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ABSTRACT

The South American monsoon system (SAMS) is the most important climatic feature in South America and

is characterized by pronounced seasonality in precipitation. This study uses the National Centers for Envi-

ronmental Prediction Climate Forecast System, reforecasts version 2 (CFSRv2), to investigate the skill of

probabilistic forecasts of onset and demise dates, duration, and amplitude of SAMS during 1982–2009. A

simple index based on the empirical orthogonal function of precipitation anomalies is employed to charac-

terize onsets, demises, durations, and amplitudes of SAMS. The CFSv2 model has useful skill to forecast

seasonal changes in SAMS. Probabilistic forecasts of onset and demise dates have 16.5% and 43.3% im-

provements, respectively, over climatological forecasts. Verification of hindcasts of durations and amplitudes

of SAMS shows relatively small biases and root-mean-square errors.

1. Introduction

The monsoon in South America [hereafter the South

American monsoon system (SAMS)] has an important

role for the millions of people leaving in the continent

(Carvalho et al. 2002, 2011a; Vera et al. 2006b). The

seasonal precipitation in SAMS is critical for agricul-

ture, hydroelectric power generation, and water re-

sources in urban regions (Mechoso et al. 2005; Marengo

et al. 2010). The hydrological cycle over the Amazon

basin and central Brazil involves an intricate set of

processes. Drought conditions due to delayed onsets of

SAMS and below-average precipitation during the

monsoon can severely affect ecosystems (Zeng et al.

2008; Marengo et al. 2011). Furthermore, SAMS has ex-

perienced significant multiannual changes in recent de-

cades (Grimm and Natori 2006; Marengo 2009; Carvalho

et al. 2011c, unpublished manuscript, hereafter C11c;

2011b), thus motivating research to determine the roles of

natural variability and anthropogenic forcing (Vera et al.

2006a; Silva et al. 2008; Bombardi and Carvalho 2009;

Marengo et al. 2009).

The National Centers for Environmental Prediction

(NCEP) upgraded the Climate Forecast System model

to a new version (CFSv2; Saha et al. 2006, 2010; S. Saha

et al. 2011, personal communication). CFSv2 brings many

important changes in physical parameterizations and

atmosphere–ocean data assimilation (S. Saha et al. 2011,

personal communication). To further understand model

performance and improve model calibration for seasonal

forecasts, NCEP has produced reforecasts in the period

1982–2010 (S. Saha et al. 2011, personal communication).

Yuan et al. (2011) determined that globally CFSv2 has

better forecast skill for precipitation and temperature

at 1-month lead (37% and 29%, respectively) than the

previous CFS.

The objective of this study is to investigate the fore-

cast skill of SAMS using CFS reforecasts. We focus on

the large-scale characteristics of SAMS, and a simple
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index based on precipitation anomalies is used to char-

acterize the onset and demise dates, duration, and am-

plitude of SAMS. Probabilistic forecasts are developed

for the period 1982–2009 and are validated against ob-

served onset and demise dates, duration, and amplitude.

Section 2 describes the datasets. Section 3 discusses the

methodology, forecasts, and validation procedures. Con-

clusions are presented in section 4.

2. Data

Forecasts of SAMS characteristics are verified with

observed daily gridded precipitation from the Cli-

mate Prediction Center unified gauge (CPC-uni) dataset

(January 1982–December 2010). The CPC-uni uses an

optimal interpolation technique to reproject precipitation

reports to a grid (Chen et al. 2008; Silva et al. 2011). The

original grid spacing is 0.58 latitude–longitude and bilinear

interpolation is used to downgrade the data to 1.08 lati-

tude–longitude for consistency with the grid spacing of the

NCEP CFS reforecasts (126 spectral triangular truncation

;0.9378 latitude 3 longitude, 64 levels). It is important

to note, however, that some differences exist among pre-

cipitation datasets over South America as discussed in

Carvalho et al. (2012). Nevertheless, the annual cycle of

SAMS (i.e., onset, demise, duration, and amplitude)

obtained from CPC-uni is consistent with other data-

sets based on surface stations or satellite data (Carvalho

et al. 2012).

The forecast skill of SAMS characteristics is inves-

tigated with reforecasts from the NCEP CFS model

version 2 (CFSRv2). Since the main objective of this

study is to evaluate the forecast skill of seasonal char-

acteristics of SAMS (i.e., onset, duration, demise, and

amplitude), 9-month hindcasts of precipitation initial-

ized every fifth day (3rd, 8th, 13th, 18th, 23rd, and 28th)

and four cycles (0000, 0600, 1200, and 1800 UTC) per

day during September 1982–2009 are analyzed (1344

forecasts of 9-month lead times each). The 9-month

hindcasts with initial conditions in September capture

the entire monsoon season and therefore are suitable to

evaluate the forecast skill of the features described

above. These forecasts are additionally reduced by com-

puting mean daily precipitation as the average of four

samples per day (0000, 0600, 1200, and 1800 UTC).

3. Results

The forecast skill of SAMS is examined by focusing on

the following large-scale features: dates of onset and

demise, duration, and amplitude of the monsoon. These

characteristics are determined with an empirical or-

thogonal function (EOF) analysis of daily CPC-uni

precipitation (Wilks 2006). Before computation of EOF

analysis, time series of precipitation in each grid point

are scaled by the square root of the cosine of the latitude

and the long-term (1982–2010) mean removed. EOF is

then computed only with precipitation anomalies from

land grid points.

The first mode (EOF1) captures 8.8% of the total

precipitation variance (Fig. 1, top). The EOF1 spatial

pattern is characterized by large positive loadings over

central eastern Brazil and negative values over the north-

ern parts of South America. EOF1 is statistically separated

from the second mode (not shown), which is associated

with the variability of precipitation over southeastern

Brazil especially in the South Atlantic convergence

zone (SACZ). Note that the EOF domain in Fig. 1 is

not the same as the one studied by Carvalho et al. (2011a;

C11c; Carvalho et al. 2012) and Silva and Carvalho (2007);

we note that the largest correlations between PC1 and

FIG. 1. (top) First EOF patterns described as correlations be-

tween the first time coefficients (PC1) and precipitation anomalies.

Solid (dashed) contours indicate positive (negative) correlations at

0.1 intervals (zero contours omitted). Shadings indicate correla-

tions greater (less) than 0.4 (20.4). (bottom) An example of PC1

(thin solid; dimensionless). The thick solid line indicates smoothed

PC1 (10 passes of a 15-day moving average). Period: daily, January

1982–December 2010.
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precipitation (Fig. 1) is slightly displaced eastward with

respect to the domain used in those studies. Carvalho

et al. (2012). showed that there is a positive trend in ver-

tically integrated moisture divergence east of the Amazon

(1979–2010) with high correlations with the first EOF

calculated in that study, which suggests that the onset, am-

plitude, and duration of the monsoon over eastern Amazon

are influenced by the weakening of the trade winds and

increase in vertically integrated moisture divergence.

The large-scale features of onset, demise, duration, and

amplitude are derived from the first principal component

(PC1). To illustrate the procedure, Fig. 1 (bottom) shows

a segment of PC1 for the period 1 September–31 May

2001/02. Also indicated, is a smoothed PC1 obtained with

10 passes of a 15-day moving average. This smoothing

procedure is obtained empirically and used to decrease

the influence of high-frequency variations during the

transition phases of SAMS. The large-scale onset of

SAMS is defined here as the date when the smoothed

PC1 changes from negative to positive values. This im-

plies that positive precipitation anomalies during that

time become dominant over the SAMS domain. Like-

wise, the demise of SAMS is defined as the date when

the smoothed PC1 changes from positive to negative

values. The duration of the monsoon is defined as the

period between onset and demise dates. Last, the am-

plitude of the monsoon is defined as the integral of pos-

itive unsmoothed PC1 values from onset to demise.

Therefore, the amplitude index represents the sum of

positive precipitation anomalies and minimizes the effect

of ‘‘break’’ periods in the monsoon especially near the

onset and demise. Break periods are particularly frequent

on intraseasonal time scales (Jones and Carvalho 2002).

Figure 2 shows the observed onset and demise dates,

duration, and amplitude. The median onset in 1982–

2009 was in late October and varied from 1 October

(2006/07) to 7 November (1986/87, 2007/08). The me-

dian demise date is in late April and varied from early

April to early May in 1982–2009. Accordingly, the du-

ration of SAMS varies as follows: median of 178 days,

minimum of 160 days, and maximum of 201 days. The

median amplitude (dimensionless) is 1.32, the minimum

is 0.94, and the maximum is 1.76. While Fig. 2 indicates

a negative trend in amplitude, there are significant re-

gional differences in trends over the SAMS domain as

discussed in detail by C11c.

Forecasts of onset, demise, duration, and amplitude

are derived from the NCEP CFS hindcasts using the

following approach:

d Each forecast of daily average precipitation is pro-

jected onto the observed EOF1 (Fig. 1, top) resulting

in a forecast of PC1 (PC1FCS) (time series are 9 months

in length). For each summer season, there are 24

members initialized in September (6 initial condi-

tions every fifth day 3 four cycles).
d The mean forecast bias is computed as

BIAS(t) 5 1/N �
N

i51
[PC1OBS(t) 2 PC1i

FCS(t)],

FIG. 2. The onset, duration (days), demise, and amplitude (dimensionless) of SAMS as determined by the first

EOF of precipitation.
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where PC1OBS 5 observed PC1, i 5 forecast member,

t 5 lead time from 1 to ;270 days, and N 5 1344

members. To minimize the effect of noise, the mean

bias is further smoothed with 300 passes of a 1–2–1

moving average. Next, the mean bias (not shown) is

removed from each 9-month forecast of PC1.

Each bias-corrected PC1FCS is smoothed with 10 passes

of a 15-day moving average and forecasts of the onset,

demise, duration, and amplitude are determined as ex-

plained above. Since the forecasts for the onset and de-

mise are both produced about a month before the onset,

the lead time for the onset forecast is much shorter than

the lead time for the demise forecast (;1 month versus

;1 month 1 the median duration of ;178 days).

Since the definitions of onset and demise dates pre-

viously discussed involve arbitrary criteria, it is not re-

alistic and useful to forecast exact dates of onsets and

demises of SAMS. In contrast, probabilistic forecasts

of the onset and demise are performed for predefined

time intervals. The following onset windows are defined:

4–8, 9–13, 14–18, 19–23, 24–28 October; 29 October–

3 November; 4–8, 9–13, 14–18, and 19–23 November.

From the observational record (Fig. 2), the median onset

window is on 24–28 October and the climatological

probability of onset on that window is GONSET 5 0.11

(i.e., the number of onsets on this window divided by the

number of onsets). Likewise, the following demise win-

dows are defined: 28 March–1 April; 2–6, 7–11, 12–16,

17–21, 22–26 April; 27 April–1 May; 2–6, 7–11, and 12–

16 May. The median demise date is on 17–21 April and

the climatological probability of demise on that win-

dow is GDEMISE 5 0.21.

Probabilistic forecasts of onset are computed as yi 5

Oi/Mb, where Oi is the number of members forecasting

onset in window i and Mb 5 24 the total number of

members during each September; likewise for forecasts

of the demise of SAMS.

The probabilistic forecasts of the onset were validated

with the Brier skill score (BSS; Wilks 2006) defined as

BSS 5 1 2
BS

BSRef

, BS 5
1

T
�
T

k51
(yk 2 Ok),

BSRef 5 GONSET(1 2 GONSET),

FIG. 3. (top) Shading indicates probabilistic forecasts of SAMS onset. The vertical axis is the onset

date in a 5-day window and the horizontal axis shows seasons (1982–2010). Observed dates of onset

are indicated by ‘‘3.’’ (bottom) As in (top), but for probabilistic forecasts of the SAMS demise. BSS

are indicated at the top of each and represent improvements upon forecasts using climatology.

1886 J O U R N A L O F C L I M A T E VOLUME 25



where BS is the Brier score, yk is the forecast probability,

Ok is the observation (1 5 onset on window i, 0 5 no

onset in window i), T 5 280 forecasts (10 windows 3 28

seasons), BSRef is the reference Brier score, and GONSET

is the climatological probability of onset; similarly for

validation of probabilistic forecasts of demise of SAMS.

Figure 3 (top) shows probabilistic forecasts of the

SAMS onset for each summer season during 1982–2010.

Note that to simplify the procedure, if the probability of

the onset is for earlier (later) than 4–8 October (19–23

November), the forecast is included in the first (last)

time window. The observed onset of SAMS is indicated

by ‘‘3.’’ One notes that the ensemble members have

moderate spread with forecast probabilities concen-

trating between [0.2–0.5]. Furthermore, the onset ver-

ification is typically contained within these values of

probabilities. Interestingly, several hindcasts exhibit re-

markable success in forecasting the onset of SAMS (e.g.,

1984/85, 1991/92, 1993/94, 2002/03, 2003/04, 2007/08, and

2008/09). Nevertheless, some obvious problems are ap-

parent such that the spread among the members is high

and the forecasts completely miss the onset of SAMS

(e.g., 1985/86, 1986/87, 1996/97, 2004/05, 2005/06, 2006/07,

and 2009/10). The BSS of probabilistic forecasts of SAMS

gives 16.5% improvement over climatological forecasts

(i.e., a forecaster would always forecast the median onset

on 24–28 October).

Probabilistic forecasts of SAMS demise as well as

verification dates are shown in Fig. 3 (bottom). Com-

paratively, the spread among ensemble members of the

SAMS demise is less than the spread of forecasts of the

onsets as indicated by probabilities in the [0.1–0.2] in-

terval. As in the previous case, some hindcasts are quite

successful in forecasting the demise of SAMS (e.g., 1993/

94, 1993/94, and 2007/08), while others are much less

skillful (e.g., 1983/84, 1988/89, 2001/02, 2004/05, and 2008/

09). Interestingly, BSS 5 43.3% for probabilistic fore-

casts of the demise, which gives a much higher improve-

ment over climatological forecasts.

The quality of the probabilistic forecasts is further

assessed by computing attribute diagrams (Wilks 2006).

Two calibration distributions are computed: observed

frequency conditioned on the values of the forecasts and

frequency of use of forecasts (or refinement distributions).

The calculations are done separately for probabilistic

forecasts of the onset and demise. Figure 4 (top) shows

the calibration functions for hindcasts of the onset and

indicates that the forecasts are relatively well calibrated

with only moderate conditioned biases. Numbers in pa-

rentheses indicate the relative frequency of the use of

forecasts (i.e., the frequency in which probabilistic fore-

casts in the bin range are issued). Deviations from the 1:1

line occur at forecast probabilities of 0.2 and are indicative

of underforecasting (i.e., observations occur more fre-

quently than forecasted). It is also noteworthy that

because of the spread among the ensemble members,

forecast probabilities greater than 0.42 are never issued.

The calibration functions for hindcasts of the demise are

shown in Fig. 4 (bottom) and indicate significant deviations

FIG. 4. Attribute diagrams of probabilistic forecasts of the SAMS

(top) onset and (bottom) demise. Curves show observed relative

frequency of SAMS onset (demise) conditional on six possible

probability forecasts. Perfect reliability is indicated by 1:1 line. The

numbers in parentheses show the relative frequency of the use of

forecast values p( yi).
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from the 1:1 line for forecast probabilities between [0.2–

0.3] exhibiting overforecasting characteristics. Similarly,

forecast probabilities of the demise greater than 0.5 are

never issued.

Hindcasts of SAMS duration DK for each summer

season are computed as

DK 5 (Demisej �Onseti),

where Demisej and Onseti are the demise and onset time

windows with the largest forecast probabilities. For ex-

ample, suppose the forecasts of the demise windows for

the 1984/85 season are: 0.000, 0.000, 0.0833, 0.125, 0.333,

0.167, 0.167, 0.125, 0.000, and 0.000. Then, the fifth de-

mise window is selected (17–21 May), since there is more

consensus among the ensemble members for that de-

mise window. Likewise, suppose the forecast probabil-

ities for the onset window for the 1984/85 season are

0.042, 0.0833, 0.0417, 0.167, 0.125, 0.250, 0.208, 0.0833,

0.000, and 0.000. Then, the sixth onset window is se-

lected (29 October–3 November). The duration is then

the interval between the onset and demise.

Likewise, hindcasts of amplitudes AK are calculated

as the average amplitude from the ensemble members

that contribute to the largest forecast probabilities of

Demisej and Onseti. Hindcasts and verifications of SAMS

duration (Fig. 5, top) indicate skillful forecasts with a

mean bias of 0.25 days and a root-mean square (rms)

error of 11 days. Likewise, hindcasts and verifications of

SAMS amplitudes (Fig. 5, bottom) show a mean bias of

0.39 and an rms error of 0.14. It is worth noting that

probabilistic forecasts derived from the NCEP CFS re-

forecasts are particularly successful in capturing some

interannual changes in SAMS (e.g., 1982/83 and 1997/98),

since there is a significant change in the SAMS amplitude.

4. Summary and conclusions

This study uses CFSRv2 reforecasts to analyze the skill

of probabilistic forecasts of large-scale characteristics of

SAMS, namely the onset and demise dates, duration, and

amplitude. A simple index is constructed to characterize

these properties and is equally applied to forecasts and

observations. The results indicate that the CFSv2 model

FIG. 5. Hindcasts of SAMS (top) duration and (bottom) amplitude for each summer season

during 1982–2010. CFS forecasts (observations) are indicated by solid lines with open circles

(solid with squares). Biases and root-mean-square errors (rms) are indicated on the insets of each.
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has useful skill to forecast seasonal changes in SAMS.

Probabilistic forecasts of the onset and demise dates have

16.5% and 43.3% improvements, respectively, over cli-

matological forecasts and relatively small biases and er-

rors in durations and amplitudes. Seasonal forecasts of

regional onsets and demises within SAMS are important,

but have not been addressed here. Since EOF1/PC1 re-

present the large-scales aspects of SAMS, other indices

can effectively characterize regional variations in the

onsets and demises over the SAMS (e.g., Liebmann and

Marengo 2001; Nieto-Ferreira and Rickenbach 2011).

The authors are currently investigating these aspects

and results will be reported in the future.
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