
1

Distinguishing the roles of natural and 
anthropogenically forced decadal climate variability: 

Implications for prediction

US CLIVAR Decadal Predictability Working Group

Amy Solomon1,2*, Lisa Goddard3, Arun Kumar4, James Carton5, Clara Deser7, 
Ichiro Fukumori8, Arthur Greene3, Gabriele Hegerl9, Ben Kirtman10, 

Yochanan Kushnir11, Matthew Newman1,2, Doug Smith12, Dan Vimont14, 
Tom Delworth6, Jerry Meehl7, and Timothy Stockdale13

1University of Colorado, USA
2Earth System Research Laboratory, NOAA, USA

3International Research Institute for Climate and Society, USA
4Climate Prediction Center, NOAA, USA

5University of Maryland, USA
6Geophysical Fluid Dynamics Laboratory, NOAA, USA

7National Center for Atmospheric Research, USA
8Jet Propulsion Laboratory, NASA, USA

9University of Edinburgh, UK
10University of Miami and Center for Ocean-Land-Atmosphere Studies, USA

11Lamont Doherty Earth Observatory of Columbia University, USA
12Met Office Hadley Centre, UK 

13European Centre for Medium-Range Weather Forecasts, UK
14University of Wisconsin, USA

For Bulletin of the American Meteorological Society
Submitted November 2009

Capsule: In decadal forecasts, the magnitude of natural decadal variations may 
rival that of anthropogenically forced climate change on regional scales. To assess 
these forecasts, it is necessary to identify what processes contribute to the skill of a 
decadal prediction and how to distinguish between natural and externally forced 
variations. 

*Corresponding author: Amy Solomon, NOAA/ESRL/PSD, 325 Broadway, R/PSD1,
Boulder, CO 80305-3328. amy.solomon@noaa.gov



2

Abstract: Given that over the course of a 10-30 year forecast the magnitude of natural 

decadal variations may rival that of anthropogenically forced climate change on regional 

scales, it is envisioned that initialized decadal predictions will provide important 

information for climate-related management and adaptation decisions. Such predictions 

are presently one of the grand challenges for the climate community. Long experience in 

weather and climate forecasting has shown that forecasts are incomplete without a priori 

assessment of potential forecast skill and forecast reliability. For decadal predictions, this 

requires identifying those physical phenomena -- and their model equivalents or lack 

thereof -- that provide additional predictability and/or cause forecast spread on decadal 

time scales, including an assessment of the physical processes through which 

anthropogenic forcing interacts with or projects upon natural variability. Such a physical 

framework is necessary to provide a consistent assessment (and insight into potential 

improvement) of the decadal prediction experiments planned for the AR5.
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1. Motivation

An ambitious effort to produce near-term, decadal forecasts has begun, motivated 

by the possibility that climate models initialized with ocean observations can capture not 

only the impact of the changing atmospheric composition but also the slow natural 

variations of the climate system.  In the cases where initialization improves the forecast, 

addressing the question of how much that improvement is due to the natural versus the 

forced climate components is critical to understanding the benefits of the initialized 

decadal prediction effort. Untangling the natural and forced components of the climate is 

also necessary because the response to external forcing may project onto or comingle

with natural climate variability. In particular, as the science of decadal prediction is in its 

infancy, one would like to assess and understand (a) the expectations for added regional 

climate information and skill achievable from initialized decadal predictions; (b) what 

physical processes or modes of variability are important to the decadal prediction and 

predictability problem, and whether their relevance may evolve and change with time; (c) 

What elements of the observing system are important for initializing and verifying 

decadal predictions; and (d) in terms of attribution, to what extent are regional changes in 

the current climate due to natural climate variations and is thus transitory, and to what 

extent are they due to anthropogenic forcing, and are likely to continue.  Alternatively, 

one could question to what extent natural climate variations are masking or amplifying 

climate change due to anthropogenic forcing.

As with the preceding decade, the climate experienced in the near-term will be a 

combination of forced climate change and natural variability. As an example, consider 

the prolonged drought conditions of the American West since the late 1990s. Most of the 
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21st century climate change projections used in the AR4 suggest that this region will get 

drier as precipitation decreases and evaporative demand increases with future warmer 

temperatures (Seager et al. 2007).  However, since dry conditions in this part of the world 

are also associated with natural interannual-to-decadal variability in sea surface 

temperatures in both the Atlantic and the Pacific basins (e.g. McCabe et al. 2004; Seager 

et al. 2005; Schubert et al. 2009), how much of the recent drought can be attributed to 

natural variability and how much can be attributed to on-going climate change? An 

answer to this question could greatly aid western water resource managers in developing 

informed adaptation strategies. 

The purpose of this paper is to establish a framework within which the problem of 

separating decadal natural variability from anthropogenically forced variability may be 

systematically addressed. Note that separating decadal natural variability from 

anthropogenically forced variability goes beyond what has already been accomplished in 

previous studies that focus primarily on determining a long-term anthropogenic signal 

(Hegerl et al. 2007), because on decadal time scales anthropogenic effects may be non-

monotonic, regionally dependent, and/or convolved with natural variability. 

Towards establishing a framework to distinguish the roles of natural and 

anthropogenically forced decadal climate variability we address the following questions:  

On decadal time scales, how can we estimate the relative amplitudes, and spatial 

structures, of natural and forced variability? What approaches can be used to separate 

natural decadal variability from anthropogenically forced decadal variations? How do the 

results of the analysis depend on the specific method? What are the limitations for the 

observational data and model simulations? In addressing these questions, we must also 
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consider: How does the fingerprint of forced variability interact with the natural 

variability? 

The Fifth Assessment Report of the IPCC will contain a set of decadal prediction 

experiments (Taylor et al. 2008). It must be clearly emphasized that these are initial 

experiments to assess the current feasibility of decadal predictions and will be conducted 

by modeling centers around the world. The detailed procedures for these prediction 

experiments are left up to each modeling group, for example, how to initialize the 

models, what observational data to use for initialization, how many ensemble members to 

run, and how to present the results (Meehl et al. 2009b). The approaches for separating 

natural and forced variability discussed in this paper, together with their benefits and 

limitations, are intended to serve as a starting point for the assessment of the upcoming 

decadal prediction experiments and to better understand the processes and potential 

predictability of decadal variations generally. 

2. Physical processes involved with decadal time scales in the climate system

To assess naturally occurring decadal variability in the climate system and the 

ability of models to simulate and forecast it, one must identify the relevant physical 

processes. Most studies point to oceanic processes as central to climate memory, 

particularly those related to reservoirs of ocean heat or momentum and related 

atmospheric feedbacks. For example, in midlatitudes sea surface temperatures (SSTs) are 

well described by the stochastic climate model paradigm (Frankignoul and Hasselmann 

1977), where random atmospheric surface forcing with equivalent power at all 

frequencies (a “white noise” spectrum) is integrated by the ocean mixed layer to produce 
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a spectrum which amplifies the power at lower frequencies (a “red noise” spectrum) (see 

Deser et al. 2009a for review).

Separating the regional natural variations from the externally forced signal is 

necessary to answer the next question, that is, whether the natural variability could 

provide additional predictability beyond external forcing or is unpredictable and merely a 

source of climate noise on these timescales. A number of ocean processes, for example, 

overturning and gyre circulations, the triggering of Rossby waves, and advection of 

temperature/salinity anomalies by the mean currents, may provide additional 

predictability by influencing atmospheric variability at the air-sea interface across large 

distances and long time scales.

One example of potentially predictable natural climate variability is produced by

wind-forced extratropical ocean Rossby waves that propagate across an ocean basin and 

create thermocline anomalies near the western boundary, which are then communicated

to the surface through wintertime heat fluxes and wind stress. Schneider and Miller 

(2001) demonstrate that such a process in the North Pacific can yield predictable 

wintertime SST anomalies in the Kuroshio–Oyashio Extension at lead times of up to 3 

years. If these SST anomalies can create a large enough atmospheric response such that a 

wind stress pattern of similar structure and opposite sign is produced in the eastern part of 

the ocean basin, then a quasi-oscillatory cycle of 16-40 year time scales can be produced, 

although modeling studies provide conflicting results on this point (For example, see 

Schneider et al. 2002). 

Another source of predictability may come from the shallow wind-driven 

meridional overturning ocean circulations called subtropical cells (STCs), which connect 
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the subtropical atmosphere to the equatorial region through the ocean in both the Atlantic 

and Pacific basins (see Schott et al. 2004 for review). STCs have been hypothesized to 

play a role in decadal climate variability by the advection of salinity/temperature 

anomalies along STC pathways to the equator (Gu and Philander 1997; Yeager and Large 

2004) or by changes in STC strength, which controls the amount of cold water that 

upwells at the equator, in models (Kleeman et al. 1999; Solomon et al. 2003) and 

observations (McPhaden and Zhang 2002). The decadal time scale in this variability can 

come from the atmospheric variability at the poleward edge of the STCs, or the time it 

takes anomalies to travel to the equator or the spin-up time of the cell -- both of which 

may provide additional predictability. 

A prominent source of natural climate variability is the Atlantic Meridional 

Overturning Circulation (AMOC).  This circulation plays a key role in climate by 

transporting warm upper ocean water northward in the Atlantic and replacing this water 

with southward flowing cold deep water generally below 1000m depth. The Atlantic also 

shows evidence of multi-decadal climate variations generally referred to as the Atlantic 

Multidecadal Oscillation (AMO, Goldenberg et al. 2001), a basin-scale signature in SST 

and a corresponding pattern in wintertime winds and sea level pressure.  The time series 

corresponding to these spatial patterns shows the AMO to have completed two cycles 

since 1900.  Similar fluctuations are also found in many coupled models (e.g. Latif et al. 

2006), and while different models seem to produce fluctuations for different reasons, all 

seem to involve a link to the AMOC.  The presence of feedbacks linking AMOC, SST 

and the atmospheric circulation opens up potential for predictability associated with 

AMOC variations (see Knight et al. 2006). 



8

It has also been recognized that anthropogenic forcing may cause the

aforementioned processes to vary in space and time. For example, it has been suggested 

that anthropogenic forcing caused a slowing of the Pacific STCs between the 1970’s-

1990’s (McPhaden and Zhang 2002).  Also, in the Atlantic, evidence from observational 

studies (see Hurrell et al. 2006) suggests a link between the AMO and AMOC and 

anthropogenic climate change. In most coupled models the link between increasing 

greenhouse gasses and decreasing AMOC is evident as well (Figure 1), where a

weakening of the AMOC corresponds to a reduction in salinity at higher latitudes due to 

greater mid-latitude precipitation in a warmer world.

3. Approaches to separate natural from anthropogenically forced decadal

variations

3.1. Analysis of model ensemble means and variance

An ensemble of climate simulations can be used to identify the response in the 

climate system to external forcing and the variations that are internal to the system. The 

former is referred to as external variability, while the latter is referred to as internal or the 

natural climate variability.  The approach described closely follows a similar approach 

used in seasonal climate predictions, where seasonal atmospheric variability is 

decomposed into external variability due to sea surface temperature (SST) and internal 

variability due to atmospheric processes alone (e.g. Kumar and Hoerling 1995; Rowell et 

al. 1995).

For coupled global circulation models (CGCM) used in climate change 

projections where the time evolution of external forcings (for example, CO2, solar 

variability, volcanic aerosols etc.) is specified, the mean over an ensemble of CGCM 
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simulations is the variability that can be attributed to the specified external forcing, and 

the departure in each climate simulation from the ensemble mean is the internal 

variability due to natural fluctuations. Thus for uninitialized climate change projections, 

the ensemble mean represents the models’ realization of the anthropogenically-forced 

component of the climate. This approach can be applied to any time-average extending 

from seasonal to annual to decadal time scales.

For large enough ensembles with specified external forcing, this approach also 

allows for the investigation of dominant modes of coupled variability, both internally and 

externally forced. Analyses using both long CGCM control simulations that do not 

include time-varying external forcing and of individual ensemble members relative to the 

ensemble mean for the time-varying external forcing also reveal the magnitude and 

spatial structure of natural climate variability in the model. For example, using twin 

experiments with and without time-varying external forcing, Meehl et al. (2009b) found 

that the Interdecadal Pacific Oscillation (IPO) (Power et al. 1999) emerged as a preferred 

mode for both internally and externally forced variability over the Pacific region.

In another example, a 40-member ensemble of CGCM integrations with changing 

atmospheric composition and ozone recovery for the period 2005-2060 is compared 

against a long (10,000 year) unforced control run of the atmospheric model component 

with a specified repeating annual cycle of sea surface temperatures and sea ice conditions 

and no changes in atmospheric composition (Deser et al. 2009b). The ensemble mean 

atmospheric circulation trend, which we interpret as the forced response, exhibits a 

statistically significant weakening of the Southern Hemisphere polar vortex during austral 

summer (positive sea level pressure trends at high latitudes and negative ones at middle 
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latitudes: Figure 2, left panel). The spread of the response among the individual ensemble 

members, obtained from the leading Empirical Orthogonal Function (EOF) of the 40 

individual trend maps, is also characterized by an annular pattern reminiscent of the 

forced response (Figure 2, middle panel). Further, the pattern of the spread closely 

resembles the leading EOF of 56-year trends from the unforced control run (Figure 2, 

right panel).

The probability density functions (pdfs) of the the trends, obtained by projecting 

the individual trend maps from the 40-member coupled ensemble and the 10,000 yr 

control integration onto the leading EOF of the atmospheric control integration (Figure 2, 

bottom panels) show that: 1) external forcing produces a statistically significant shift in 

the mean of the pdf; and 2) the spread of the trends amongst the individual coupled model 

ensemble members can be entirely accounted for by internal atmospheric variability or 

“climate noise”.  These results demonstrate that identification of externally forced multi-

decadal trends can be subject to large uncertainties owing to noise, thus requiring very 

large ensembles.

This approach to separating the natural and externally-forced variability, based on 

ensembles of climate simulations, is a conceptually simple and elegant methodology in 

its formulation.  The approach, however, also has some limitations including the fact that 

estimates of internal and external variability are model dependent and may not be 

realistic.  On the other hand, based on an analysis of simulations from multiple CGCMs, 

and a comparison of total variability against the observed estimates, some confidence in 

the model-based estimates can be gained. However, the approach, by construction, 

requires a large ensemble of simulations and can be computationally taxing.  For 
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example, existing model archives as part of the CMIP3, in general, do not have large 

enough ensembles from individual models for this approach to be a viable.

3.2. Application of detection/attribution studies

Climate change detection and attribution studies aim to distinguish the 

anthropogenically-forced component of the climate. They generally use information 

about the shape of the expected climate response to forcing (the ‘fingerprint’) and are 

targeted to isolating the role of these fingerprints in observed near-term climate change as 

clearly as possible from internal climate variability. Often, this is done using signal 

separation techniques, such as ‘optimal fingerprints’ or best linear unbiased estimators 

(see review in Hegerl et al. 2007). For attribution, all relevant external influences on 

climate must be considered. The attribution methods then attempt, with uncertainty 

estimates, to identify the contribution of each external forcing factor to the observed 

change. The shape of the fingerprints is hereby assumed known, and their magnitude is 

estimated, allowing the results to account for uncertainties such as errors in a model’s 

climate sensitivity to a particular forcing, or in the magnitude of external forcings in 

general. 

The results from attribution methods, however, go further. The best guess and 

uncertainty ranges of the greenhouse gas contribution in the observed temperature 

changes can be used directly to predict future changes (Stott and Kettleborough 2002) 

and has been used, among other methods, to provide uncertainty ranges for future climate 

change in the IPCC assessment (Knutti et al. 2008). Therefore, attribution works both 

retrospectively (understanding past changes) and in the sense of predictions. Indeed, Lee 
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et al. (2006) demonstrated that over a large part of the 20th century, the forced component 

can produce skillful hindcasts of decadal global temperature variability.

The success of fingerprint methods in separating different factors influencing 

climate suggests that they may be useful to separate the influence of initial conditions 

from those of external forcing. While this would lead to some methodological difficulties 

(such as a time-evolving uncertainty ranging from atmospheric variability only to full 

internal climate variability at a point in time when the initial condition no longer carry 

any predictive capacity), such an application should be possible. This would allow for the 

possibility to trace where the initial conditions have made significant differences in 

hindcasts, and how long this influence has lasted.

However, when it comes to applying such approaches on regional scales, a 

number of difficulties loom. One important shortcoming is that on smaller than 

continental scales, the uncertainty in forcings other than greenhouse gases is large – the 

exact time-space pattern of aerosol forcing, land use change forcing, and other forcings is 

often poorly known, and poorly simulated in models. This would hamper the ability to 

reliably attribute successes and failures in regional hindcasts to causes.  When applying to 

variables other than temperature, the difficulties increase dramatically. Only recently, for 

example, has the effect of anthropogenic forcing on precipitation been demonstrated 

(Zhang et al. 2007). However, the multi-model fingerprint produces smaller changes in 

zonal precipitation than observed, indicating that understanding and simulation of 

precipitation variability is still limited.
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3.3. Signal to noise maximizing EOFs

The “signal to noise (S/N) maximizing EOF analysis” is a method to distinguish 

between the climate response to prescribed external forcing, which is common to all 

ensemble members, and internal (natural) climate variability, which is temporally 

uncorrelated between ensemble members. The response common to all ensemble 

members will hereafter be referred to as “the signal” and the latter as “climate noise”. 

Note that this methodology will not help separate the anthropogenic signal from an 

internal signal arising from a predictable process or simple persistence that arises from 

the initial conditions if the latter is common to all ensemble members. This approach is 

important for a robust identification of a signal of unknown shape in the presence of 

vigorous climate noise. A variant of this approach can also enable a robust comparison 

between the modeled signal and the observations (particularly in the case of a hindcast) in 

order to determine whether the signal is present in the observations and to compare the 

amplitude of the signal to the unpredictable background variability. 

The problem of identifying the predictable patterns can be addressed by 

calculating the dominant patterns (EOFs) of the covariance matrix of the ensemble-

average output. The latter is taken to be a sum of two independent covariance matrices: 

one for the signal and the other for the climate noise. When there is spatial structure (i.e., 

spatial correlation) in the climate noise (an obvious assumption in this case) then the 

EOFs of the sum will constitute a mix between the patterns of the signal and those of the 

noise to a level that could be difficult for interpretation. To overcome this problem, one

needs to remove the spatial structure from the noise covariance matrix (i.e., diagonalize 

it). To achieve this, Venzke et al. (1999) and Chang et al. (2000) project the ensemble 
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mean on the leading EOFs of the covariance matrix derived from the pooled deviations of 

the ensemble member outputs from the ensemble mean. The latter matrix thus serves as 

the best estimate of the covariance matrix of climate noise. When the resulting, “pre-

whitened”, ensemble-mean covariance matrix is subjected to an EOF analysis the loading 

patterns become free of the influence of climate noise. As Venzke et al. (1999) 

demonstrate, the EOFs of the pre-whitened covariance matrix can then be applied to the 

pre-whitening operator to determine the patterns that maximize the ratio of ensemble-

mean variance to within-ensemble variance and thus form the optimally determined 

patterns of forced and predictable variability. 

The S/N maximizing EOFs procedure was applied in several similar applications, 

where the investigators needed to identify the response to external or prescribed 

conditions in an ensemble of GCM integrations (e.g., Terray and Cassou 2002, Tippet 

and Giannini 2006). Most recently, Ting et al. (2009) looked for a way to separate 

natural, North Atlantic, decadal and multidecadal 20th century SST variability from the 

change in the Basin SST due to anthropogenic forcing (and other external causes). 

Normally, North Atlantic natural variability, in particular Atlantic multidecadal 

variability (AMV), is identified as the deviation from linearly detrended observations. To 

improve on this simple approach, Ting et al. (2009) used the S/N maximizing EOFs 

procedure to determine the externally forced signal in six CMIP3 ensembles with several 

different CGCMs. Starting with SST deviations from, respectively, observed and each 

model’s climatology, they showed that the decadal variations in the observed, North 

Atlantic average SST time series are out of the range of the different model-based 

estimate of the forced signal in the Basin (see Figure 3). They defined the AMV signal as 
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the difference between the observed North Atlantic anomaly and the multi-model average 

of the forced signal. The results of this study indicate that this procedure can be useful for 

attribution studies associated with decadal prediction process. In a complementary 

analysis, Ting et al. (2009, see Figure 3 there) use a more common ANOVA procedure to 

show that in the 20th century, the forced climate signal amounts to less than 30% of the 

total variance outside of the tropics (30°S-30°N), including over land areas.

In summary, S/N maximizing EOF analysis is useful for clearly identifying the 

forced signal in an ensemble of forced CGCM integrations, in the presence of significant 

levels of climate noise. The method cannot by itself provide separate information on the 

patterns of externally forced variability and any predictable or persistent patterns related 

to the initialized conditions, as those should be part of the output common to all ensemble 

members. The method also depends on the ability of the model to span the range of 

natural variability observed in nature as well as provide a bias-free simulation of forced 

variability. Discrepancies between models and observations along these lines should be 

dealt with in other ways.

3.4. Linear inverse models

An empirical technique that fits and then tests a multivariate red noise model to 

the data, called linear inverse modeling (LIM) (e.g., Penland and Sardeshmukh 1995), 

provides an excellent approximation of the observed evolution of SST anomalies. For 

example, a LIM constructed from the lag-1 auto-covariance matrix of weekly tropical 

anomalies (Newman et al. 2009) more faithfully reproduces the entire observed power 

spectrum on seasonal-to-interannual time scales of the dominant pattern of tropical SST 

variability, within the 95% confidence interval, than do the corresponding spectra from 
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virtually all ensemble members of the “20th-century” (20c3m) CMIP3 experiments 

(Randall et al. 2007). In addition, a LIM constructed with annual means of Pacific basin 

SSTs captures the power spectra of the data, including interannual and interdecadal 

spectral peaks that are significant relative to univariate red noise, encompasses prominent 

North Pacific regime shifts of the period (Newman 2007), and shows the Pacific Decadal 

Oscillation (PDO; Mantua et al. 1997) is not a single physical mode but a superposition 

of a number of processes with different dynamical origins, only one of which may have 

predictability greater than 2 years (Newman et al. 2003; Schneider and Cornuelle 2005; 

Newman 2007).

Figure 4 shows the three least damped (and most predictable) eigenmodes of the 

dynamical operator from the LIM determined from annual mean Pacific basin SSTs, and 

their corresponding time series. The third eigenmode has characteristics of a basin-wide 

“decadal ENSO” pattern with PDO signature in the North Pacific (e.g., Zhang et al. 1997; 

Deser et al. 2004), but since its decay time is far shorter than its period it does not 

actually represent a regular oscillation. As a result, little long-range forecast skill is 

associated with this eigenmode. In fact, virtually all long-range LIM predictability comes 

from the two leading stationary eigenmodes. The time series of the leading eigenmode 

has a 100-yr trend that is very unlikely, but not impossible, to have occurred by chance 

relative to multivariate red noise. The second eigenmode, which has no centennial trend, 

has a pattern somewhat similar to the multidecadal signal found by Deser et al. (2004) 

(see also D’Arrigo et al. 2006), although their result may additionally include a 

contribution from the less persistent decadal ENSO eigenmode. The combined effects of 
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these two eigenmodes alone dominate the observed patterns of Pacific SST trend over 

both the entire century and the last fifty years.

LIMs constructed from the output of each 20c3m ensemble member suggest that 

the models might be underestimating potential predictability of natural variability. In 

most model runs, the leading eigenmode is usually about as persistent as the observed 

leading eigenmode in Figure 4a, and appears strongly related to the long-term trend, 

although some structural differences exist between the observed and modeled 

eigenmodes (Figure 5a). However, in virtually all of the 20th century simulations the 

second eigenmode is not only poorly captured but is also strikingly less persistent than in 

the observed LIM (Figure 5b). Most GCMs additionally produce one or two eigenmodes 

with a period of about 10-30 yrs but very limited predictability. However, these patterns 

bear only a weak resemblance to the observed decadal ENSO eigenmode, and in some 

cases the CGCMs split this type of decadal variability into separate tropical and North 

Pacific eigenmodes (not shown), likely a consequence of all the GCMs having relatively 

weak tropical SST decadal variability and having North Pacific SSTs apparently too 

independent of the Tropics (Newman 2007). 

The inability of the 20th century runs to reproduce a second persistent eigenmode, 

let alone one whose structure is similar to Figure 5b, suggests that there remains 

predictable decadal variability yet to be captured by the models. Unfortunately, it is 

unclear how anthropogenic forcing affects this analysis. Does it introduce a new type 

(i.e., a new mode) of variability, does it modify some of the eigenmodes, or does it select 

for (or against) some of the eigenmodes? These questions cannot be easily addressed, if 

at all, in an analysis of the limited data record alone. We might gain some insight by 
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comparing LIMs of the 20th century runs with their corresponding control runs. Since 

neither of the two leading eigenmodes from the control LIMs is very persistent (Figure 5; 

also Newman 2007), it is then tempting to interpret the first observed eigenmode as

related to anthropogenic forcing and the second as representing natural variability. On the 

other hand, such interpretation is limited given the deficiencies of the overall GCM 

simulation of 20th century decadal variability.

3.5. Use of paleo-climate data

Paleo-climate data derived through the analysis of “proxies” can play an important 

role in the delineation of natural climate variability. When comparing model internal 

variability with paleo-climate reconstructions it is nevertheless important to keep in mind 

that reconstructions reflect both variability created within the climate system, and 

variability imposed on the system by natural forcings, such as volcanic eruptions (Tett et 

al., 2007; Hegerl et al., 2007). The characterization of phenomena at decadal and longer 

timescales requires correspondingly long records. Proxy data are valuable in part because 

their length may be many times that of the instrumental record, which is necessary to 

distinguish between regime-like and autoregressive behavior of the climate (e.g. 

Overland et al. 2006). Since these records cover centuries, when anthropogenic effects on 

climate were small to non-existent, they can be used to provide information on the spatial 

and temporal signatures of natural variability. Although the hypothesis has been 

advanced that anthropogenic influence on climate began as early as 8 kya (Ruddiman 

2003, 2005), this idea has not been universally accepted (Brook 2009), and the climate of 

preindustrial times, as inferred from proxy records, is generally taken to be free of 

significant anthropogenic influence.
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Climate proxies are surrogates: tree-ring width, relative abundance of an isotopic 

species in an ice core or the ratio of trace constituents in an aragonite coral skeleton, to 

list a few examples. For climate studies such records must first be calibrated, i.e., related 

in a quantitative manner to appropriate instrumental data over some common period of 

record. A particular issue of concern for detection and attribution studies is the loss of 

low-frequency variance when reconstructions are projected back in time, since the

consequent underestimation of natural variability would increase the likelihood of false 

detection of an anthropogenic “fingerprint.” A calibration method that preserves low-

frequency variance is discussed by Hegerl et al. (2006), in a study that uses tree-ring data 

to estimate natural variability of northern hemisphere temperature.

Proxies tend to be associated by type with particular environments – corals with 

low-latitude marine settings, tree rings with temperate terrestrial sites, and so on. 

However, different proxy types may be combined in order to obtain more complete 

spatial sampling (Mann 2002). Also, inferences may be made about teleconnections or 

contemporaneous variability, and how those have varied in past centuries, by comparing 

paleo-records between regions. For example, coral-based reconstructions of tropical 

variability have been compared with tree-ring-derived records of the subtropics (Cole et 

al. 2002; D’Arrigo et al. 2005), examining such relationships as La Nina events and US 

drought. 

Although most paleo-records consist of time series associated with single 

geographical points, tree-ring data in particular are fairly extensive, and can be used for 

climate model validation in the spatially distributed sense (e.g., Collins et al. 2002, 

Bradley 1999). Paleo-records can also be used to indicate the temporal character of 
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natural variability; Prairie et al. (2008) utilized a tree-ring based reconstruction of 

Colorado river streamflow to infer wet- and dry-state switching characteristics. A number 

of studies utilizing tree-ring data have focused on the regime-like behavior often 

attributed to Pacific decadal variability (PDV -- Minobe 1997; Biondi et al. 2001) or the 

quasi-periodic behavior of the Atlantic Multidecadal variability (AMV -- Gray et al. 

2004). The records used in these studies had lengths of order 400 yr.  Thus paleo-records, 

by providing long histories, yield information on regional characteristics of low-

frequency natural variability, which may be useful in its own right or as a check or 

constraint in validating the natural variability simulated in models.

3.6. Analysis of initialized decadal prediction studies

Natural and forced variability may also be separated to a certain extent by 

comparing parallel sets of initialized and uninitialized hindcast experiments made with 

the same climate model (Smith et al. 2007; Keenlyside et al. 2008; Pohlmann et al. 2009). 

If all external forcing (i.e, from anthropogenic greenhouse gases and aerosols, solar 

irradiance and volcanic eruptions) is identical, then differences between the two sets of 

hindcasts arise purely from initialization. Since natural internal variability can only be 

predicted by starting from its correct phase, improved skill in initialized over 

uninitialized hindcasts may indicate skillful prediction of some aspects of natural 

variability. However, improved skill in initialized hindcasts may also arise from 

removing biases that exist in uninitialized climate models forced by observed changes in 

external forcing. This source of additional skill is potentially important for improving 

predictions of climate change commitment or short-term response to volcanic eruptions, 
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but would need to be taken into account in any attempt to separate natural and forced 

variability.

There are also other issues to be considered when analyzing hindcasts. Climate 

models cannot be initialized perfectly with incomplete observations. This usually leads to 

an initialization shock, during which the model rapidly adjusts to imbalances introduced 

by imperfect initialization, causing a degradation of forecast skill that could mask any 

signals from natural variability. Furthermore, initializing and assessing decadal hindcasts 

is severely hampered by the sparsity of historical sub-surface ocean observations. For 

example, natural variations of the Atlantic meridional overturning circulation (AMOC) 

are predictable in idealized model experiments (Collins et al. 2006), but our ability to 

achieve such predictability in reality, and hence identify the signal of natural variability, 

is compromised by the lack of historical ocean observations. 

Model errors are also an important source of uncertainty in decadal forecasts 

(Hawkins and Sutton 2009), potentially masking any signals of natural variability. For 

these reasons, a lack of improved skill in initialized over uninitialized hindcasts does not 

necessarily imply a lack of potentially predictable natural variability. It is also possible 

that unrealistic model responses to imperfect observations (Acero-Schertzer et al. 1997; Ji 

et al. 2000; Masina et al. 2001) could lead to apparent hindcast skill that could be 

incorrectly attributed to natural variability. Ultimately these issues must be overcome in 

order to capitalize on the predictability of natural variability to improve decadal forecasts. 

If this can be achieved then improvements in skill arising from initialization should be 

consistent with the signals of natural variability identified by the other methods discussed 

in this section.
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4. Challenges
4.1. Interaction between natural and externally-forced variability

As discussed earlier, the response to external forcing may resemble the natural 

modes of variability on regional and hemispheric scales. This was seen to be the case in 

the modeling study of Meehl et al. (2009a), where natural and externally forced patterns 

of variability with similar structure contributed to the mid 1970’s climate shift over the 

Pacific basin, from relatively cool to relative warm conditions along the equator. Indeed, 

they argued that an anthropogenically-forced shift would have occurred in the 1960’s if it 

were not for the presence of large amplitude natural variations that delayed the shift into 

the 1970’s. 

Just how external forcing interacts with natural modes of variability remains an 

important but unresolved issue. The process may be fundamentally linear with external 

forcing selecting certain natural internal modes due to their inherent time scales and 

spatial structures or nonlinear where the impact of the external forcing on the modes of 

variability has a net effect on the long-term trend (for example, see Branstator and Selten 

2009). In the linear case, the forcing and the response may not have similar patterns due 

to the non-normal growth of natural modes. In the nonlinear case, the external forcing

may cause changes in the frequency of occurrence of climate modes with or without 

changing the spatial structure of the leading modes of variability (see Corti et al 1999; 

Hsu and Zwiers 2001; Brandefelt 2006; Branstator and Selten 2009).

4.2. Observational uncertainties 

Verification of the forced component of 20th century climate trends simulated in 

model experiments may be hampered by the limited sampling in both space and time of 

the observations and proxy records. In particular, knowledge of the spatial patterns and 
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magnitudes of climate trends over the oceans is hampered by the uneven and changing 

distribution of commercial shipping routes (Figure 6). The paucity of data over the 

Tropical Pacific Ocean before ~1960 is especially noteworthy given the influence of this 

region on global climate.  Limited observational sampling in the marine record also 

affects the quality of globally-complete reconstructed data sets based on optimal 

interpolation techniques. An example of the impact of observational uncertainties on 20th

century sea surface temperature (SST) trends is shown in Figure 7 based on an un-

interpolated data set (HadSST2: Rayner et al., 2006) and two optimally-interpolated 

reconstructions (HadISST: Rayner et al., 2003; and ERSSTv3: Smith et al., 2008). 

Although trends from the three data sets share many features in common, such as a 

strengthening of the equatorial Pacific zonal temperature gradient (Karnauskas et al. 

2009), there are also differences most notably the eastern equatorial Pacific which shows 

cooling in HadISST and warming in HadSST2 and ERSSTv3 (see also Vecchi et al., 

2008). In addition, non-physical ship track signatures are discernable in the trends based 

on HadSST2. These observational sampling issues underscore the challenge of providing 

a robust target for model validation of 20th century surface marine climate trends.

4.3. Modeling uncertainties 

Another challenge is that the spatial structure and dominant time scales of natural 

variations differs across models (see discussion of Figure 5). An additional challenge is 

that coupled climate models produce a range of responses, in space and time, to 

anthropogenic radiative forcing, as estimated by the first EOF of low-pass annual mean 

sea surface temperature anomalies (SSTs) from three coupled climate model simulations 

of the 20th Century (Figure 8). Identifying to what extent the temporal variations in the 
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climate models’ forced signal (as seen in the principal component time series of the first 

EOF, Figure 8b,d,f,h) are due to the interaction between the forced signal and natural 

variability will improve our understanding of why decadal predictions differ across 

models. This understanding can be used to reduce model biases and potentially improve 

the skill of initialized forecasts.

In the tropical Pacific, the historical changes and future response of the mean state 

to imposed anthropogenic forcing has been a subject of debate.  Different mechanisms 

disagree on the expected sign of change in the zonal SST gradient in tropical Pacific 

(Knutson and Manabe 1995; Cane et al. 1997; Clement and Seager 1999) in response to 

anthropogenic forcing.  The observational record does little to clarify the situation, as 

trends in different observed SST records differ in even their sign (see Figure 7). Models 

that simulate the largest El Niño-like response also have the least realistic simulations of 

ENSO variability (Collins 2005).  Indeed, Collins (2005) shows that when models are 

weighted by the fidelity with which they simulate ENSO variability, there is little change 

in the zonal SST gradient in the Pacific.  

Different climate model responses to radiative forcing cause differences in the 

slowly varying base state of the oceans by changing the strength of gyres and overturning 

circulations and the spatial pattern of upper ocean heat content. Changes in the ocean 

base state in turn may alter predictability of natural variability by changing the advective 

time scale of density/salinity anomalies and pathways between the extratropics and 

tropics. Models need to reproduce the observed spatial patterns of forced variability in 

order to simulate basin and regional scale changes, otherwise ocean initialization will 

have limited usefulness. For example, anthropogenic sources are hypothesized to force 
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the winds that drive the North Pacific Gyre Oscillation and the concomitant nutrient 

concentrations that control the marine ecosystem (DiLorenzo et al. 2008). Initializing the 

ocean state should improve predictability due to thermal inertia in the upper ocean in the 

short term but without the correct winds the model will drift away from this state.

4.4. Uncertainties in ocean state initialization

The available analyses of ocean observations span a wide range of products aimed

at climate studies as well as ocean nowcasting and short-term forecasting applications.  

The products differ in the underlying models and estimation methods that are used, as 

well as the suite of observations that are assimilated.  Many of the analysis products span 

multi-decades from the 1980s to the present with some also reaching back to the 1950s, 

providing a convenient means for retrospective studies of climate variability.  Assessing 

the relative accuracy and fidelity of the analyses depend in part on the particular metrics 

that are used and is an active area of study.  While many of the syntheses employ 

estimation methods based on those first developed in weather forecasting, some employ 

so-called smoothing methods that estimate the source of the model inaccuracies corrected 

by the combination with data. In addition, the assimilation of Argo data in these analyses 

may remove biases in the upper ocean and allow for the initialization of ocean 

circulations and transports, for example see Forget et al. (2007).

5. Developing a framework to assess decadal predictions

Given that over the course of a 10-30 year forecast the magnitude of natural 

decadal variations may rival that of anthropogenically forced climate change on regional 

scales, it is envisioned that initialized decadal predictions will provide important 

information for climate-related management and adaptation decisions. Such predictions 
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are presently one of the grand challenges for the climate community. Long experience in 

weather and climate forecasting has shown that forecasts are incomplete without a priori 

assessment of potential (ensemble mean) forecast skill and forecast reliability. This will 

be no less true for decadal forecasts if they are to be useful. That is, there is very limited 

utility in merely generating a long-term forecast from some specified initial conditions 

and estimate of external forcing. Even crudely estimating predictability for a forecast 

system requires some understanding of the sources for potential skill, especially when 

expected skill depends upon the initial conditions themselves, and the expected forecast 

spread, even when such spread is unrealizable due to small ensemble size. For decadal 

predictions, this requires identifying those physical phenomena -- and their model 

equivalents or lack thereof -- that provide additional predictability and/or cause forecast 

spread on decadal time scales, including an assessment of the physical processes through 

which anthropogenic forcing interacts with or projects upon natural variability. Such a

physical framework is necessary to provide a consistent assessment of the differing 

decadal prediction experiments planned for the AR5.

The main conclusion we draw from the body of work reviewed in this paper is 

that distinguishing between natural and externally forced variations is a very difficult 

problem that is nevertheless key to any assessment of decadal predictability. Note that all 

these techniques are generally limited by some assumption intrinsic to their analysis, such 

as the spatial characteristics of the anthropogenic signal, independence of noise from 

signal, or statistical stationarity; also, all the techniques utilize either short and potentially 

inaccurate observational datasets on the one hand and/or lengthier CGCM datasets based 

on flawed models on the other. There is a clear need for new techniques and more 
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sophisticated theoretical models developed specifically with the anthropogenic/natural 

variability separation problem in mind. This assumes, of course, that the anthropogenic 

signal can be separated, which at least some theories of the climate response to external 

forcing might suggest to be impossible. On the other hand, some hope in this regard may 

be found in the fairly linear decomposition of global mean temperature evolution 

generated by different external forcings in the AR4 20th century simulations (Hegerl et al. 

2007), although it remains unclear how well this holds on regional scales. Both old and 

new techniques need to be simultaneously applied to both the long control CGCM runs 

and both the 20th and 21st century simulations, which will serve as a critical testbed for 

analysis of the relationship between natural and anthropogenic variability. These 

strategies can also be applied to existing decadal prediction experiments and climate 

change projections in order to develop a series of metrics that can be used to assess the 

predictions that will be done for the AR5. These metrics need to quantify, to the extent 

possible with limited ensemble sizes, the impact of different initialization strategies, 

model biases, and errors in model physics on the response to external forcing and the 

predictable and unpredictable natural variations.  

A reasonable starting point for these metrics is to focus on decadal predictability 

due to ocean processes, as discussed in Section 2. This requires analysis that assesses the 

spatial patterns and associated time scales of natural variations, and their potential change 

in structure and frequency due to external forcing – work on this can begin by comparing 

the existing climate change projections against their companion control runs. In addition, 

since externally forced SSTs play an important role in climate variations over land 

through atmospheric teleconnections it is necessary to develop metrics that assess the 
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spatial pattern of externally forced SST variability, as well as, upper ocean structure and 

variability. Further, signal to noise ratios increase for integrated ocean fields, such as 

upper ocean heat content. To quantify signal to noise ratios it is necessary to develop 

metrics such as the pdfs described in Section 3.1. The development of these metrics will 

help guide the assessment of decadal forecasts and will provide a framework for 

identifying potential directions to improve our ability to make decadal predictions.
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FIGURE CAPTIONS

Figure 1. Strength of the AMOC at 30oN in a variety of 19 AR4 coupled models forced 

with observed greenhouse gas and aerosol forcing until 1999 and the SRES A1B scenario 

of greenhouse gas forcing after 1999.  Bars on the left show various observational 

estimates.  From Meehl et al. (2007).  

Figure 2. Projected November-February sea level pressure trends during 2005-2060 over 

the Southern Hemisphere. Top left: Forced 40-member coupled model ensemble mean. 

Top middle: Leading EOF of the deviation of each coupled model ensemble member’s 

trend from the coupled model ensemble mean trend. Top right: Leading EOF of a 178-

member ensemble of 56-yr trends from a 10,000 yr atmospheric model control 

integration. Bottom left: PDF of the trends in the index of the Southern Annular Mode 

from each coupled model ensemble member (red bars) and from each atmospheric 

control member (gray). Bottom right: As in bottom left, but the coupled model ensemble 

mean trend has been removed from each individual coupled model ensemble member. 

From Deser et al. (2009b).

Figure 3. (a) Projection of SST averaged in the North Atlantic Basin onto the leading 

S/N-maximizing PC in each of the participating models (see list in Figure and 

information in Ting et al., 2009). Each model PC is depicted by a different color and the 

dashed line is the ensemble averaged. The observed SST average, suggesting a

superposition of a forced trend and internal, multi-decadal variability, is shown in the 
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solid black line. (b) The observed AMO index constructed by subtracting from the 

observed North Atlantic SST average the model estimates of the forced NA SST shown 

in the top panel. The black dashed line in the bottom panel is the determined from the 

forced response average across all six participating models. From Ting et al. (2009).

Figure 4. Leading empirical eigenmodes and their corresponding time series (right) from 

the LIM of annual-mean HadISST SST anomalies. The LIM is constructed as in Newman 

(2007) except the EOF basis is determined over the entire Pacific domain (20oS-60oN); 

the leading 12 PCs are retained, explaining 92% of the variance in both the tropics and in 

the North Pacific, unlike Newman where under two-thirds of the North Pacific variance 

was retained. Contour interval is the same in all panels but is arbitrary. Red (blue) 

shading indicates positive (negative) values; zero contour is removed for clarity. a) 

Leading eigenmode, stationary with decay time of 13 yrs. b) Second eigenmode, 

stationary with decay time of 6.4 yrs. c) Most energetic phase of third (“decadal ENSO”) 

eigenmode, propagating with period 16 yrs and decay time of 2.1 yrs.

Figure 5. Comparison between the a) leading and b) second observed eigenmodes with 

the corresponding eigenmodes based on each 100-yr ensemble member from the 20th

century AR4 coupled GCMs (blue) and the associated control runs (green). Both plots 

show the decay time scale of each modeled eigenmode vs. its pattern correlation with the 

corresponding observed eigenmode.  The red circle in each panel indicates the observed 

eigenmode.
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Figure 6. Distribution of surface marine observations from the International 

Comprehensive Ocean-Atmosphere Data Set, shown as the percent of months with at 

least 1 observation per 2º latitude x 2º longitude grid box during the 20 year period 

indicated.  Adapted from Deser et al. (2009a).

Figure 7. Twentieth century sea surface temperature trends (C 100 yr-1) from the un-

interpolated HadSST2 (top), reconstructed HadISST (middle), and reconstructed 

ERSSTv3 datasets, based on monthly anomalies during 1900-2008. A minimum of 3 

months/decade in each decade was required to compute a trend from the HadSST2 data 

set.  From Deser and Phillips (2009).

Figure 8. First empirical orthogonal function (EOF) and associated principal component 

of annual mean sea surface temperature from observations and three 20th Century 

simulations for years 1890-1999. (A,B) The Hadley Centre sea surface temperature data 

set (HadISST, Rayner et al., 2003). (C,D) The National Center for Atmospheric 

Research/Department of Energy Parallel Climate Model Version 1 (NCAR/PCM1,

http://www.cgd.ucar.edu/pcm/). (E,F) The Geophysical Fluid Dynamics Laboratory 

Climate Model version 2.1 (GFDL/CM2.1, Delworth et al. 2006). (G,H) The National 

Center for Atmospheric Research Community Climate System Model version 3.0 

(NCAR/CCSM3.0, http://www.ccsm.ucar.edu/models/ccsm3.0). All data has been 

smooth with a 10-year low-pass Lanczos filter using 21 weights. EOF patterns are 

normalized. Principal components are in units of °C. The percent in the upper right of 

each figure indicates the amount of variance explained by each pattern. Note that the 
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principal component time series from the climate model simulations show fluctuations 

with larger amplitude than observations, all of which fluctuate on different time scales.
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Figure 1. Strength of the AMOC at 30oN in a variety of 19 AR4 coupled models forced 

with observed greenhouse gas and aerosol forcing until 1999 and the SRES A1B scenario 

of greenhouse gas forcing after 1999.  Bars on the left show various observational 

estimates.  From Meehl et al. (2007).  
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Figure 2. Projected November-February sea level pressure trends during 2005-2060 over 

the Southern Hemisphere. Top left: Forced 40-member coupled model ensemble mean. 

Top middle: Leading EOF of the deviation of each coupled model ensemble member’s 

trend from the coupled model ensemble mean trend. Top right: Leading EOF of a 178-

member ensemble of 56-yr trends from a10,000 yr atmospheric model control 

integration. Bottom left: PDF of the trends in the index of the Southern Annular Mode 

from each coupled model ensemble member (red bars) and from each atmospheric 

control member (gray). Bottom right: As in bottom left, but the coupled model ensemble 

mean trend has been removed from each individual coupled model ensemble member. 

From Deser et al. (2009b).
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Figure 3. (a) Projection of SST averaged in the North Atlantic Basin onto the leading 

S/N-maximizing PC in each of the participating models (see list in Figure and 

information in Ting et al., 2009). Each model PC is depicted by a different color and the 

dashed line is the ensemble averaged. The observed SST average, suggesting a 

superposition of a forced trend and internal, multi-decadal variability, is shown in the 

solid black line. (b) The observed AMO index constructed by subtracting from the 

observed North Atlantic SST average the model estimates of the forced NA SST shown 

in the top panel. The black dashed line in the bottom panel is the determined from the 

forced response average across all six participating models. From Ting et al. (2009).
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Figure 4. Leading empirical eigenmodes and their corresponding time series (right) from 

the LIM of annual-mean HadISST SST anomalies. The LIM is constructed as in Newman 

(2007) except the EOF basis is determined over the entire Pacific domain (20oS-60oN); 

the leading 12 PCs are retained, explaining 92% of the variance in both the tropics and in 

the North Pacific, unlike Newman where under two-thirds of the North Pacific variance 

was retained. Contour interval is the same in all panels but is arbitrary. Red (blue) 

shading indicates positive (negative) values; zero contour is removed for clarity. a) 

Leading eigenmode, stationary with decay time of 13 yrs. b) Second eigenmode, 

stationary with decay time of 6.4 yrs. c) Most energetic phase of third (“decadal ENSO”) 

eigenmode, propagating with period 16 yrs and decay time of 2.1 yrs.
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Figure 5. Comparison between the a) leading and b) second observed eigenmodes with 

the corresponding eigenmodes based on each 100-yr ensemble member from the 20th

century AR4 coupled GCMs (blue) and the associated control runs (green). Both plots 

show the decay time scale of each modeled eigenmode vs. its pattern correlation with the 

corresponding observed eigenmode.  The red circle in each panel indicates the observed 

eigenmode.
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Figure 6. Distribution of surface marine observations from the International 

Comprehensive Ocean-Atmosphere Data Set, shown as the percent of months with at 

least 1 observation per 2º latitude x 2º longitude grid box during the 20 year period 

indicated.  Adapted from Deser et al. (2009a).
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Figure 7. Twentieth century sea surface temperature trends (C 100 yr-1) from the un-

interpolated HadSST2 (top), reconstructed HadISST (middle), and reconstructed 

ERSSTv3 datasets, based on monthly anomalies during 1900-2008. A minimum of 3 

months/decade in each decade was required to compute a trend from the HadSST2 data 

set.  From Deser and Phillips (2009).
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Figure 8. First empirical orthogonal function (EOF) and associated principal component 
of annual mean sea surface temperature from observations and three 20th Century 
simulations for years 1890-1999. (A,B) The Hadley Centre sea surface temperature data 
set (HadISST, Rayner et al., 2003). (C,D) The National Center for Atmospheric 
Research/Department of Energy Parallel Climate Model Version 1 (NCAR/PCM1,
http://www.cgd.ucar.edu/pcm/). (E,F) The Geophysical Fluid Dynamics Laboratory 
Climate Model version 2.1 (GFDL/CM2.1, Delworth et al. 2006). (G,H) The National 
Center for Atmospheric Research Community Climate System Model version 3.0 
(NCAR/CCSM3.0, http://www.ccsm.ucar.edu/models/ccsm3.0). All data has been 
smooth with a 10-year low-pass Lanczos filter using 21 weights. EOF patterns are 
normalized. Principal components are in units of °C. The percent in the upper right of 
each figure indicates the amount of variance explained by each pattern. Note that the 
principal component time series from the climate model simulations show fluctuations 
with larger amplitude than observations, all of which fluctuate on different time scales. 
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