example of a rigorous but useless
application of the approximation. Afler that, we show an example where the
approximation is somewhat problematic but is still extremely useful in diagnosing
many dynamical properties of the system. The next stage of the article applies the
approximation to a real geophysical system. Finally, we discuss the results presented
here. By elucidating that the dependence of a dynamical description of natural
phenomena in terms of linear and/or nonlinear processes is largely a matter of scale,
it is hoped that the commonalities rather than the conflicts between different views
of dynamical systems will be emphasized.
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2 Theoretical Considerations

2.1 The central limit theorem

The first part of this discussion is taken from Sardeshmukh et al. (2001) and is
repeated here mostly verbatim because of its importance to this study. (Let the reader
be assured that I am plagiarizing myself.) Consider a dynamical system of equations
as follows:

idlx—zF‘(x,t)+ G'(x,t) N
dt
where x is a vector in the N-dimensional Euclidean space R" and where F(x, f) and
G'(x, 1) are characterized by short and long correlation times, respectively. For our
purposes, an alternative description of x in terms of a dimensionless parameter ¢ is
preferable

% = eF(x,1)+ £&G(x,1) , @)

where & can be thought of as a ratio of characteristics timescales of F’ and G". It
should be noted that the parameter £is not intended here to be a measure of the
relative importance of F(x, f) and G(x, 7) but rather of the relative rapidity with
which the autocorrelation functions of these terms decay, as will be clear in what
follows. The theorem of Papanicolaou and Kohler (1974; PK74 hereafter) describes
the conditions under which a singular scaling of time allows Eq.(2) to converge
weakly to a stochastic differential equation. This is a dynamical form of the Central
Limit Theorem. The conditions require that the fast process eF(x, ¢) be sufficiently
variable and that the probability density function (pdf) of any value of &F(x, {)
becomes independent of any initial conditions as time increases indefinitely, and at a
sufficiently rapid rate. Further, F(x, ) is required to be sufficiently smooth with
respect to the components of x, where “sufficiently rapid” and “sufficiently smooth”
are made explicit in PK74. The time coordinate is now scaled

s=&t 3
and Eq.(2) becomes
é=lF(x,s/¢€2)+G(x,s/£2) 4)
ds ¢

The proof in PK74 that Eq.(4) converges weakly to a stochastic differential equation
is very general, and often difficult to apply in a forward sense. Therefore, for
illustrative purposes, we restrict the problem by putting more conditions on Fxsl£),
and by stating that F, G, and x are all vectors with N elements. Let F(x,s/£’) be of
the form (see Remark 8 of PK74)

e
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K
Fles/ &)=Y Fees)n(s/ &), (5)
k=1

where 7(s/) is stationary, centered and bounded. The integrated lagged covariance
matrix of mhas elements

x

Co = [<m@na+0)>dr,  km=12, k. ()

0
where angle brackets denote expectation value. With these restrictions, the theorem
by PK74 states that in the limit of long times (+—0) and small ¢ (& = 0), taken so
that s = £t remains fixed, the conditional pdf p(x, s | xo, 59) for x at time s given an
initial condition x(s,) satisfies the “backward Kolmogorov equation,” so called
because the 6perat0r £ describes the dependence of plx, s | xq, s,) on the initial

conditions:
Iplx,s | x,,:
P 050) - p s s0). %
0Os,
where
N , al N ) a
r(->=ga%x(,,s(,)m(m/};b (X,.5,) - (o) (8)
and
) K
a'(x.s)= Y C, F'(x, S)F" (x,5) (9a)
km=|
v K N OF" (x,
b (x,5)= ZCMZE"(x,s)¥+G,(x,S)- (9b)
X

km=1 i=1 i

*
In this limit, if the formal adjoint £ of Lexists, the conditional pdf also satisfies a
“forward Kolmogorov equation” in the scaled coordinates:

POOIIX0%) _ £ s (10)
Os
Where
2('):2\: o (a"(x S)')“Zvli(b’(xwf)') (11)
i1 Ox,0x | 7 Ox,

and where the superscript asterisk indicates the formal operator adjoint. Eq. (10) is
called a “Fokker-Planck equation” in the scientific literature, and we adopt this
terminology hereafter. As stated above, the conditional pdf of x in the scaled
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coordinate system obeys Egs. (7) and (10) in a weak sense. That is, the moments of x
can be approximated with an error of order € by the moments of the solution to the
stochastic differential equation,

dx =G (x,s) ds + ) F'(x,5)S,, *dW,, (12)
k.

where the symmetric matrix C has been written as the product of two matrices (C =
SS™) and has absorbed the factor of 1/2 present in most formulations of the Fokker-
Planck equation. The quantity W is a vector of independent Wiener processes and the
expression *«dW denotes the fact that Eq. (12) is to be interpreted in the sense of
Stratonovich. That is, the white noise is an approximation to a continuous system
with small but finite decorrelation time. One implication of this result is that
stochastic integrals reduce to standard Riemann integrals (Kloeden and Platen 1992).
Since we are usually interested in moments of the system rather than sample paths,
the stochastic integral property of Stratonovich systems is less important than the
dependence of moments, especially the mean, of the limiting process on the form of
the stochasticity. Unless F' is independent of x, the ensemble mean of x will be
different from the deterministic solution for the differential equation with only the
slow part G'.

In forward problems, the form of npusually dictates the form of S. Inverse
problems are usually defined only up to an estimation of C and, therefore, infinitely
many matrices S consistent with C may be constructed by multiplying any estimation
of S on the right by an arbitrary orthogonal matrix.

As a final comment on this section, we note that the CLT is posed for “random”
processes F(x, ?). It should be noted that this definition of “random” is from
Kolmogorov (1933) and includes the deterministic processes. The most important
condition on F(x, 7)is the “mixing condition,” which states how rapidly the
autocorrelation function of F(x, f) decreases. The mixing condition in PK74 is much
weaker than that of Khasminsii (1966) and is fairly easy for most physical processes
to pass. Beck and Roepstorff (1987) further explored this issue further in the context
of chaotic systems. Thus, we interpret the CLT to mean that there is a timescale on
which the moments of a deterministic chaotic process are indistinguishable from
those of a system governed by the stochastic differential equation (12). Whether or
not this timescale is useful is another matter. For example, the approximation is
rigorous but useless for prediction studies if the behavior of a nonlinear system is
coherent enough that the timescale for the stochastic approximation is too long to
resolve the differences between conditional and marginal probabilities. One valuable
use of the CLT is in model evaluation. If nature can be shown to obey the CLT at
some timescale, then any realistic model of nature must also obey it at that same
timescale. We shall explore this point further below.
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2.2 Linear inverse modeling

We now explore the possibility of a natural process obeying a rather extreme version
of the CLT, the multivariate, stable linear process driven by stochastic forcing. This
approximation is surprisingly useful, particularly when the deterministic feedback
matrix is not orthogonal.

Linear Inverse Modeling (LIM) is a statistical method of deriving the best linear
description from observations of a dynamical system. The first step of this procedure
is also known as Principal Oscillation Pattern (POP) analysis (Hasselmann 1988;
Von Storch et al. 1988). Unlike POP analysis, however, LIM attempts to identify the
dynamical nature of the system being observed. Inherent in the procedure is a test to
see whether or not the procedure is appropriate for the time series, i.e., whether the
dynamical system generating the time series is, indeed, linear. We also review LIM’s
ability to describe the transient growth that can occur when the linear dynamical
operator is not orthogonal (e.g., Farrell 1988).

Consider a multivariate linear dynamical system x driven by additive, stationary,
Gaussian white noise & -

dx

E=Bx+§. (]3)

In Eq. (13), &is related to a vector Brownian motion WA(1) as follows:
& dir=Sdw, (14)

so that @ = SS' is a matrix measuring the covariance properties of the stochastic
forcing. The analysis that follows can be adapted to several variations of Eq. (13). In
particular, we may allow S to vary periodically in time, or to be a linear function of
x. We shall discuss these adaptations to the procedure during the exposition.

Moments of the Fokker-Planck equation for the transition pdf plx.t+7|x.f)
corresponding to Eq. (13) can be manipulated to yield

<x(t+ox" (1> = exp(B 1) <x(t)x"(¢)>, (15)

where angle brackets denote ensemble averages. In practice, the contemporaneous
and lagged autocovariance matrices are estimated as time averages. If S is a periodic
function rather than a constant matrix, Eq. (15) is true as long as the matrices are
averaged over an integer number of periods. The difference between this derivation
and derivations for discrete analyses by, for example, Von Storch et al (1988) is that
their noise is required to be contemporaneously uncorrelated with the state variable.
In a continuous system Eq. (13), where the driving noise is a physical process with a
nonzero but negligible correlation time, the system x(7) and &1t) are correlated as
follows (Garcia et al. 1987):

<xX(NE'()> + <&nx"(n>=SS"= Q. (16)

Principal Oscillation Pattern (POP) analysis (Hasselmann 1988; Von Storch et al.
1988) estimates the eigenstructure of an operator A that replaces exp(B 1) in Eq. (16).
POP analysis is the first step of LIM. However, instead of attempting to identify a
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single dominant mode, LIM identifies A with the Green function G(7) = exp (B7),
with 7 chosen to optimize the accuracy of the calculation (Penland and
Sardeshmukh 19954). The entire set of normal modes (eigenvectors of G(z) and,
hence, B) and adjoints (eigenvectors of G'(7) and, hence, B") is then used to infer
the dynamical operator B.

One very useful property of using the stationary continuous system is the Fluctua-
ion-Dissipation relation (FDR: e.g., Penland and Matrosova 1994)

B<x()x'(/)> + <x(tix"()>B" + Q= 0. 17

Equation (18) states that the system’s stationary statistics, represented by <x(f)x'(1)>,
are maintained by a balance between the stochastic forcing, represented by Q, and
the dissipation effected by the deterministic dynamics represented by B. For
periodically varying S, the right side of Eq. (18) is not zero, but is rather the
derivative with respéct to time of <x(7)x"(7)>.

Given any initial condition x(7), the most probable prediction x(t+7) of x(t+1) is
performed simply by multiplying the initial condition by the Green function as
follows:

x'(t+7) = G(2)x(f) = exp(B7) x(?). (18)
For a perfect model of the stochastic system (13), the prediction error
gt =x(t+1) - x'(t+7) (19)

is not zero, but is rather a Gaussian random variable with covariance matrix o
o(t+1) = <gg' (1+17)> = <x(t+ x ' (1> - G(D<x(Nx"()>G"( 7). (20)

For constant S, of course, x is wide-sense stationary. One now has a test for the
validity of Eq. (13). A lag 7,is chosen and Green functions at other lags are
estimated using the following relation:

G(?) = [G(z,)]7™. (1)

(Eq. (21) is obtained by applying the Cayley-Hamilton theorem to the spectral
decomposition of G(7)). If Eq. (13) is valid, the prediction error variance does not
depend on 7,. Penland and Magorian (1993) and Penland and Sardeshmukh (19955,
PS95 hereafter) both found this “tau test” to be passed by LIM applied to tropical
IndoPacific sea surface temperature anomalies.

There are, unfortunately, linear systems for which the tau test is not valid. If B is
not a constant matrix, then the tau test will fail. The tau test will also fail if the
dimensionality of the observed state vector is too small to span the linear vector
space in which the dynamics reside (Penland and Ghil 1993). Sometimes, the lag
7, happens to lie close to the half-period of a normal mode’s eigenvalue, thereby
precluding the diagnosis of that mode’s imaginary part and causing an inaccurate
estimation of G(z,). Yet another source of Type 1 errors (rejecting the linear
approximation hypothesis when it is true) is observational error in the data from
which the model is estimated. Nevertheless, if the validity of the linear
approximation is the question, Type 1 errors of this genre are probably safer in
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diagnosing the dynamical behavior of a system than Type 2 errors (accepting the
linear approximation hypothesis when it is false) would be.
If SdW is a linear function of x as follows:

(SdW ), = ZS“)I/X; odw'" + ZS,(/?‘{W/J(Z) . (22)
] 7

with 8" a constant matrix, the above formalism follows similarly with some
exceptions. First of all, the matrix Green function G(7) becomes

G(7) = exp{[B + (S'")*2]17}. (23)

Secondly, it may not be possible to prove that the prediction X'(t+1) = G(1)x(¢) is the
most probable prediction (if the existence of a probability current around the
boundaries of the phase space cannot be shown to vanish), but x'(#+7) is stil! the best
prediction in the mean square sense. Next, Eq. (16) does not hold. Finally, the FDR
is modified to read

[B + (8")/2]<x(n)x"(0)> + <x(tx"(1)>[B + (S'")/2]" + ...
-+ 8<x(nx(1)>8T "+ 878 P= 0, (24)

The annoyance of these expressions is that it is generally possible to infer only the
combination [B + (S'")/2] from data, rather than B and S/" separately. However,
the tau test for the linear approximation is still valid. Thus, LIM can distinguish
linear dynamics from demonstrably nonlinear dynamics in data, but it cannot
distinguish an additive from a multiplicative noise process.

For simplicity of explanation, we now return to the case of constant S. The eigen-
ectors of B, and hence G(7), are generally not orthogonal to each other, in spite of
their being known as “normal” modes. When B is orthogonal and Q is diagonal, then
the normal modes are indeed orthogonal and equivalent to the Empirical Orthogonal
Functions (EOFs). However, this is a highly specialized case. Whenever the normal
modes are orthogonal, the amplitude of a prediction x(r+7) is always smaller than
that of the initial condition. When they are not orthogonal, the non-normality some-
imes causes temporary amplitude growth (Farrell 1988; Penland and Sardeshmukh
1995b). The condition for this temporary growth is that the initial condition project
strongly onto a right singular vector of the operator G(), i.e., an eigenvector of
G'G(2), and that this singular vector correspond to an eigenvalue greater than one. In
fact, the eigenvalue is the ratio of the predicted amplitude at lead time 7 to the initial
condition amplitude and is called the “growth factor at lead time 7.

3 Experiments Using the Chaotic Lorenz System

In this section we shall consider the deterministic equations of Lorenz (1963):

dx
Lot (250)
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d.y
2 —xz— 25h
0 X—xz—y (25b)
dz
= —xy-b 25
7 xy—bz (25¢)

where the choice of parameters a = 10, b = 8/3 and r = 28 give the familiar chaotic
behavior. Equations (25) are integrated using a simple Euler scheme with a model
timestep A = 0.001, and sampled every 20 timesteps, so that the sampling interval A
is 0.02. The first 1000 samples were discarded to ensure that the time series used in
the experiments are representative of the attractor. The time series x(#), y(f) and z(r)
are shown in Fig. 27.1; the usual projections of the attractor are shown in Fig. 27.2.
A time series of 500 000 samples (10 000 model time units) was generated; hereafter
we call it the L63 time series.

Time (model units)

Fig. 27.1.Time series of the chaotic Lorenz (1963) system used in this study. Solid line: x.
Dashed line: y. Dotted line: z.

3.1 A linear model of the chaotic Lorenz system

This does not work. It is not expected to work. The reason we tried it is to give
credibility to results for systems where the linear approximation does work, at least,
in comparison.
Let us linearize Equations (25) around I, = (xo, yo, Zg) = (0, 0, <z>) so that the
equation for the vector I = (x, y, {), where = z-z,, can be written
dl

—=LI+ 26
7 n (26a)
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Fig. 27.2. Maps of the chaotic Lorenz attractor generated for this study. a) yus.x. b)zvs xo¢)
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r-z, -l OJ (260)
0 0 -b
0
-XG J . (26¢)
xy— bz,

To see whether Eq. (26) can be estimated as a stochastic linear process on the
sampling time scale, we centered the L63 time series and subjected it to LIM, using

values of 7, = 0.02, 0.04, 0.06, 0.08,

0.10, 0.12, 0.14, and 0.16. Traces of the
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resulting estimates B' of B are shown in Fig. 27.3. Clearly, B' does not pass the tau
test. In fact, trace(B') behaves exactly as expected for a nonlinear system subjected
to LIM with small values of 7y, as shown below.

Consider a sample matrix

G'(7p) = <x(t+r" (t)><x(t)x"(1)>" (27)

that is not well approximated by a matrix exponential. We do assume that it is
smooth enough to be Taylor expanded in an absolutely convergent series for small
values of 7,

G'(r)=1+A'7,+ A"/ + ...
=1+ A'ry+ (A'1)72 + (A"-A2)zf + ...
= exp(A') + O(77)
~ exp([A'+azy) 7). (28)

In Eq.(28), the symbol O( 77 indicates all terms of at least second order in 7, and
the matrix a is the difference between the second term in the Taylor expansion of
G'(17,) and that of a matrix exponential. Thus, we identify the slope (-140.3/model
unit?) of the curve at small values of 7, in Fig. 27.3 as trace(a).

10 L 4

trace(B')

40 | -

0 005 01 015 02

0
Fig. 27.3. Trace(B") vs. 7, for LIM applied to L63.
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It was shown in Penland and Ghil (1993) that a similar dependence on 7, obtains
when the system is linear but the observations do not sufficiently span the dynamical
space. This is an indication of the well-known mathematical equivalence between
nonlinear models and linear models of larger dimensionality. If the system in fact
obeys dynamics with negligible nonlinearity and the observations do not span the
dynamical space, one must obviously generate the unobserved directions with a
nonlinear model in order to fit the data. Conversely, one can usually fit a nonlinear
model with a linear model of sufficiently high dimensionality by redefining temporal
derivatives. In that case, the number of dimensions needed to fit the data can provide
valuable information on the character of the nonlinearity in physical space. As
humans, we are anxious to ask, “But what is it really?” Heartless Nature responds
that it depends on how we choose (or are able) to look at it.

Returning to the Lorenz system, it may be hoped that linear predictions may be
useful even though we know from Fig. 27.3 that the system is nonlinear in the
observed space. Fig. 27.4 obliterates this hope. The observed error variance (solid
lines), normalized to the total variance of the 3-dimensional time series, show
deviations from the expected error variance (trace(o(7), see Eq. 20)) for all values of
7y Further, the curves are strongly dependent upon the value of z,, with 7y = 0.02
(open circles) estimating much smaller prediction error variance than 7 = 0.16
(heavy solid line) but delivering much larger errors. Although Fig. 27.4 reaches the
same conclusion as PS95 (their Fig. 19), the figures themselves look somewhat
different, even though both studies considered the same Lorenz system, using the

Normalized error variance (L63)

Lead (model units)

Fig. 27.4. Variance of linear prediction error, normalized to the total variance of the Lorenz
system. Dashed lines: Theoretically expected error variance predicted by LIM. Solid lines:
True error variance. Plain heavy solid line: 7, = 0.16 model units. Heavy solid line with open
circles: 7, = 0.02. Light solid lines correspond to the other values of .
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same values of 7,, and for the same lead times. The resolution of this apparent
paradox is that PS95, in an attempt to mirror the treatment of their sea surface
temperature data set as closely as possible, used a verification time series much
shorter than the one we used here. It is therefore possible that their verification time
series sampled only one lobe of the attractor. If the linear approximation hypothesis
were correct, of course, there would no difference. It is also noted that the PS95
study carefully distinguished between training period and verification period. Here,
we have used the entire length of the time series for both training and verification
since we are more interested in whether the curves vary with z, rather than the actual
size of the error variance.

Note that the observed error variance can be larger than the saturation value of
unity, particularly for small values of 7, The normalized error variance of the
persistence forecasts (not shown) is also larger than the saturation value; its peak
value of two occurs at a lead of about 0.4 units.

Finally, one may ask if a coarse-grained version of L63 may be treated as a linear
stochastic process. Starting with the sampling interval, we smoothed the L63 time
series on progressively longer time scales and were unable to find any coarse-
graining that gave a useful linear description of the system. The oscillations of the
163 are rapid enough that Nyquist problems occurred before the linear regime could
be reached. That is, oscillations were too rapid to be resolved at the smallest 7,
allowed by the coarse-graining, resulting in the imaginary part of an eigenvalue of
B'r, equal to nm, where n is a nonzero integer. We conclude that any possible
three-dimensional linear regime of 163 would be at a scaling coarse enough that
oscillations around the center of a lobe are unresolved.

3.2 A linear process coupled to the chaotic Lorenz system
A situation is now considered where the Lorenz system is considered as external

forcing for a linear system. That is, we wish to investigate whether a modest coarse-
graining allows the L63 to be treated as a stochastic component. Redefining x, y, and z,

—=ax+l,
t
%:ﬂy+l},. 29
& _ z+1
a T

In Eq.(29), [ is defined as in Eq.(26); that is, we use the centered Lorenz system to
force the components u = (x, y, z). The values of (&, £, ) are (-0.02, -0.033, -0.05).
Eq. (29) is integrated using a time step of 0.02 model units, i.e., the sampling of the
Lorenz system shown in Fig. 27.1. The result is coarse-grained on intervals of two
model units, so that each recorded component of u is an average over 100 samples.

e




Stochastic Linear Models of Nonlinear Geosystems 499

Because the model has been coarse-grained over two model units, we shall call this
case Model 2. Note that we rewrite Eq. (29) as
ﬁ =Bu+l1, (30)
dt
where, we repeat, u and / have been coarse grained over 100 time steps, and the
matrix B is diagonal with trace(B) = -0.103.

LIM was applied to the coarse grained time series and samples B'(z,) estimated
for 7, =2,4, 6,8, 10, 12, 14 and 16 model units. For values of 7, larger than 16,
Nyquist problems occurred. The trace(B') is shown in Fig. 27.5 (solid circles), along
with the trace (-0.103) expected if the L63 system truly acted as stationary white
noise forcing on those timescales. Clearly, B' does not perfectly pass the tau test,
particularly for values of z, smaller than 6. Nevertheless, even for 7, < 6, the slope
(0.013/model unit®) is four orders of magnitude smaller than that of the linearized
regime of L63. This is less impressive than it sounds, but not much. One should
actually compare that slope with the trace of the average trace(B'). For L63, that
ratio is about -20; for the system Eq. (29), coarse grained at 2 model units, the ratio
is closer to 0.1.

We also coarse-grained u over 200 time steps, equivalent to 4 model units.
Hereafter, this case will be known as Model 4. We can see from Fig. 27.1 that 4 model
units do not allow sufficient time for many passages between lobes. Nevertheless, the
doubling of the averaging time does seem to improve the linear approximation in that
the slope of trace(B') with time is greatly reduced, and the values are closer to the
expected value of -0.103.

From Table 27.1, we see that the reproduction of B by the estimates B' is imperfect,
but does at least suggest that B is dominated by its diagonal elements. The high
correlation of /. and /, (0.85) causes LIM to confuse the linear behavior of x and v

Trace(B')
&
N

-0.3

ha 5 10 15 20

tau0
Fig. 27.5. Trace(B") for Eq. (28). Light solid line: Model 2. Heavy solid line: Model 4. Dotted
line: Trace(B")= - 0.103/model unit.
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somewhat. Nevertheless, the amount of damping introduced by B is approximately
the right size, with the coarse graining, performed after the model integration,
introducing a bit of extra damping to z.

Table 27.1

Empirical estimates of the linear operator in Eq. (28)

Model 2:
(-0.023+0.016 0.006+0.026  0.008+0.010)
B'..= L—0.001 +0.015 -0.031+0.023 0.007+0.011
0.002 +0.0004 —0.002 £0.0006 —0.097 £0.033
Model 2(t, 26):
(-0.014+£0.002 —0.008 +£0.004  0.001+0.004 3
~0.044 +0.003  0.0002 + 0.004

B' .= L 0.008 +0.002
0.001+0.0002 —0.002 +0.0002 -0.078 £ 0.007

Model 4:

(-0.026 £0.014 0.012+0.022  0.014+0.012 3
B',.= L—o.oo4 +0.013 —-0.024+0.021 0.013+0.012
0.001+ 0.0002 —0.002 +0.0003 —0.069+0.010

T~ - W - T T W T W

Integrated Model:
(=0.020  0.000  0.000 )

B = L0.000 -0.033 0.000
0.000  0.000 —0.050

The numerical values for B' and Q' as estimated by the following: 1) Model 2,
averaged over values of 7, =2, 4, 6, 8, 10, 12, 14 and16 model units; 2) again Model
2, but averaging over only 7, = 8, 10, 12, 14 and16 model units; i.e., the linear
regime as indicated by the flattening of trace(B") shown in Fig. 27.5; and 3) Model 4,
averaged over values of 7, =4, 8, 12 and 16 model units. Table | gives the averaged
values of B';; Table 27.2 gives the averaged values of Q'; along with the contem-
poraneous covariance matrix and correlation matrix of L63. The uncertainty
estimates are not those associated with the length of the time series, but are rather
indicative of the variation with z,.
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Table 27.2
Empirical estimates of the forcing covariance matrix

Model 2:
(53.14+739 5345+735 0.12+ 0.38)

Q' .= |5345+735 5386+727 0.13+0.04
0.12+0.38 0.13£0.04 121+042

Model 2 (T() 26)

(57.07+0.86 57.37+0.90 0.12+0.05)
Q',.=|5737+090 57.74+0.92 0.1410.05J
0.12+0.05 0.14+0.05 - 0.97+0.09

Model 4:

{47 88+ 6.88 48.22+6.95 0.02+0.03)
Q',.=|4822+695 4856+699 0.03+0.03
0.02+0.03 0.03+0.03 0.73+0.10

Covariance matrix of L63:

(9549 9532 —0.26)
<> = 19532 131.07 —0.33J
-0.26 -033 107.14

Correlation matrix of L63:

[ 1.00 0.852 —0.003)
C.: = Lo.ssz 1.00 —0.003J
-0.003 -0.003 1.00

The effect of the coarse graining is particularly noticeable in Table 27.2. Although
the estimates Q' are not directly related to <//'> (they have different units, for one
thing, since the white noise approximation to L63 would be a complicated time
integral over its lagged covariance structure), a surprising amount of information
about L63 is obtained in this way. The high correlation between /. and /. is
reproduced, and each is shown to be only weakly correlated with /.. That the value of
Q" is severely reduced by the coarse graining is clear from Fig. 27.1; the variation in the
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coarse-grained /, and /, comes primarily from jumping between the lobes of the
attractor while most of the /, variation is simply averaged out.
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Fig. 27.6. Error variance curves, normalized to the field variance. Dashed and solid lines as in
Fig. 27.4. Filled circles: smallest value of 7, Heavy line with no symbols: largest value of 7,
a) Model 2. b) Model 4.

In terms of linear predictability, we see from Fig. 27.6 that the linear models of
both coarse-grained systems pass the tau test reasonably well, though imperfectly.
One notes in each case that the smallest value of 7, (filled circles) promises the best, ,
and delivers the worst, prediction skill. Nevertheless, the spread of prediction error
with 7, compared with that in Fig. 27.4 is very small, providing quantitative evidence
for the validity of linearly approximating these coarse-grained systems.

-
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Fig. 27.7. Fast Fourier Transform spectra for /, (light solid line), I, (dotted line) and /. (heavy
solid line) components of the chaotic Lorenz system. a) Original system. b) Model 2. ¢) Model 4.
At low frequencies, the spectra for /. and /, cannot be distinguished.

As a final diagnosis of the validity of treating the coarse-grained Lorenz model as
white noise in Eq. (30), we present spectra of /,, l, and L. in Fig. 27.7 corresponding
to the original Lorenz system sampled at 0.02 model units (Fig. 27.7a), Model 2
(Fig. 27.7b) and Model 4 (Fig. 27.7¢). In Fig. 27.7a, we have denoted the frequencies
resolved by Models 2 and 4 for comparison with spectra in Figs. 27.7b and 27.7c. It
is clear that the coarse-graining does more than change the resolution; it also affects
both the magnitude and the shape of the spectra. While it is no surprise that the sharp
peaks in the spectrum of /. are eliminated, one might remark that the amplitude of the
broadband part of that spectrum is also reduced by orders of magnitude. The same is
true of /. and /.. This property underscores the importance of 1/¢ in the scaled Eq. (4);
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if the rapidly varying contribution to the underlying dynamical system is not large
enough, coarse-graining will simply average out its effects. Further, for the white
noise approximation to be valid in the coarse-grained system, the high-frequency
band of the original spectrum must have a broad enough nature that at least some of
that variance can be aliased into the low frequencies by the coarse graining, thus
flattening out the spectrum. This is the case for /, and /,, whose spectra in the coarse-
grained system are virtually identical. However, the component /. of the original
system has much of its variance in nearly sinusoidal behavior that the coarse-
graining simply averages out.

4 Experiments Using Tropical Sea Surface Temperatures

In our examples using linear stochastic approximations so far, we have greatly
profited from the blessings of knowing in advance the architecture of the underlying
dynamical system. When we applied LIM to coarse-grained models, we had a “truth”
with which to compare our answers. When we considered the spectra of the coarse-
grained forcing, we had a time series of that forcing to analyze. This is not the case
when the dynamics of natural phenomena are diagnosed from observed time series,
which is why so many researchers like to start with a model “having many features
of the observed system” and assume that it describes reality.

One purpose of this manuscript is to present one method for quantifying the
“many features” statement. The accuracy with which observations can be described
by a linear system, even when the underlying dynamics are chaotic, is a physical
characteristic of the phenomenon. Comparison between LIM applied to data and
LIM applied to a model can therefore aid in judging the fidelity of the model to
reality. We believe this procedure could be a valuable tool in evaluating the
enormous number of models claiming to represent the dynamics of tropical sea
surface temperatures related to “El Nifio,” described below.

Originally known as a phenomenon occurring off the western coast of tropical
South America, the term “El Nifio” now generally indicates an episodic warming of
sea surface temperatures (SSTs) over most of the tropical Pacific. With the
availability of longer and better data sets, it is gradually becoming obvious that the
“El Nifio signal” is a global phenomenon, with clear signatures in data such as south
tropical Atlantic SSTs (Mo and Hikkinen 2001; Penland and Matrosova 2006).
Multiscale interactions are crucial to the evolution of El Nifio in every theory
proposed to explain it.

Unfortunately for diagnostics, salient features of El Nifio can be found in models
based on every possible genre of attractor, whether they be strange attractors (e.g.,
Jin et al. 1994; Tziperman et al. 1994), limit cycles or quasi-limit cycles (e.g.,
Battisti and Hirst 1989; Jin and Neelin 1993a,b; Neelin and Jin 1993; Blanke et al.
1997; Sun et al. 2004; Sun 2007) or fixed points (e.g., Penland and Magorian 1993;
PS95; Moore and Kleeman 1996; Kleeman and Moore 1997; Thompson and Battisti
2000, 2001). Simple conceptual models of El Nifio are therefore unable to give
dynamical clarification of what the El Nifio attractor looks like.
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Linear theories of El Nifio invoke the nonnormality of the deterministic linear
operator (e.g.. Farrell 1988; PS95) to explain the growth of SST anomalies during
the development of an EI Nifio or, in its opposite phase, La Nifia event.

As we have seen, there may be a timescale on which the paradigm of a chaotic
attractor and that of a fixed point are mutually consistent. This statement should be
taken in the spirit of the statement that the classical dynamics, the ideal gas law for
example, is consistent with quantum mechanics. There is much evidence that on
seasonal timescales El Nifio dynamics reside in the linear regime and that the chaotic
nonlinear dynamical component may be treated as stochastic forcing, with variance
depending on the annual cycle. For modeling evidence, we refer the reader to works
by R. Kleeman, and A. Moore, and the later (post-2000) modeling studies of
D. Battisti. Some of the observational evidence is summarized here.

As stated in Section 2, linear theories of El Nifio invoke the nonnormality of the
deterministic linear -operator to explain the growth of SST anomalies during the
development of an El Nifio or, in its opposite phase, La Nifia event. One dominant
optimal initial structure for growth is found when LIM is applied to tropical SSTs,
and this structure evolves into a mature El Nifio event about 6-9 months after its
appearance (Fig. 27.8). The optimal structure does not significantly change with
values of 7, (Penland 1996). PS95 and Penland (1996) confined their studies 1o the
tropical Indo-Pacific, but inclusion of the entire tropical belt (Penland and Matrosova
1998, 2006) only makes their conclusions more robust. In fact, using the constituent
normal modes to isolate the El Nifio signal (Penland and Matrosova 2006)
underscored the global nature of El Nifio by revealing that its signal in the north
tropical Atlantic ocean is very similar to the El Nifio signal in the central Indian
ocean (contemporaneous correlation +0.8), and that a strong precursor to SST

80w 120K 60w

Fig. 27.8. Optimal structure of tropical SSTA and b) its evolution in eight months. The
contour interval in the domain 60W-120E is 0.015. The contour interval in the domain 120E-
60W is 0.03. Areas enclosed by the first positive contour are shaded. Dotted lines represent
negative contours.
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anomalies in the traditional Nifio 3.4 region (6°N-6°S, 170°W-120°W) is found in the
tropical south Atlantic ocean (lagged correlation, S. Atlantic leading, -0.6). This
precursor occurs because the projection onto the optimal structure is so strong in the
south tropical Atlantic, so using SSTs in that region to predict El Nifio is no better
than using the projection of the optimal structure as a whole. These global
teleconnections indicate that any credible theory of El Nifio cannot be based on a
single time series such as the Nifio 3.4 SST anomaly or the Southern Osciliation
Index alone; such a theory must also be able to predict the global El Nifio signal.

3.1 The data set

We consider COADS monthly SST data (Woodruff et al. 1993) in the entire tropical
strip between 30°N and 30°S. The data were consolidated onto a 4°x10° grid and
subjected to a three-month running mean. The 1950-2000 climatology was then
removed from the SST data and the anomalies were projected onto 20 Empirical
Orthogonal Functions (EOFs: Hotelling 1933) containing about two-thirds of the
variance. Obviously, massaging the data as just described is tantamount to filtering
the data. However, for the purposes of isolating the El Nifio signal in this study, we
shall refer to this data set as the “unfiltered data.”

LIM was applied to the unfiltered data using 7, = 4 months. The usual optimal
structure was found to project onto three complex normal mode pairs associated with
periods of about 2 years, 5 years, and 20 years. The dominance of these three modal
pairs in the nonnormally evolving El Nifio signal was found to be robust for those
values of 7, uncompromised by Nyquist problems. The global El Nifio signal was
extracted from the multivariate data set by projecting the data onto the adjoint
patterns of the three modal pairs. As shown by Penland and Sardeshmukh (1995aq),
the uncertainty in these timescales is large. However, Penland and Matrosova (2006)
showed that the data filtered in this way accounted for the relevant Fourier spectral
frequencies, as well as most of the low-frequency variability of the data set. The red
noise background remained in the residual data.

To show that isolating the El Nifio signal this way is consistent with the
traditional Nifio 3.4 SST anomaly index, we show both the filtered and unfiltered
versions of that index in Fig. 27.9. The two indices are highly correlated (correlation
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Fig. 27.9. Time scries-of Nifio 3.4 SST anomaly. Solid line: unfiltered data. Dashed line: El
Nifio pass data.

+0.92), and mostly indistinguishable from each other. If one accepts the National
Oceanic and Atmospheric Administration’s designation of the unfiltered Nifio 3.4
SST anomaly index as the official El Nifio indicator, this check verifies that the
filter, which is a pattern-based method, captures most of the El Nifio variability.
Although the modal and adjoint patterns were derived using an assumption of linear
dynamics, there is no reason to believe that a map-by-map projection onto these
time-independent patterns would eliminate any important nonlinear effects in the
temporal evolution of El Nifio, particularly since there are no large differences
between the filtered and unfiltered versions of this index. We now proceed with the
six-dimensional El Nifio-pass filtered data set.

3.2 Results for SSTs

Our first order of business in treating the filtered data is to project them onto their
EOFs, of which there are six. A detailed description of these EOFs and their time-
dependent coefficients is found in Penland and Matrosova (2006). LIM was applied
to this system and estimates B' of the linear operator were obtained using values of
t =3,4,5,6,7,8,9 and 10 months. Nyquist problems appeared for larger values
of 7, Interestingly, Nyquist problems did not appear for 7, near 6 months, in
agreement with Penland’s (1996) suggestion that the well-known dependence of El
Nifio on the annual cycle is mainly due to the yearly varying variance of the fast
processes acting as stochastic forcing. As long as statistics are accumulated over an
integral number of years, a periodically varying S in Eq. (14) can easily be handled
by LIM; the only modification occurs in interpreting the matices <x(Nx' (1> and Q
in Eq. (17) as annual averages.

A plot of trace(B') vs. 7, is shown in Fig. 27.10. The dependence on 7, is linear
for values of 7, less than about 6 months, after which the curve flattens out. The
slope before the break is about 0.04 (months)™. Interestingly, this result implies a
role for nonlinearities somewhat slower than that found by PS95 (their Fig. 12).
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Fig. 27.10. Trace(B") vs. 7, for tropical SST anomalies.

Of course, their 15-dimensional system contained dynamical process other than El
Nifio, and their graph was contaminated with Nyquist effects. However, the two
studies agree in that the linear approximation is fairly good, particularly at timescales
larger than 6 months.

A similar story is told by the error variance of the linear predictions (Fig. 27.11).
Unlike the linear system forced by L63, the worst predictions are not at the smallest
value of 7, but rather at the largest (10 months). This may occur because of
nonlinearities, or it may be due to proximity to the half period of the quasibienniel
oscillation. In any case, it is encouraging to see that the error variance for 7, =4
months is not significantly larger than that for 7, = 6 months, in spite of Fig. 27.10,
since forecasts currently provided to the general public from the website
http://www.cdc.noaa.gov were developed with 7, =4 months.

Nevertherless, the variation with 7, in Fig. 27.11 is not as tight as that found by
PS95. It appears that application of the nonnormal filter, by eliminating much of the
red noise background associated with other linear processes in tropical SST, may
actually magnify the presence of nonlinearity in the El Nifio signal. This does not
mean that nonlinear dynamics dominate its evolution on the seasonal scale. On the
contrary, comparing the results of LIM applied to SST with those of the L63 results
verifies the usefulness of the linear approximation for tropical SST anomaly
dynamics.

The estimates B' for the 6-dimensional system spanned by the leading EOFs of
the El Nifio-pass SST data are provided in Table 27.3. Estimates Q' are provided in
Table 27.4. It is encouraging that Q' is positive definite, a situation not at all obvious
with the linear system driven by the Lorenz model.
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Fig. 27.11. Error variance normalized to SST anomaly field variance. Conventions as in Fig. 27.6.
Table 27.3
Empirical estimates of the linear operator from tropical SST

All values of t,:

B =
(=0.03+0.001  0.05+0.002 —0.02+0.001 0.021+0.003 0.02+0.001 -0.03+0.001)
~0.11£0.001 -0.05+0.01  0.03+0.004 -0.03+0.002 0.01+0.005 —0.01+0.002
0.11+0.002  0.07£0.004 -0.09+0.01  —-0.13+0.01 —0.08+0.003 0.02+0.005
-0.21+£0.005 0.04+0.01 0.17£0.004 -0.15+0.02 0.13+0.009 -0.06 + 0.002
~0.13+0.004 —0.04+0.007 0.05+0.001 -020+001 —-0.15+0.005 -0.09+ 0.005
0.18+£0.006 0.045+0.002 -0.05+0.001 0.06+0.01 0.08+0.002 -0.08+0.01
Values of 1y > 6 months:
B' =
{ -0.03 +0.001 0.05+£0.001 —0.02+0.01 0.03+0.01 0.01£0.002 -0.03+0.003)
—-0.11£0.002 -0.04+0.004 0.03+0.002 -0.03+0.004 0.01+0.002 -001+ 0.003
0.078+0.05 -0.07+001 -0.06+0.03 -0.16+0.03 -0.08+0.01 0.01+0.01
-0.27+0.03 0.04 £0.02 0.17+0.01 -0.16+0.05 0.10+0.03 -0.06 + 0.001
~0.18+0.09 -0.03+0.003 0.07+0.04 -026+0.08 -0.14+0.01 -0.11+0.02
0.18+0.006 0.19+0.01 0.04 £ 0.01 -0.05+0.01 0.06 +0.01 -0.07+0.01
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Table 27.4
Empirical estimates of the stochastic forcing from tropical SST

All values of tg:

Q=

{ 1.52+050 -028+0.31 -0.19+0.21 0.15+0.81 0.09+£0.27 0.1440.17
-0.28 + 0.31 1.07+0.15 022+0.08 -0.04+027 -0.01+0.14 -0.13+0.21
-0.19+£0.21 0.22 £ 0.08 1.13+0.42 0.11+£0.26 0.34 £ 0.08 0.02+£0.03
0.15+0.81 -0.04£0.27 0.11+0.26 1.52+0.29 0.19%0.21 0.10+£0.10

0.09+027 -001+£0.14 034+0.08 0.19+0.21 1.43+0.07 0.08 +£0.22
0.14+0.17 -0.13£0.21 "~ 0.02+0.03 0.10+0.10  0.08+0.22 0.52+0.20

Values of 1y > 6 months:
Q=

( 155+050 -0.16+0.04 0.05+0.54 0.44£0.08 0474045 0.19+0.13)
~0.16 +0.04 090+0.08 0.19+0.13 0.11£0.16 0.04+0.04 —0.03£0.01
0.05+0.55 0.19+0.06 0.83+043 024+023 0.24+0.23 0.11£0.12
0.43+0.08 0.11£0.16 0.24+0.23 1.79£0.61  0.68+0.52 0.10£0.04
0.47+045 0.04+0.04 0241023 0.68+0.52 1.40+0.08 0.28+0.13
0.19+0.13  -0.03+0.01 0.11+0.12 0.10£0.04 0.2810.13 0.53+0.06

4 Conclusions

It is true, generally speaking, that the universe is governed by nonlinear dynamics. It
is also true, generally speaking, that the universe is governed by quantum mechanics.
In fact, given the ubiquity of electromagnetic radiation, vacuum fluctuations, and
interstellar media comprising atomic and subatomic particles, not to mention the
relatively small amount of space taken up by bright matter, there is a case to be made
that the subset of dynamical systems for which the classical approximation obtains is
a very small set indeed. Nevertheless, for us who are confined to a terrestrial
environment, that small set is extremely important. Further, there is a grey area,
particularly in molecular dynamics, where hybrid models, basically using classical
dynamics but incorporating quantum mechanical effects with relevant
approximations, have proved themselves as valuable research tools. The relationship
between classical and quantum mechanics as an allegory for that between linear and
nonlinear dynamics is not exact, but it is useful to remind us that there is a very large
grey area where the dynamical system may be treated as basically linear, although
nonlinearities may not be ignored.

The importance of weather and climate predictions to the well-being of terrestrial
inhabitants demands that meteorologists and climatologists provide timely forecasts
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of the highest possible quality. Linearly based forecasts may be timely and easy 1o
make, but no credible scientist would advocate using them for these reasons alone.
However, they are easy to make and verify, and are sometimes even the best
forecasts available. For example, LIM forecasts of river flows in Colombia, a system
this author would never have the courage to consider linear, have shown themselves
to be a skillful component of estimating electricity needs in that nation (German
Poveda 2002, personal communication). It therefore behooves us to examine
quantitatively the extent to which the linear approximation is valid. Recall that this
approximation does not ignore nonlinearities; rather, it is valid when they vary
rapidly enough to be treated as a stochastic component, possibly modulated by a
linear term.

We have reviewed a procedure for finding the optimal linear model of a
multivariate process, along with quantitative criteria for assessing its validity (the tau
test). We have also briefly reviewed some of the limit theorems (e.g., Khasminsii
1966; Papanicolaou and Kohler 1974) that are relevant to the part of the
approximation that treats the rapidly varying system as a stochastic term. There are
later articles extending the limit theorems, notably by Kifer (2001). Further, the
decomposition of a chaotic attractor into Markov partitions, and the resulting
probabilistic description of those systems, 1s discussed by Dorfman (1999) and
references therein. Our approach here is not theoretical rigor as much as it is to give
a flavor of when the linear approximation may be useful. This is done in the context
of three systems: the low-order chaotic Lorenz model (L63), a coarse-grained linear
system for which L63 was treated as external forcing, and observed seasonal sea
surface temperature anomalies.

It is not surprising that a linear approximation of L63 yields poor predictions of
that system, or that tests for validity of the linear approximation fail spectacularly. In
fact, this failure may be compared with the failure of LIM applied to another low
dimensional system by Tsonis et al. (2006). The usefulness of these exercises lies in
their providing benchmarks for how highly nonlinear, low-order chaotic systems
perform on such tests.

Our second experimental set-up consisted of a linear system with decay times
long compared with the timescales of L63 (Fig. 27.1), which maintained the linear
system by acting as an external forcing. Although the linear decay times were long,
the coarse-graining and sampling interval of 2 model units (Model 2) was purposely
chosen to resolve some of L63’s strong nonlinearity in order to strain the linear
approximation. We compared Model 2 with a model coarse-grained and sampled at 4
model units (Model 4). Again, our expectations were confirmed when Model 4
passed the tau test better than Model 2 did. On the other hand, Model 2 gave us more
information about the system: it told us the validity of the linear system was
probably best for coarse-grainings greater than 6 model units, it told us the relative
size, compared to linear dynamics, of the nonlinearities for coarse-grainings between
2 and 6 model units, and it gave just as good insight as Model 4 into the relative
variance and correlation of the three 163 components.

It is encouraging that many characteristics of L63 could be inferred from a linear
fluctuation-dissipation relation (for the purists: “of the second kind”, Cugliandolo,
Dean and Kurchan 1997) derived from Models 2 and 4. That it is able to diagnose
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high correlations, such as that between /, and 1,, suggests that a similar analysis of
numerical model errors might reveal unsuspected relations between different sources
of error.

Analysis of tropical sea surface temperatures basically confirmed the results of
P§95, who found a linear approximation of their dynamics to be good and useful,
though imperfect. A dynamically based filter (Penland and Matrosova 2006) used to
isolate the El Nifio signal seemed to unmask a small nonlinear component to this
signal, even though the filter itself was based on an assumption of linear dynamics.
Of course, Fourier filtering is useful even when it falsely assumes that the system is
perfectly periodic with a period equal to the length of the time series; similarly, the
assumption of linear dynamics in the development of the nonnormal filter is used to
estimate spatial patterns and cannot force these patterns to be associated with a linear
signal if they are not so in the unfiltered data.

Our results, as well as all of our previously published results (e.g., PS95, Penland
and Magorian 1993), are also consistent with Kondrashov, Kravtsov, Robertson and
Ghil (2005), who show that accounting for quadratic nonlinearities has an advantage
in predicting extreme warm events as manifested by Nifio 3 (5°S-5°N, 150°-90°W)
SST anomalies, but otherwise is mostly indistinguishable from the linear model.
Prediction of extremes is an important issue, and faster-than-seasonally varying
nonlinearities (Kondrashov et al. 2005 used monthly rather than seasonal data)
undoubtedly play an important role in maintaining extreme warm events. However,
neither our studies nor theirs show any indication that nonlinear dynamics dominate
the evolution of tropical SST anomalies except during the development of these
warm extremes.

The importance of nonlinearities as a source of stochastic forcing must not be
understimated. It has been stated by several of my colleagues that the term “noise” is
unfortunate in that it implies processes to be filtered out if possible. In fact, these
processes are crucial to the maintenance of those systems for which the linear
approximation is valid, and the linear fluctuation-dissipation relation should be used
as a guide for further study rather than an end in itself. After all, the linear
approximation itself is best used as a diagnostic tool to investigate the strength of
nonlinearities, thereby narrowing the possible physical mechanisms responsible for
important weather and climate phenomena.

The time is ripe for research into the Central Limit Theorem properties of specific
nonlinear processes. Are there timescales on which synchronized chaotic systems
(e.g., Duane and Tribbia 2001; 2007) act as stochastic forcing and, if so, what are
those timescales? We have already stated that LIM applied to dynamical models
should reproduce the results of LIM applied to data. Conversely, it is time to apply
nonlinear data analysis (e.g., Tsonis and Elsner 1996; Tsonis et al. 2006; Tsonis
2007) to realistic linear stochastic models and compare those results with those
obtained from applying the analysis to data. If they are different, is there a timescale
on which the results converge? Whether or not there is such a timescale, a careful
analysis of the differences is likely to yield valuable information about the nature of
the physical system.

- e e = -
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