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ABSTRACT

The South American monsoon system (SAMS) is the most important climatic feature in South America and

is characterized by pronounced seasonality in precipitation during the austral summer. This study compares

several statistical properties of daily gridded precipitation from different data (1998–2008): 1) Physical Sci-

ences Division (PSD), Earth System Research Laboratory [1.08 and 2.58 latitude (lat)/longitude (lon)]; 2)

Global Precipitation Climatology Project (GPCP; 18 lat/lon); 3) Climate Prediction Center (CPC) unified

gauge (CPC-uni) (0.58 lat/lon); 4) NCEP Climate Forecast System Reanalysis (CFSR) (0.58 lat/lon); 5) NASA

Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis (0.58 lat/0.38 lon);

and 6) Tropical Rainfall Measuring Mission (TRMM) 3B42 V6 data (0.258 lat/lon). The same statistical

analyses are applied to data in 1) a common 2.58 lat/lon grid and 2) in the original resolutions of the datasets.

All datasets consistently represent the large-scale patterns of the SAMS. The onset, demise, and duration of

SAMS are consistent among PSD, GPCP, CPC-uni, and TRMM datasets, whereas CFSR and MERRA seem

to have problems in capturing the correct timing of SAMS. Spectral analyses show that intraseasonal variance

is somewhat similar in the six datasets. Moreover, differences in spatial patterns of mean precipitation are

small among PSD, GPCP, CPC-uni, and TRMM data, while some discrepancies are found in CFSR and

MERRA relative to the other datasets. Fitting of gamma frequency distributions to daily precipitation shows

differences in the parameters that characterize the shape, scale, and tails of the frequency distributions. This

suggests that significant uncertainties exist in the characterization of extreme precipitation, an issue that is

highly important in the context of climate variability and change in South America.

1. Introduction

The monsoon [hereafter the South American mon-

soon system (SAMS)] is the most important climatic

feature in South America (Zhou and Lau 1998; Vera

et al. 2006; Marengo et al. 2012). The main feature of the

SAMS is the enhanced convective activity and heavy

precipitation in tropical South America, which typically

starts in October–November, is fully developed during

December–February, and retreats in late April or early

May (Kousky 1988; Horel et al. 1989; Marengo et al.

2001; Grimm et al. 2005; Gan et al. 2006; Liebmann et al.

2007; Silva and Carvalho 2007). Associated with intense
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latent heat release in the region of heavy precipitation,

the large-scale atmospheric circulation is characterized

by the upper-level ‘‘Bolivian high’’ and ‘‘Nordeste’’ trough,

the ‘‘Chaco’’ surface low pressure, low-level jet east of the

Andes (Silva Dias et al. 1983; Gandu and Silva Dias 1998;

Lenters and Cook 1999; Marengo et al. 2002), and the

South Atlantic convergence zone (SACZ) (Kodama 1992,

1993; Carvalho et al. 2004).

Several studies have shown that the SAMS varies on

broad ranges of time scales including diurnal, synoptic,

intraseasonal, seasonal, interannual, and decadal (Hartmann

and Recker 1986; Robertson and Mechoso 1998;

Liebmann et al. 1999; Robertson and Mechoso 2000;

Liebmann et al. 2001; Carvalho et al. 2002b; Jones and

Carvalho 2002; Grimm 2003; Carvalho et al. 2004; Grimm

2004; Liebmann et al. 2004; Marengo 2004; Grimm and

Zilli 2009; Marengo 2009; Carvalho et al. 2011a,b). In

addition, precipitation is not uniformly distributed over

tropical South America. Complex terrain such as the

Andes and the coastal mountain ranges in eastern South

America and variations in land use and cover are among

the most important causes of spatial variability of pre-

cipitation in the SAMS domain (Berbery and Collini 2000;

Carvalho et al. 2002a; Durieux et al. 2003; Bookhagen and

Strecker 2008).

Although the variability of precipitation in the SAMS

has been extensively investigated over the years, one of

the main challenges has been the availability of datasets

with suitable spatial and temporal resolutions able to

resolve the large range of meteorological systems ob-

served within the monsoon. While some stations in

South America have precipitation records going back

several decades, the density of stations is not sufficient to

characterize mesoscale precipitation systems. To over-

come this difficulty, considerable effort has been de-

voted to collecting precipitation records from stations

over South America and producing quality-controlled

gridded precipitation datasets (Legates and Willmott

1990; Liebmann and Allured 2005; Silva et al. 2007). Al-

though the statistical properties of gridded precipitation

may differ from observations at individual stations (Silva

et al. 2007), an advantage of the gridded, complete data is

that multivariate statistical analyses are more easily per-

formed and teleconnection patterns can be studied in

detail. In addition to station data, satellite-derived pre-

cipitation estimates (Kummerow et al. 1998, 2000; Huffman

et al. 2001; Xie et al. 2003) have been developed over the

years and provide important information to further in-

vestigate the variability of the SAMS.

Recently, a new generation of reanalysis products has

been completed (Saha et al. 2010; Dee et al. 2011;

Rienecker et al. 2011). The new reanalyses, which are

derived from state-of-the-art data assimilation systems

and high-resolution climate models, provide substantial

improvements in the spatiotemporal variability of pre-

cipitation relative to the first generation of reanalyses

(Higgins et al. 2010; Saha et al. 2010; Rienecker et al.

2011; Silva et al. 2011). It is worth noting, however, that

precipitation from reanalysis is not an observed variable

but is derived from data assimilation and a background

forecast model and, therefore, uncertainties resulting

from model physics are present (e.g., Bosilovich et al.

2008).

Although the variability of precipitation in the SAMS

has been investigated in many previous studies, com-

parisons among datasets have been only partially

addressed (e.g., Silva et al. 2011). The objective of this

paper is to evaluate and compare several statistical

properties of daily precipitation in three types of data-

sets: gridded station data, satellite-derived precipita-

tion, and reanalyses. Specifically, this study employs

several analyses to determine consistencies and dis-

agreements in the representation of precipitation over

the SAMS region. The period 1998–2008 was selected

because all datasets used cover that period. In addition,

since the datasets are available with different horizon-

tal resolutions, the comparison is performed in two

ways: 1) all datasets regridded to a common resolution

and 2) datasets with their original resolutions. The pa-

per is organized as follows. Section 2 describes the da-

tasets, and section 3 discusses the methodology. Section

4 compares two precipitation datasets both derived

from surface stations but different gridding methods.

Section 5 compares the variability of precipitation in

the datasets regridded to a common grid resolution,

whereas section 6 compares the datasets with their

original grid resolution. Section 7 summarizes the main

conclusions.

2. Data

The statistical properties of precipitation in the SAMS

region are investigated with daily gridded data from

multiple sources. Each dataset has a different spatial

resolution and the period of available data varies. While

some datasets are available for the entire 1979–present

period, other datasets have a large number of missing

data over several regions in South America (e.g., Am-

azon). Likewise, some datasets cover only land areas

(i.e., those derived from rain gauges), whereas others

cover land and ocean regions. To develop a consistent

comparison, we chose the period from 1 January 1998 to

31 December 2008 for analysis. Moreover, the domain

of analysis is limited to 408S–158N, 858–308W and grid

points over the ocean are masked out in all statistical

calculations. The following datasets are used.
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1) Physical Sciences Division (PSD), Earth System

Research Laboratory: this dataset is computed from

observed precipitation collected at stations through-

out South America. A detailed discussion is found

in Liebmann and Allured (2005, 2006). The daily

gridded precipitation is constructed by averaging all

observations available within a specified radius of

each grid point. It is important to note that the

density of stations varies significantly in space and

time as discussed next. Two grid resolutions [18 and

2.58 latitude (lat)/longitude (lon)] are used in this

study.

2) Global Precipitation Climatology Project (GPCP):

the daily GPCP combines Special Sensor Microwave

FIG. 1. (top) Mean annual precipitation (mm day21) from PSD

data and (middle) percentage of available daily observations used

in PSD during 1 Jan–31 Dec 1998–2008. Grid points with less than

70% of observations are masked out. (bottom) Mean annual pre-

cipitation (mm day21) from CPC-Uni data during 1 Jan–31 Dec

1998–2008. Data grid spacing is 18 lat/lon.

FIG. 2. (top) Correlation between daily precipitation from PSD

and CPC-Uni, (middle) mean daily precipitation bias (PSD minus

CPC-Uni), and (bottom) root-mean-square difference in daily

precipitation. Grid points with fewer than 70% of observations are

masked out. The period is 1 Jan–31 Dec 1998–2008. Data grid

spacing is 18 lat/lon.
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Imager (SSM/I), GPCP version 2.1 satellite gauge,

geosynchronous-orbit infrared (IR), (geo-IR) bright-

ness temperature Tb histograms (18 3 18 grid in the

band 408N–408S, 3-hourly), low-orbit IR Geostation-

ary Operational Environmental Satellite (GOES)

precipitation index (GPI), Television and Infrared

Observation Satellite (TIROS) Operational Vertical

Sounder (TOVS), and Atmospheric Infrared Sounder

(AIRS) data (Huffman et al. 2001). The GPCP data

used in this study have 18 lat/lon grid spacing.

3) Climate Prediction Center (CPC) unified gauge

(CPC-uni): the National Oceanic and Atmospheric

Administration (NOAA) CPC unified gauge uses an

optimal interpolation technique to reproject precip-

itation reports to a grid (Higgins et al. 2000; Silva

et al. 2007; Chen et al. 2008; Silva et al. 2011). This

study uses data with 0.58 lat/lon grid spacing.

Although the PSD and CPC-uni datasets share some

of the same station observations, it is worth noting

that the quality control and gridding methods are

different. In addition, it is likely that the number and

origin of station data in both datasets are different.

4) Climate Forecast System Reanalysis (CFSR): the Na-

tional Centers for Environmental Prediction (NCEP)

have recently concluded the latest reanalysis based on

the Climate Forecast System (CFS) model (Saha et al.

2010). The advantages of CFSR relative to previous

reanalyses include higher horizontal and vertical

resolutions, improvements in data assimilation, and

first-guess fields originated from a coupled atmo-

sphere–land–ocean–ice system (Higgins et al. 2010;

Saha et al. 2010). Although the CFSR reanalysis is

produced at about 35 km in the horizontal, this study

uses daily precipitation at 0.58 lat/lon grid spacing

[available from the National Center for Atmospheric

Research (NCAR)]. It is also important to note that

precipitation is not assimilated in the CFSR pro-

duction but rather is a forecast (first-guess) product.

5) Modern-Era Retrospective Analysis for Research

and Applications (MERRA): the new reanalysis pro-

duced by the National Aeronautics and Space Admin-

istration (NASA) was used in this study. MERRA

utilizes an advanced data assimilation system and was

generated with the Goddard Earth Observing System

FIG. 3. First EOF patterns described as correlations between the first temporal coefficient (PC1) and precipitation anomalies. Solid

(dashed) contours indicate positive (negative) correlations at 0.1 intervals (zero contours omitted). Shading indicates correlations $ 0.2

(#20.2) and is significant at 5%. Data grid spacing is 2.58 lat/lon.
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(GEOS) atmospheric model (Rienecker et al. 2011).

Daily precipitation at 0.58 latitude/0.38 longitude

is used. As in the CFSR, precipitation is a forecast

product.

6) Tropical Rainfall Measurement Mission (TRMM

3B42 V6): the TRMM Multisatellite Precipitation

Analysis (TMPA) (Huffman et al. 2007) provides

rainfall estimates at 0.258 3 0.258 spatial resolution

and 3-h intervals. The gridded rainfall algorithm uses

an optimal combination of TRMM 2B31 and TRMM

2A12 data products, SSM/I, Advanced Microwave

Scanning Radiometer (AMSR), and Advanced Mi-

crowave Sounding Units (AMSI) (Kummerow et al.

1998; Kummerow et al. 2000). These data were

processed to generate daily precipitation. Previous

studies have used TRMM 3B42 V6 data to identify

rainfall-extreme events and their impact on river

discharge in the southwestern part of the Amazo-

nian catchment in Bolivia and Brazil (Bookhagen

and Strecker 2010). To achieve high spatial reso-

lution and identify orographic rainfall processing,

TRMM 2B31 data with a spatial resolution of about

5 km 3 5 km and approximately daily snapshots

have been used to relate topographic characteris-

tics and orographic rainfall along the eastern Andes

(Bookhagen and Strecker 2008). Additional details

of data processing are described in Bookhagen and

Burbank (2011).

3. Methodology

Comparisons of precipitation variability are per-

formed with several statistical methods applied to the six

datasets regridded to a common horizontal resolution as

well as to their original grid spacings. A grid of 2.58 lat/

lon spacing is selected for the same resolution compar-

ison because the number of missing observations in the

18 lat/lon PSD dataset is very high in some locations over

South America (see section 4). The 2.58 lat/lon common

regrid is obtained by regridding the GPCP, CPC-uni,

CFSR, MERRA, and TRMM data to the PSD grid ac-

cording to the following: PR(i, j) 5 [P(i, j) 1 P(i 2 1, j) 1

P(i 1 1, j) 1 P(i, j 2 1) 1 P(i, j 1 1)]/5, where PR(i, j) is

the regridded value, and the five terms on the right-hand

side are precipitation values from the data being trans-

formed. PR(i, j) is centered on the same coordinates of

the PSD dataset. Note that this regridding method is

FIG. 4. (top) Mean (squares), minimum (dashes), and maximum

(asterisks) dates of SAMS onset. (middle) Mean (squares), mini-

mum (dashes), and maximum (asterisks) dates of SAMS demise.

(bottom) Mean (squares), minimum (dashes), and maximum (as-

terisks) durations of SAMS. Datasets are indicated in the hori-

zontal axis. Data grid spacing is 2.58 lat/lon.

TABLE 1. Cross correlations among seasonal amplitudes of

SAMS derived from daily PC1. Correlations $ 0.63 (#20.63) are

significant at 5%. Data grid spacing is 2.58 lat/lon.

PSD GPCP CPC-uni CFSR MERRA TRMM

PSD 1.00 — — — — —

GPCP 0.85 1.00 — — — —

CPC-uni 0.46 0.64 1.00 — — —

CFSR 0.44 0.41 20.09 1.00 — —

MERRA 0.54 0.50 20.06 0.82 — —

TRMM 0.79 0.95 0.76 0.24 0.41 1.00

TABLE 2. Anomaly cross correlations among daily PC1 derived

from precipitation datasets. Correlations $ 0.20 (#20.20) are

significant at 5%. Data grid spacing is 2.58 lat/lon.

PSD GPCP CPC-uni CFSR MERRA TRMM

PSD 1.00 — — — — —

GPCP 0.67 1.00 — — — —

CPC-uni 0.88 0.66 1.00 — — —

CFSR 0.68 0.6 0.62 1.00 — —

MERRA 0.66 0.62 0.61 0.78 1.00 —

TRMM 0.75 0.9 0.74 0.63 0.64 1.00
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different than the procedure used in the PSD data. The

PSD data represents gridded precipitation as averages

of precipitation over ‘‘circles’’ with radius of about 1.88;

see Liebmann and Allured (2005, 2006) for details.

Comparisons between both regridding methods in-

dicated insignificant differences in the statistics

described in section 4.

The annual evolution of SAMS is examined to de-

termine consistencies and disagreements among the

datasets. The large-scale features of interest are as fol-

lows: the dominant spatial precipitation pattern, dates of

onset and demise, duration, and amplitude of the mon-

soon. These characteristics are determined with empir-

ical orthogonal functional (EOF) analysis (Wilks 2006)

applied to the daily precipitation (only land grid points)

from each dataset separately. Before computation of the

EOFs, the time series of precipitation in each grid point

are scaled by the square root of the cosine of the lati-

tude and the long-term mean removed (1 January–31

December 1998–2008). The EOFs are calculated from

correlation matrices. The first mode (EOF1) and associ-

ated temporal coefficient (PC1) explain the largest frac-

tion of the total variance of precipitation over land and

are used to describe the annual evolution of SAMS.

To determine dates of onset, demise, and duration of

SAMS, the daily PC1 is smoothed with 10 passes of a

15-day moving average. This smoothing procedure is

obtained empirically and is used to decrease the influence

of high-frequency variations during the transitional phases

of SAMS. The large-scale onset of SAMS is defined as the

date when the smoothed PC1 changes from negative to

positive values. This implies that positive precipitation

anomalies during that time become dominant over the

SAMS domain. Likewise, the demise of SAMS is defined

as the date when the smoothed PC1 changes from positive

to negative values. The duration of the monsoon is defined

as the period between onset and demise dates. The sea-

sonal amplitude of the monsoon is defined as the integral

of positive unsmoothed PC1 values from onset to demise.

Therefore, the seasonal amplitude index represents the

sum of positive precipitation anomalies and minimizes the

effect of ‘‘break’’ periods in the monsoon especially near

the onset and demise. Active/break periods in SAMS are

particularly frequent on intraseasonal time scales (Jones

and Carvalho 2002).

The distribution of precipitation variance is examined

with a power spectrum of the daily PC1 during 1 October–

30 April 1998–2008. The following methodology is used:

1) the mean, linear trend, and annual cycle are removed

from the PC1 time series during each season; 2) the

resulting time series is tapered with a split cosine bell

function (5% at each end); 3) fast Fourier transform

FIG. 5. Mean daily precipitation during 1 Nov–31 Mar 1979–2010. Contour interval and shading is 2 mm day21. Datasets and minimum/

maximum values are indicated in each panel. Data grid spacing is 2.58 lat/lon.
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(FFT) is used to obtain raw spectral estimates for each

season; 4) the raw spectral estimates are smoothed with

a running average of length L 5 3 raw spectral estimates;

5) the spectra computed for each season are normalized

by the seasonal variance and averaged to obtain a 10-yr

ensemble mean; and 6) the degrees of freedom are es-

timated initially as 60 [(2 for every raw spectral esti-

mate) 3 (3 for smoothing the raw spectrum) 3 (10 for

ensemble average)]. The actual degrees of freedom are

reduced to 52.38 because of the tapering of the time

series [see Madden and Julian (1971) for further details].

The red-noise background spectrum and 95% signifi-

cance level are computed following the methodology of

Mitchell (1966).

Statistical properties of precipitation are further

studied in the following way. Because of the skewness in

precipitation, parameters of frequency distributions are

estimated and compared among the six datasets. Gamma

frequency distributions are fitted to daily precipitation

following the maximum likelihood approach (Wilks 2006).

The fitting is done on the entire sample (1 November–31

March 1998–2008) of daily precipitation values Pi (zero

values excluded). Next, the sample statistic D is computed

as follows:

D 5 ln(P) 2
1

N
�
N

i51

ln(Pi). (1)

Then the shape a and scale b parameters are estimated

by the polynomial approximations:

a 5
0:500 087 6 1 0:164 885 2D 2 0:054 427 4D2

D
,

0 # D # 0:5772, (2)

a 5
8:898 919 1 9:059 950D 2 0:977 537 3D2

17:797 28D 1 11:968 477D2 1 D3
,

0:5772 , D # 17:0, and (3)

b 5
Pi

a
. (4)

The gamma distribution is thus expressed as

f (P) 5
(P/b)a21 exp(2P/b)

bG(a)
, (5)

where P, a, and b . 0, and G(a) is the gamma function.

To compute the cumulative distribution function, we

FIG. 6. Shape parameter of gamma probability distribution function (dimensionless). Datasets and minimum/maximum values are

indicated in each panel. Note that to fit a from MERRA in the same scale the shape parameter has been divided by 2. Data grid spacing is

2.58 lat/lon. Time period is 1 Nov–31 Mar 1998–2008.
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first scale the precipitation by j 5 P/b and numerically

integrate the incomplete gamma function F(a, j) [see

Wilks (2006) for details].

Small values of the shape parameter a indicate that

the distribution is strongly skewed to small precipitation

values (i.e., skewed to the left), whereas large values of a

indicate that the distribution tends to approximate the

form of Gaussian distributions. The scale parameter b

represents the ‘‘stretch’’ or ‘‘squeeze’’ in the gamma

density function to the right or left (Wilks 2006). Exam-

ples of a and b estimated over several precipitation re-

gimes are discussed in Jones et al. (2004) (see their Fig. 3).

4. Comparison between PSD and CPC-uni with
18 lat/lon grid spacing

It is instructive to begin by first considering the issue

of precipitation sampling from surface stations in South

America. While the total number of stations shows a positive

trend over the past three decades, this aspect is in fact

more complicated. Stations can be frequently deacti-

vated after a few years of operation, while new stations

are brought online. The variable temporal record of

precipitation is clearly reflected in the spatial density

of surface stations in South America (Liebmann and

Allured 2005).

A comparison between PSD and CPC-uni is made

since gridded precipitation in these datasets is derived

exclusively from surface stations. The comparison is

performed at 18 lat/lon grid spacing, such that the CPC-

uni data are transformed to the PSD grid. It is important

to note that PSD and CPC-uni have distinct gridding

methods. The CPC-uni is based on optimal interpolation

method and, therefore, the quality of interpolated values

depends on the spatial density of stations (Chen et al.

2008). The PSD is based on averaging precipitation from

stations within specified distances from grid points; if no

stations are present, missing values are assigned.

Figures 1 (top, middle) respectively show the mean

annual precipitation and percentage of available ob-

servations in the PSD data. Grid points with fewer than

70% of observations are masked. The sampling clearly

shows some geographical boundaries. For instance, ad-

equate number of observations ($90%) is seen over

Brazil, although it is still quite deficient over the Ama-

zon. In addition, surface stations are very sparse over the

Andes and northern parts of South America. Sampling

becomes even more critical in previous decades, when

FIG. 7. Scale parameter of gamma probability distribution function (mm day21). Datasets and minimum/maximum values are indicated

in each panel. Note that to fit b from TRMM in the same scale the scale parameter has been divided by 2. Data grid spacing is 2.58 lat/lon.

Time period is 1 Nov–31 Mar 1998–2008.
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the density of stations over the SAMS region was low.

For comparison, Fig. 1 (bottom) shows the mean annual

precipitation from CPC-uni data regridded to the same

18 lat/lon of the PSD data. While the spatial patterns of

mean precipitation from both datasets are comparable,

differences in intensity are noticeable especially over

the northwestern parts of South America.

A direct comparison is made by computing correla-

tions between precipitation from PSD and CPC-uni in

each 18 lat/lon (Fig. 2, top). These correlations are per-

formed on the raw time series (1 January–31 December

1998–2008) and, therefore, include subseasonal, seasonal,

and interannual variations. Because of that, one would

expect a high degree of agreement between the two da-

tasets over the SAMS since the amplitude of the annual

cycle is large. Thus, correlations are high and spatially

coherent (above 0.8) mostly over eastern Brazil, where

the density of stations is high (Liebmann and Allured

2005). In other locations over South America, correla-

tions are less spatially coherent and significantly low

(correlations $ 0.2 are significant at 5%). For instance,

correlations over the Amazon are on the order of 0.5–0.6.

The mean daily precipitation bias (Fig. 2, middle) is in

the range of 61.0 mm day21, which is a reasonable

amount. However, the mean bias is not spatially coherent

and even changes sign among neighboring grid points. In

contrast, the root-mean-square (rms) difference (Fig. 2,

bottom) is quite uniform (0.5 mm day21) over most of

Brazil and other countries. The relatively large rms dif-

ference in coastal grid points in Brazil results from the

regridding process since the land masks between the two

datasets do not match exactly. More importantly, rms

differences are consistently high ($1.0 mm day21) over

a large portion of Colombia, which is surprising given the

high number of available observations (Fig. 1, bottom).

The results above highlight important differences in the

gridding methods in the PSD and CPC-uni datasets.

Additionally, since the number of missing data is sub-

stantially high in the PSD at 18 lat/lon, further compari-

sons among the datasets are performed with a common

grid of 2.58 lat/lon. This is important in the EOF analysis

because missing data vary widely among grid points and

the calculation becomes extremely difficult with small

sample sizes.

5. Comparisons among datasets with 2.58 lat/lon
grid spacing

In this section, the six datasets are compared at the

same 2.58 lat/lon grid (gridded according to the description

FIG. 8. 75th percentile of daily precipitation (mm day21). Datasets and minimum/maximum values are indicated in each panel. Data grid

spacing is 2.58 lat/lon. Time period is 1 Nov–31 Mar 1998–2008.
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in section 3). These results can be evaluated with the

comparison at the original grid spacing resolution in

section 6.

EOF analysis (section 3) is used to characterize the

large-scale features of SAMS as represented in the dif-

ferent datasets. Figure 3 shows the spatial patterns of

EOF1 derived from each dataset and expressed as cor-

relations between PC1 and precipitation anomalies.

Positive correlations are interpreted as positive pre-

cipitation anomalies and indicative of active SAMS. In

general, all datasets show similar features such as posi-

tive precipitation anomalies over central South America

and negative anomalies over the northern parts of the

continent. The region of negative anomalies over north-

ern South America is substantially smaller in the PSD

because of missing data (the ‘‘bull’s eye’’ near 108S, 608W

is a grid point with missing data). The magnitude of

positive correlations varies slightly and is highest for

PSD. Also, the largest positive correlation in MERRA is

slightest to the west relative to the other datasets. As

discussed in section 6, however, significant spatial dif-

ferences are seen in EOF1 patterns from the datasets at

their original resolutions.

The percentages of explained variance by EOF1 are

the following: 20.5% (PSD), 11.6% (GPCP), 8.4%

(CPC-uni), 10% (CFSR), 17.9% (MERRA), and 6.9%

(TRMM). EOF1 captures the largest fraction of the

total variance, which includes subseasonal, seasonal, and

interannual variations, since the EOF analysis is per-

formed removing only the long-term mean. Main dif-

ferences in explained variance are associated with how

much each PC1 represents the distribution of subseasonal,

seasonal, and interannual variations. These percentages

are comparable to the percentages obtained with the

datasets at their original resolutions (section 6), which

suggests that spatial resolution of the datasets is not the

main issue but rather how each dataset represents tem-

poral variations.

The seasonal variation of SAMS is represented by the

dates of onset, demise, and duration. The mean onset

date (Fig. 4, top) is highly coherent among PSD, GPCP,

CPC-uni, and TRMM (;21 October) including the

ranges of minimum and maximum onset dates. In con-

trast, the mean onset dates in the CFSR and MERRA

reanalyses occur in the second week of November and

the ranges of minimum and maximum onset dates are

larger than in the other datasets. Although there is more

variability in the dates of mean demise (Fig. 4, middle),

the agreement among PSD, GPCP, CPC-uni, and

TRMM is relatively good. The mean demise dates in the

FIG. 9. 25th percentile of daily precipitation (mm day21). Datasets and minimum/maximum values are indicated in each panel. Data grid

spacing is 2.58 lat/lon. Time period is 1 Nov–31 Mar 1998–2008.
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reanalyses occur later than in the other datasets and

CFSR is more consistent with the other data than MERRA.

As a consequence, the mean duration of SAMS

(;180 days) agrees reasonably well among PSD, GPCP,

CPC-uni, and TRMM data and is shorter and more var-

iable in the CFSR and MERRA (Fig. 4, bottom). The

characteristics shown in Fig. 4 are practically identical to

similar results obtained from the datasets at their original

resolutions (section 6).

The seasonal amplitude (section 3) is another impor-

tant characteristic of SAMS and is compared by com-

puting cross correlations among the seasonal amplitudes

obtained from each dataset (Table 1). Significant corre-

lations are seen among PSD–GPCP (0.85), PSD–TRMM

(0.79), GPCP–TRMM (0.95), CPC-uni–TRMM (0.76),

and CFSR–MERRA (0.82). Surprisingly, the seasonal

amplitude correlation between PSD–CPC-uni is not sta-

tistically significant, even though both datasets are derived

from station data. Additionally, the seasonal amplitudes

derived from CFSR and MERRA are correlated (al-

though not statistically significant) with PSD and GPCP

but not CPC-uni. The correlations in Table 1 do not differ

substantially from similar correlations calculated from

seasonal amplitudes derived from each dataset at their

original resolutions (section 6). Therefore, because of

space limitations, the temporal variability of seasonal

amplitudes (see Fig. 12) obtained from each dataset with

2.58 lat/lon is not shown.

A more detailed comparison of PC1 is carried out by

removing the mean seasonal cycle in PC1 from each

dataset. Next, cross correlations are calculated among the

daily PC1 anomalies during 1 November–31 March 1998–

2008 (Table 2). The best agreements are found among

GPCP–TRMM (0.90), PSD–CPC-uni (0.88), CFSR–

MERRA (0.78), PSD–TRMM (0.75), and CPC-uni–

TRMM (0.74), whereas the smallest correlations are

among MERRA–CPC-uni (0.61) and CFSR–GPCP (0.6).

This result is important because it shows that anomalies in

PC1, which are largely related to intraseasonal variations,

can have different degrees of representation in the six

datasets. Spectra of daily PC1 anomalies from datasets

with 2.58 lat/lon grid are virtually identical to spectra of

daily PC1 anomalies from datasets with their original res-

olution (section 6) and are not shown (see Fig. 13 instead).

The results above indicate that, although several as-

pects of the large-scale characteristics of the SAMS are

FIG. 10. First EOF patterns described as correlations between the first temporal coefficient (PC1) and precipitation anomalies. Solid

(dashed) contours indicate positive (negative) correlations at 0.1 intervals (zero contours omitted). Shading indicates correlations $ 0.2

(#20.2) and is significant at 5%. Datasets have different grid spacings.
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well represented in most of the datasets, some important

inconsistencies are also found. To better characterize

differences among the datasets, the following analyses

are performed on the raw precipitation (i.e., no EOF

filtering). The mean precipitation during 1 November–

31 March 1998–2008 is shown in Fig. 5. The maximum is

over central Amazon and the pattern extends to south-

eastern Brazil in all datasets, except in MERRA where

the maximum is clearly displaced to the north relative to

the other datasets; a pattern that is more typical of early

spring rather than austral summer (Kousky 1988; Horel

et al. 1989). The range of mean precipitation is nearly

the same in PSD, GPCP, CPC-uni, and TRMM and

considerably high in CFSR and MERRA. In addition,

the mean precipitation with 2.58 lat/lon shows sub-

stantial spatial differences from the same field obtained

from datasets with their original resolutions especially

over the Andes (section 6).

The distribution of precipitation can be evaluated

with the parameters of the Gamma frequency distribu-

tion. The shape parameter (Fig. 6) is in the range 0.5–1.0

over most of South America (except the Andes) and

indicates the skewness of precipitation to small values.

This feature is consistent in the PSD, GPCP, CPC-uni,

CFSR, and TRMM data, whereas PSD and GPCP data

show values larger than 1.0 over the core of the monsoon.

It is also worth noting that, while PSD and CPC-uni are

based on station data, the precipitation distribution over

the core of the monsoon can be very different in these

datasets. Another obvious feature is that a obtained from

MERRA has a spatial pattern and magnitudes substan-

tially different than any other dataset.

The scale parameter b (Fig. 7) from all datasets

consistently shows large values ($10) over southern

South America with maximum centered over northern

FIG. 11. (top) Mean (squares), minimum (dashes), and maximum

(asterisks) dates of SAMS onset. (middle) Mean (squares), mini-

mum (dashes), and maximum (asterisks) dates of SAMS demise.

(bottom) Mean (squares), minimum (dashes), and maximum (as-

terisks) durations of SAMS. Datasets are indicated in the hori-

zontal axis. Datasets have different grid spacings.

FIG. 12. Normalized seasonal amplitudes of SAMS as derived

from different datasets. Datasets are indicated on the side and have

different grid spacings. Normalization of time series is done by

subtracting the mean and dividing by the standard deviation during

1998–2008.

TABLE 3. Cross correlations among seasonal amplitudes of

SAMS derived from daily PC1. Correlations $ 0.63 (#20.63) are

significant at 5%. Datasets have different grid spacings.

PSD GPCP CPC-uni CFSR MERRA TRMM

PSD 1.00 — — — — —

GPCP 0.91 1.00 — — — —

CPC-uni 0.58 0.48 1.00 — — —

CFSR 0.43 0.54 20.14 1.00 — —

MERRA 0.48 0.65 20.03 0.87 — —

TRMM 0.92 0.96 0.56 0.36 0.54 1.00

TABLE 4. Anomaly cross correlations among daily PC1 derived

from precipitation datasets. Correlations $ 0.20 (#20.20) are

significant at 5%. Datasets have different grid spacings.

PSD GPCP CPC-uni CFSR MERRA TRMM

PSD 1.00 — — — — —

GPCP 0.67 1.00 — — — —

CPC-uni 0.87 0.67 1.00 — — —

CFSR 0.66 0.61 0.6 1.00 — —

MERRA 0.62 0.62 0.61 0.8 1.00 —

TRMM 0.77 0.93 0.76 0.65 0.66 1.00
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Argentina. The spatial pattern of b shows some similar-

ities between PSD and CPC-uni over tropical South

America, although the magnitudes are different. Differ-

ent spatial patterns and magnitudes are seen in GPCP

and CFSR over the core of the monsoon. While the b

spatial pattern from TRMM is consistent with PSD and

CPC-uni over the SAMS, the magnitudes are excessively

large. It is interesting to note that b from MERRA is

significantly different than any other dataset over the

northern Amazon.

Further insight about the distribution of precipitation

is noted on the 75th percentile (P75) (Fig. 8). It is en-

couraging that the northwest–southeast orientation and

the range of magnitudes of P75 from PSD and CPC-uni

FIG. 13. Power spectrum of PC1. Smoothed (dashed) lines indicate the background red-noise spectrum (95%

confidence level). Datasets have different grid spacings. Spectra were computed from daily PC1 during 1 Oct–30 Apr

1998–2008.
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agree over the SAMS. TRMM and GPCP P75 show

similar range of magnitudes over SAMS, although TRMM

indicates large values where the Amazon River meets the

Atlantic Ocean. P75 from CFSR also shows a northwest–

southeast orientation as in PSD and CPC-uni, while large

values are found over the Amazon. In contrast, MERRA

shows P75 $ 10 mm day21 displaced over northern

Amazon clearly indicative of difficulties in properly rep-

resenting the precipitation pattern over the core of the

monsoon.

The 25th percentile (P25) (Fig. 9) is less than

2 mm day21 over large portions of South America in

all datasets. Over the core of the monsoon, PSD, GPCP,

CPC-uni, CFSR, and TRMM indicate P25 in the range

of 2.0–4.0 mm day21, although the spatial extent varies

among these datasets. As before, P25 derived from

MERRA shows values larger than 2.0 mm day21 dis-

placed over the northern Amazon.

6. Comparisons among datasets with original
resolutions

The same type of analysis is performed for the data-

sets with their original resolution: PSD (2.58 lat/lon),

GPCP (1.08 lat/lon), CPC-uni (0.58 lat/lon), CFSR (0.58

lat/lon), MERRA (0.58 lat/0.38 lon), and TRMM (0.258

lat/lon). Figure 10 shows the spatial patterns of EOF1.

As expected, the higher the spatial resolution, the more

details are represented in the horizontal, although some

features are obviously suspicious, for example, over the

central Andes. Some of these can be explained by a lack

of precipitation gauges or abnormal land cover conditions

that influence satellite-derived precipitation values. All

datasets consistently indicate a region of positive pre-

cipitation anomalies over the core of the monsoon region

and negative anomalies over northern South America.

Moreover, although positive precipitation anomalies over

the central Andes are consistently represented in the

GPCP, CPC-uni, CFSR, MERRA, and TRMM, the large

gradients in correlations shown in CFSR and MERRA

suggest that the reanalysis products overestimate precip-

itation in that region.

The percentages of total variance explained by EOF1

are the following: 20.5% (PSD), 9.7% (GPCP), 7.6%

(CPC-uni), 8.9% (CFSR), 17.5% (MERRA), and 7.3%

(TRMM), respectively. The distribution of percentages

are comparable to the percentages obtained with all

datasets with the same resolution (section 5), which

suggests that the spatial resolution is not the main factor

FIG. 14. Mean daily precipitation during 1 Nov–31 Mar 1979–2010. Contour interval and shading are 2 mm day21. Datasets and minimum/

maximum values are indicated in each panel. Datasets have different grid spacings.
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in explaining these differences. The temporal variability

of PC1, especially the distribution of intraseasonal var-

iance (see power spectra next), may explain some of

these differences.

Dates of onset, demise, and duration of SAMS are

shown in Fig. 11 and can be compared with the same

data resolution results (Fig. 4). Identical patterns are

noted such that the mean onset date (Fig. 11, top) is

highly coherent among PSD, GPCP, CPC-uni, and

TRMM (;21 October) including the ranges of mini-

mum and maximum onset dates. In contrast, the mean

onset dates in CFSR and MERRA are off by several

weeks. The variability in dates of mean demise (Fig. 11,

middle) indicates agreements among PSD, GPCP,

CPC-uni, and TRMM and some differences in CFSR

and large disagreement in MERRA. Consequently, the

mean durations of SAMS (;180 days) agree reasonably

well among PSD, GPCP, CPC-uni, and TRMM data and

is shorter and more variable in the CFSR and MERRA

reanalyses (Fig. 11, bottom). These results indicate that

differences in data resolution do not explain disagree-

ments in the annual evolution of SAMS especially be-

tween CFSR and MERRA and the other datasets.

Fig. 12 shows the temporal variability of the seasonal

amplitude of SAMS in each dataset. Since the magnitudes

of PC1 vary significantly among the datasets, the ampli-

tudes are normalized by removing the mean seasonal

amplitude and dividing by the standard deviation of

the 10 seasons (1998–2008). This allows visualizing the

seasonal amplitudes on the same scale. Table 3 shows

the cross correlations in seasonal amplitudes and can

be compared with Table 1. The largest differences

relative to the same resolution correlations are be-

tween PSD–TRMM (0.92), CPC-uni–GPCP (0.48),

GPCP–CFSR (0.54), GPCP–MERRA (0.65), CPC-

uni–TRMM (0.56), and MERRA–TRMM (0.54). The

correlations between reanalyses and CPC-uni are sur-

prisingly negative (20.03, 20.14). It is interesting to note

that all datasets consistently indicate a short-term trend

in seasonal amplitudes of SAMS after 2004, which agrees

with L. M. V. Carvalho et al. (2011, unpublished manu-

script), who investigated long-term changes in SAMS

large-scale circulation and warming in South America

and Atlantic Ocean.

As before, the mean annual cycle is removed from the

PC1 series and cross correlations among the datasets are

computed (Table 4). A comparison between these re-

sults and Table 2 shows only very minor differences. This

indicates that differences in the representation of sub-

seasonal and interannual variations among the datasets

FIG. 15. Shape parameter of gamma probability distribution function (dimensionless). Datasets and minimum/maximum values are

indicated in each panel. Note that to fit a from MERRA in the same scale the shape parameter has been divided by 2. Datasets have

different grid spacings. Time period is 1 Nov–31 Mar 1998–2008.
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do not vary significantly with spatial resolution. Evidently,

these conclusions hold for the large-scale aspects of

SAMS inferred from one EOF mode. Locally, differences

in subseasonal, seasonal, and interannual variations can

vary significant among the datasets and spatial resolutions

can be important.

Several studies have shown that intraseasonal variations

play an important role in modulating the variability of

SAMS (Nogues-Paegle and Mo 1997; Liebmann et al.

1999; Nogues-Paegle et al. 2000; Jones and Carvalho 2002;

Cunningham and Cavalcanti 2006; Gonzalez et al. 2008;

Muza et al. 2009; Carvalho et al. 2011b). When calculated

from outgoing longwave radiation (OLR) anomalies, the

first EOF shows regions of positive and negative anoma-

lies associated with the eastward propagation of the MJO

as well as midlatitude wave trains propagating over east-

ern South America.

The spectra from daily PC1 (Fig. 13) indicate that

intraseasonal variations (;20–90 days) are captured by

all datasets, although with different degrees of ampli-

tude. Most noticeably, the intraseasonal spectral peak

from GPCP exceeds the 95% confidence level above the

background red noise. Similar peaks are evident in CPC-

uni, MERRA, and TRMM, although they barely exceed

the 95% significance level. It should be noted that the

spectra derived from 2.58 lat/lon data are identical to the

results in Fig. 13 indicating that the large-scale repre-

sentation of subseasonal variations vary among the da-

tasets but spatial resolution is not the dominant factor.

Fig. 14 shows the mean precipitation during 1

November–31 March 1998–2008 and can be compared

with Fig. 5. In general, differences in spatial patterns

of mean precipitation are small among PSD, GPCP,

CPC-uni, and TRMM data. These datasets consistently

show maximum precipitation over the central Amazon

including the extensions to southeastern Brazil and to-

ward Amapá state, where the Amazon River meets the

Atlantic Ocean. The mean precipitation in the PSD data

is slightly less than in GPCP, CPC-uni, and TRMM data

(minimum and maximum values are indicated in each

panel). It is also interesting to note that GPCP, CPC-uni,

and TRMM data agree in the high precipitation over

Colombia, whereas the agreement is less obvious over

Peru. Although precipitation from the new reanalyses

certainly improves from previous reanalyses (Bosilovich

et al. 2008; Rienecker et al. 2011; Silva et al. 2011),

substantial discrepancies are observed in the CFSR and

MERRA reanalyses relative to the other datasets.

While the spatial pattern of mean CFSR precipitation

over the central Amazon is somewhat consistent with

FIG. 16. Scale parameter of gamma probability distribution function (mm day21). Datasets and minimum/maximum values are in-

dicated in each panel. Note that to fit b from CPC-Uni, CFSR, and TRMM in the same scale the scale parameters have been divided by 2.

Datasets have different grid spacings. Time period is 1 Nov–31 Mar 1998–2008.
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the other datasets (except MERRA), CFSR precipita-

tion is unrealistically large and spotty over the Andes

and southeastern Brazil and the maximum precipitation

(43 mm day21) is significantly larger than in the PSD,

GPCP, CPC-uni, and TRMM data. These features are

much less evident in the 2.58 lat/lon comparison (Fig. 5).

The spatial pattern of mean precipitation in MERRA

appears shifted to the north relative to the other datasets.

Although the MERRA precipitation is not as spotty as

the CFSR data in some locations, precipitation is exces-

sive over the Andes Mountains and the maximum pre-

cipitation (23 mm day21) is higher than in PSD, GPCP,

CPC-uni, and TRMM data.

The shape parameter (Fig. 15) is quite comparable with

2.58 lat/lon data (Fig. 6), although some differences are

worth noting. For instance, the region of a $ 1.0 over the

Amazon obtained with 2.58 lat/lon GPCP data (Fig. 6) is

practically absent in the 18 lat/lon comparison (Fig. 15).

This suggests that spatially averaging precipitation in-

creases a and, therefore, might explain a $ 1.0 over the

Amazon obtained from PSD data. Except for small spa-

tial variations, 0.5 # a # 1.0 over a large area over South

America as derived from GPCP, CPC-uni, CFSR, and

TRMM. The shape parameter estimated from MERRA

reanalysis is markedly different than any other dataset

both in spatial pattern and magnitudes (i.e., the field was

divided by 2 to fit the same scale).

The patterns of scale parameter (Fig. 16) obtained

from datasets at their original resolution are somewhat

similar to the b derived with 2.58 lat/lon grids (Fig. 7).

Note, however, that the range of values increase in some

datasets (CPC-uni, CFSR, and TRMM), and b has been

divided by 2 to fit in the same scale as the other datasets.

Values b $ 10 are seen over southern South America

with maximum centered over northern Argentina. The

spatial patterns of b between PSD and CPC-uni are

similar over tropical South America, although the

magnitudes are twice as large in CPC-uni. The b spatial

pattern from TRMM is consistent with PSD, although

the magnitudes are much larger in the former. MERRA

is significantly different than any other dataset over the

northern Amazon.

To further characterize the frequency distributions of

precipitation, Fig. 17 shows the 75th percentile (P75)

and can be compared with Fig. 8. The spatial pattern of

P75 is quite similar between PSD and CPC-uni and, to

some extent, between GPCP and TRMM, although the

magnitudes vary among these datasets. While the spatial

pattern of P75 from CFSR is similar to the GPCP–TRMM

patterns, the magnitudes are very different. Interestingly,

FIG. 17. 75th percentile of daily precipitation (mm day21). Datasets and minimum/maximum values are indicated in each panel. Note

that to fit the 75th percentile from CFSR in the same scale the percentile has been divided by 2. Datasets have different grid spacings. Time

period is 1 Nov–31 Mar 1998–2008.
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MERRA shows P75 comparable to PSD, GPCP, and

CPC-uni over central–southeastern Brazil, but the pat-

ter is different over the northern Amazon.

Fig. 18 shows comparisons in the 25th percentile

(P25) derived from original grids and can be further

evaluated with Fig. 9. P25 agrees among PSD, GPCP,

CFSR, and TRMM over a large portion of the SAMS

region (except over the Andes), whereas CPC-uni shows

smaller P25 values. CFSR also shows much large P25

values over the central and northern Andes. P25 derived

from MERRA is evidently shifted over the northern

Amazon.

7. Summary and conclusions

The variability of gridded precipitation over SAMS in

six different datasets is investigated during a common

period (1998–2008). The range of grid spacings is 0.258–

2.58 lat/lon, and precipitation is derived from surface

stations (PSD, CPC-uni), satellite data (GPCP, TRMM),

and first-guess forecasts from reanalysis products (CFSR,

MERRA). The same statistical analyses are applied to

data in 1) a common 2.58 lat/lon grid and 2) in the original

resolutions of the datasets.

Empirical orthogonal function analysis of daily pre-

cipitation allows the identification of the main mode of

large-scale variability in the SAMS (EOF1/PC1). All

datasets consistently indicate a region of positive pre-

cipitation anomalies over the core of the monsoon and

negative anomalies over northern South America. Al-

though positive precipitation anomalies over the central

Andes are consistently represented in the GPCP, CPC-

uni, CFSR, MERRA, and TRMM, the large spatial gra-

dients in correlations derived from CFSR and MERRA

suggest that the new reanalysis products overestimate

precipitation in that region. This important aspect re-

quires further investigation. Because of the sparseness of

station data over the Andes, the details of precipitation in

that region are still unknown. The early study by Hoffman

(1975) suggests that gridded precipitation may under-

estimate the heavy precipitation over the eastern flanks of

the Andes.

The onset, demise, and duration of SAMS are consis-

tently represented among the PSD, GPCP, CPC-uni, and

TRMM datasets in both 2.58 lat/lon and original resolu-

tions. In contrast, CFSR and MERRA reanalyses show

surprising shifts in the dates of onset and demise relative to

the other datasets and seem to have problems in capturing

FIG. 18. 25th percentile of daily precipitation (mm day21). Datasets and minimum/maximum values are indicated in each panel. Note

that to fit the 25th percentile from MERRA in the same scale the percentile has been divided by 2. Datasets have different grid spacings.

Time period is 1 Nov–31 Mar 1998–2008.
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the correct timing of SAMS. The spectral variance in

precipitation is examined by computing power spectra of

daily PC1 time series. It is encouraging that the distribution

of intraseasonal variance is somewhat similar in both

comparisons (2.58 lat/lon and original grids), indicating that

the large-scale representation of subseasonal variations

agree among the datasets. Because of the limited data

sampling (10 yr), differences in interannual variability

among the datasets are not explored here.

Comparisons of mean precipitation during the monsoon

indicate that differences in spatial patterns are small

among PSD, GPCP, CPC-uni, and TRMM data and some

discrepancies are found in the CFSR and MERRA rean-

alyses. While the spatial pattern of mean CFSR precip-

itation over the central Amazon is somewhat consistent

with the other datasets (except MERRA), CFSR precip-

itation is unrealistically large and spotty over the Andes

and southeastern Brazil and the maximum precipitation

(43 mm day21 with 0.58 lat/lon) is significantly larger than

in the PSD, GPCP, CPC-uni, and TRMM data. These

results appear consistent with Silva et al. (2011), who com-

pared CFSR against the NCEP–NCAR (R1) and NCEP–

Department of Energy (DOE) (R2) reanalyses and the

CPC-uni precipitation. They noted that, although precip-

itation from CFSR is more consistent with observations

than R1 and R2, large biases are still present, particularly

during the SAMS when CFSR appears to overestimate

precipitation. Moreover, Silva et al. (2011) showed that

CFSR has substantial biases in intensity and frequency of

precipitation events. One of the most worrisome findings

is that the spatial pattern of mean precipitation from

MERRA appears shifted to the north relative to the other

datasets, which is not typical of the summer monsoon.

Last, the results of this study highlight an important

issue that has yet to be resolved before reliable assess-

ments of climate changes in South America can be

achieved. The fitting of gamma frequency distributions

to daily precipitation shows significant differences

among all datasets in the parameters that characterize

the shape, scale, and tails of the distributions. This im-

plies that significant uncertainties exist in the charac-

terization of extreme precipitation in these datasets.

These discrepancies are not only relevant over the

Amazon, where the maximum climatological precip-

itation amount is observed, but are also remarkable over

the eastern Andes and east-central Brazil. These regions

are highly susceptible to long-term changes in SAMS

characteristics (L. M. V. Carvalho et al. 2011, unpublished

manuscript; Carvalho et al. 2011a).
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