
On Constraining Estimates of Climate Sensitivity with Present-Day Observations
through Model Weighting

DANIEL KLOCKE*

Max Planck Institute for Meteorology, Hamburg, Germany

ROBERT PINCUS

Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth

System Research Laboratory/Physical Sciences Division, Boulder, Colorado

JOHANNES QUAAS
1

Max Planck Institute for Meteorology, Hamburg, Germany

(Manuscript received 8 November 2010, in final form 5 May 2011)

ABSTRACT

The distribution of model-based estimates of equilibrium climate sensitivity has not changed substantially

in more than 30 years. Efforts to narrow this distribution by weighting projections according to measures of

model fidelity have so far failed, largely because climate sensitivity is independent of current measures of skill

in current ensembles of models. This work presents a cautionary example showing that measures of model

fidelity that are effective at narrowing the distribution of future projections (because they are systematically

related to climate sensitivity in an ensemble of models) may be poor measures of the likelihood that a model

will provide an accurate estimate of climate sensitivity (and thus degrade distributions of projections if they are

used as weights). Furthermore, it appears unlikely that statistical tests alone can identify robust measures of

likelihood. The conclusions are drawn from two ensembles: one obtained by perturbing parameters in a single

climate model and a second containing the majority of the world’s climate models. The simple ensemble

reproduces many aspects of the multimodel ensemble, including the distributions of skill in reproducing the

present-day climatology of clouds and radiation, the distribution of climate sensitivity, and the dependence of

climate sensitivity on certain cloud regimes. Weighting by error measures targeted on those regimes permits

the development of tighter relationships between climate sensitivity and model error and, hence, narrower

distributions of climate sensitivity in the simple ensemble. These relationships, however, do not carry into the

multimodel ensemble. This suggests that model weighting based on statistical relationships alone is un-

founded and perhaps that climate model errors are still large enough that model weighting is not sensible.

1. Model error and climate sensitivity

Equilibrium climate sensitivity, defined as the response

in global-mean near-surface temperature to a doubling

of atmospheric CO2 concentrations from preindustrial

levels, is a useful proxy for climate change because many

other projections scale with it. Climate models produce

a range of estimates of climate sensitivity that can them-

selves be sensitive to fairly small changes in model for-

mulation (Soden et al. 2004). The distribution of these

projections has remained roughly the same for more than

30 years (cf. Charney et al. 1979; Meehl et al. 2007b).

One might expect that with improvements of climate

models over time, projections would converge to a nar-

rower distribution, but this has not yet proved true:

successive generations of climate models have produced

improved simulations of the present-day climate (Reichler

and Kim 2008) but commensurate distributions of climate

sensitivity (Knutti et al. 2008).
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The distribution might also be narrowed by invoking

Bayes’ theorem and weighting each prediction of climate

sensitivity by the likelihood of the corresponding model

(Murphy et al. 2004; Stainforth et al. 2005; Knutti et al.

2010). This likelihood is usually modeled as a decreasing

function of model error, defined as some measure of the

difference between long-term averages of observations

and model simulations of the present-day climate.

Weighting ensembles is fraught with theoretical issues,

including the impact of the sampling strategy used to

construct the initial ensemble (Frame et al. 2005) and

questions of how to treat an ensemble in which members

have varying degrees of interdependence (e.g., Knutti et al.

2010; Tebaldi and Knutti 2007). But weighting projections

has so far failed to substantially narrow distributions of

climate sensitivity for a more practical reason: in current

ensembles of climate models, global measures of error are

not systematically related to climate sensitivity or the un-

derlying feedbacks (Knutti et al. 2006; Murphy et al. 2004;

Piani et al. 2005; Sanderson et al. 2008; Collins et al. 2011).

Any observable measure of present-day error that is

correlated with climate sensitivity in a given ensemble of

climate projections, if used as a weight, would narrow the

distribution of climate sensitivity estimates. This makes it

tempting to seek such measures. But, if the systematic

relationships between the present day and the future in an

ensemble of models have causes that are not shared by the

physical climate system, weighting by such a measure can

introduce substantial projection errors (Weigel et al. 2010).

Here we provide a practical demonstration of how

hard it can be to determine whether relationships be-

tween the present day and the future in a given ensemble

have a more general basis. We consider two ensembles of

climate models: one containing a wide range of models

and another employing a single model with varied values

of closure parameters. We use the simpler single-model

ensemble as a proxy for understanding the behavior of

the more complicated multimodel ensemble, much as one

might use the more complicated ensemble to understand

the real world. Section 2 describes the construction of the

simple ensemble; we then show that this simple ensemble

reproduces several relevant aspects of the multimodel

ensemble. Section 4 describes the construction of a metric

of present-day performance that is correlated with cli-

mate sensitivity in the simple model but does not gener-

alize to the multimodel ensemble. We conclude by

exploring the implications for model weighting.

2. A simple ensemble spanning a range of errors
and climate sensitivities

We construct a perturbed-parameter ensemble by

varying the values of selected closure parameters (Table 1)

in physical parameterizations of the general circula-

tion model ECHAM5 (Roeckner et al. 2003). The para-

meters are uncertain in observations and are those used to

adjust the model so that its energy budget is balanced at

the top of the atmosphere (to within observational un-

certainties and accounting for ocean heat storage). Each

parameter is restricted to fairly small ranges near the

default, and all parameters are sampled simultaneously

using Latin hypercube sampling (McKay et al. 1979). Five

hundred realizations of ECHAM5 are created, and each

model is run for a single year using present-day climato-

logical distributions of sea ice and sea surface tempera-

ture.

For each ensemble member we compute an aggregate

measure of the error in simulating the present-day dis-

tribution of clouds, radiation, and precipitation. Because

it is not known which observable aspects, if any, of the

present-day climate are connected to climate sensitivity,

any aggregate metric is arbitrary; we justify the narrow

focus of our choice by noting that (i) differences in cloud

feedbacks drive much of the diversity in climate sensi-

tivity estimates from climate models (Soden and Held

2006), particularly by affecting the radiation budget, and

(ii) a majority of the varied parameters are cloud re-

lated. We compute the root-mean-square error relative

to observations for cloud fraction, longwave and short-

wave cloud radiative effects at the top of the atmosphere

(e.g., Hartmann and Short 1980), and surface precipi-

tation over each month of the annual cycle using the

observations and methodology described by Pincus et al.

(2008). These errors are much larger in our short in-

tegrations than for long runs with well-tuned models

because sampling errors are large. Still, the difference in

errors based on individual years from longer runs (de-

scribed below) is very small relative to the difference in

error spanned by the ensemble, indicating that the di-

versity in error is robust. Errors in individual fields are

standardized so that the distribution of each error across

the ensemble has zero mean and a standard deviation of

one, then added together to provide an aggregate error

measure for each model, where low errors reflect greater

skill relative to other members of the ensemble.

We sort the models according to this measure of ag-

gregate error and compute the equilibrium climate sen-

sitivity of every tenth model across the range of aggregate

skill (so that the distribution of skill in the initial ensemble

is roughly preserved). Ten-year runs are performed using

a slab ocean model and present-day greenhouse gas con-

centrations, from which we determine the flux corrections

necessary to maintain present-day sea surface tempera-

tures. A 50-yr simulation is then performed using the

same ocean heat flux corrections but with doubled carbon

dioxide concentrations. Equilibrium climate sensitivity is
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computed as the difference in global mean surface tem-

perature between the last ten years of the doubled CO2

and the present-day simulations.

3. The simple ensemble as proxy for the
multimodel ensemble

Results from this ensemble, in which all diversity

arises from parametric uncertainty, are comparable in

many ways to the multimodel ensemble from the World

Climate Research Programme’s Coupled Model In-

tercomparison Project phase 3 (CMIP3, see Meehl et al.

2007a), which represents the majority of the world’s climate

models and contains both parametric and structural vari-

ability. In particular, the distributions of climate sensitivity

(Fig. 1a) and our aggregated measure of global cloud-

related model error (Fig. 1b) are similar in both ensembles.

These quantities are not systematically related to each

other in either ensemble (Fig. 2). The similarity in the

distributions of error and sensitivity, as well as the lack

of a connection between the two, mirror previous ex-

periences across a wide range of perturbed-parameter

ensembles (Murphy et al. 2004; Stainforth et al. 2005;

Collins et al. 2011).

The two ensembles also share an important structural

feature: the same mechanism underlies the variability

in climate sensitivity. In both ensembles models with a

large change in the net cloud radiative effect under dou-

bled CO2 concentrations are those with higher climate

sensitivity (Fig. 1a). The longwave cloud radiative effect in

our ensemble does not change much between present-day

and doubled CO2 conditions, which is also consistent with

robust (positive) longwave cloud feedbacks across the

CMIP3 simulations (Zelinka and Hartmann 2010). The

diversity in shortwave cloud radiative effect (CRESW)

changes, in turn, is largely driven by diversity in the re-

sponse of low-latitude oceanic boundary layer clouds

(Bony and Dufresne 2005).

By these measures, the perturbed-parameter ensem-

ble is a successful proxy for the multimodel ensemble.

This allows us to test the generality of model weighting

techniques in two structurally distinct but statistically

similar ensembles.

4. Developing measures of model error linked to
climate sensitivity

We now design a measure of error in reproducing the

present-day climate that is explicitly related to climate

sensitivity in our simple ensemble. We identify such a

measure by focusing on the low-latitude oceanic bound-

ary layer clouds whose response is tightly linked to climate

sensitivity (Bony and Dufresne 2005). Boundary layer

clouds dominate CRESW in subsidence regions, that is,

where the midtropospheric pressure velocity is downward

(v500 . 0), so we sort present-day CRESW by this quantity

(Bony et al. 2004). In our ensemble the present-day dis-

tribution of CRESW in subsidence regions differs mark-

edly between the 10 highest- and 10 lowest-sensitivity

model variants (Fig. 3a). Higher sensitivity models have

weaker values of CRESW, indicating that clouds are some

combination of less frequent, less extensive, or less re-

flective than in low-sensitivity simulations. The higher

sensitivity models are also more consistent with obser-

vations (here, cloud radiative effect derived from satellite

observations; Wielicki et al. 1996; Loeb et al. 2009)

and sorted by v500 inferred from European Centre for

Medium-Range Weather Forecasts Interim reanalysis

TABLE 1. List of perturbed parameters in the ECHAM5 ensemble, their description, default value, the range over which they are varied

and the percentage contribution to the variation in skill and climate sensitivity.

Parameter description

Default

value Range

R2 skill

(%)

R2 sensitivity

(%)

Entrainment rate for shallow convectiona (Tiedtke 1989) 0.0003 0.0003–0.001 3 44

Cloud mass flux above level of nonbuoyancya (Tiedtke 1989) 0.1b/0.3c 0.1–0.3333 3 44

Entrainment rate for penetrative convection (Tiedtke 1989) 0.0001 0.00001–0.0005 64 0

Conversion rate from cloud water to rain (Tiedtke 1989) 0.0004 0.0001–0.005 0 1

Inhomogeneity of liquid clouds (Cahalan et al. 1994) 0.7 0.65–1 4 0

Inhomogeneity of ice clouds (Cahalan et al. 1994) 0.7b/0.8c 0.65–1 20 1

Asymmetry of ice particles in clouds (Stephens et al. 1990) 0.91b/0.85c 0.75–1 0 1

Coefficient for horizontal diffusion 12 6–24 6 5

Gravity wave drag activation threshold (mean) (Lott 1999) 500 400–1000 2 0

Gravity wave drag activation threshold (std dev) (Lott 1999) 200 100–700 2 0

Albedo minimum of snow/ice 0.6/0.5 0.45–0.65 8 0

Albedo maximum of snow/ice 0.8/0.75 0.75–0.9 9 3

a Indicates coupled parameters, to keep top-of-atmosphere radiative fluxes close to balance.
b Default value in the atmosphere-only model.
c Default value in the coupled model.
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(ERA-Interim) data (Simmons et al. 2007). Although the

highest- and lowest-sensitivity models in our ensemble

are distinct from each other, at the most frequent values

of subsidence essentially all members overestimate

CRESW relative to observations. In regions of large-scale

ascent (v500 , 0), the distributions of CRESW in the

highest- and lowest-sensitivity models are much broader

and overlap significantly.

In nature, boundary layer clouds in subsiding regions

over the oceans are further correlated (Medeiros and

Stevens 2011) with lower-tropospheric thermodynamic

stability (LTS) (see Bretherton and Wyant 1997; Klein

and Hartmann 1993), here defined as the difference in

the potential temperature at 1000 and 700 hPa. Our

simple ensemble reproduces this dependency as well

(Fig. 3b). Through much of the range of LTS, the highest-

and lowest-sensitivity models are indistinguishable,

but in the range 13 , LTS , 17 K CRESW in the high-

sensitivity models is consistently weaker, and in better

agreement with observations, than for low-sensitivity

models. These are the most frequent values of LTS in

subsiding regions in our ensemble.

Figure 3 demonstrates why global measures of skill

are unrelated to model climate sensitivity: because the

clouds whose systematic changes explain the diversity in

sensitivity occur in a small region of the globe. Most

measures of skill compare models to observations in

global domains (e.g., Gleckler et al. 2008; Pincus et al.

2008; Reichler and Kim 2008). Restricting the geo-

graphical domain over which errors are computed would

not change this result much: even considering only the

FIG. 1. Climate sensitivity and skill in two ensembles of climate models. (a) Equilibrium climate sensitivity as

a function of the change in global annual mean net CRE (DCRE) under doubled CO2 conditions. The CMIP3

ensemble is shown with red dots; the models are also labeled. The distribution of climate sensitivities is similar in the

two ensembles, as is the mechanism driving the variability (the change in cloud radiative effect)]. Background colors

indicate the highest- (red) and lowest- (blue) sensitivity models used later. (b) Distributions of aggregate skill in

present-day simulations of clouds, radiation, and precipitation for our perturbed-parameter ensemble (histogram)

and from the CMIP3 ensemble (dots). The skill measure integrates over the annual cycle, the geographic distribution,

and four variables. Black dots indicate the performance of the base ECHAM model (atmosphere only and coupled to

an ocean model) within the CMIP3 ensemble.

FIG. 2. Global measure of skill, aggregated over cloud radiative

effects, precipitation, and cloud cover are unrelated to climate sen-

sitivity in a simple ensemble and the multimodel CMIP3 ensemble.
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low-latitude oceans, the root-mean-square difference

with observations are influenced not only by the regions

controlling the sensitivity but also by ascending regions,

where errors are large, and low-sensitivity models per-

form somewhat better, on average.

We define instead a conditioned error measure Ec as

the root-mean-square difference between model simu-

lations and observations of CRESW integrated over re-

gions with large-scale subsidence (v500 . 0 Pa s21) and

moderate lower-tropospheric stability (13 , LTS , 17 K).

Regions satisfying both conditions comprise just 5% of

the area of the tropics (2.5% of the globe) in the ob-

servations and somewhat more in the models. Nonethe-

less, Ec is a reasonably good predictor of climate sensitivity

in the simple ensemble (Fig. 4), which means it can be used

to narrow the distribution of climate sensitivity estimates.

Figure 4b shows the distribution of climate sensitivity ob-

tained from the perturbed-parameter ensemble before and

after weighting by the likelihood L(Ec) 5 exp(2E2
c /2)

(Murphy et al. 2004). The standard deviation of the pos-

terior distribution is three-quarters of that of the prior

distribution, mostly because a few models with low sensi-

tivity have large errors and hence low weight. The mean

climate sensitivity also increases by 0.35 K.

But, despite the many similarities between the

perturbed-parameter and multimodel ensembles, the sys-

tematic relationship between climate sensitivity and Ec

does not carry into the multimodel ensemble (Fig. 5),

nor does the distribution of sensitivity estimates from

the multimodel ensemble change when weighted by

L(Ec).

5. Implications for weighting projections from
multimodel ensembles

One could conclude that we have obtained a null re-

sult and that the single-model perturbed-parameter

ensemble is, after all, a poor proxy for the multimodel

ensemble. Instead, we propose that these calculations

are a concrete illustration of some of the issues involved

in the weighting and more general interpretation of

multimodel ensembles.

First, our results confirm that it is possible to obtain

distributions of climate sensitivity and global measures

of error as diverse as those produced by the multimodel

ensemble with even modest variations about a single

model. This suggests that variability in error and sensi-

tivity at these levels is easy to come by (though why this

FIG. 3. Relationships between present-day cloud properties and atmospheric state in a perturbed-parameter en-

semble. Both figures are restricted to the tropical (308S–308N) oceans. The 10 highest- and lowest-sensitivity models

(red and blue, respectively) in the perturbed-parameter ensemble are shown; box and whisker plots summarize the

medians (central lines), quartiles (box ends), and range (whiskers) of the distributions. Observations are shown in

black, and the frequency distribution of models and observations in the lower part of each panel. (a) Monthly-mean

values of the shortwave cloud radiative effect (CRESW) (all-sky fluxes minus clear-sky fluxes) sorted by midtropo-

spheric pressure velocity v500. Boundary layer clouds dominate in subsiding (v500 . 0) regions where high- and low-

sensitivity models in our ensemble are distinct. Global measures of skill, though, are dominated by the errors

unrelated to climate sensitivity occurring through the entire domain. The gray area indicates regions used in the right-

hand panel. (b) Cloud radiative effect in subsidence regions (v500 . 0.03 Pa s21) sorted by lower-tropospheric

stability. The gray background color in (b) indicates the regions used for weighting in Fig. 4b. High- and low-sensitivity

models are distinct through a 4-K range of stability, though the ensemble is systematically roughly 2 K less stable

than is observed.
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is so remains an intriguing open question). In fact, in our

ensemble diversity in skill and climate sensitivity arises

from surprisingly simple parametric sensitivity: Climate

sensitivity is primarily related to the entrainment rate

for shallow convection, which varies along with a cloud

mass flux parameter (explaining 44% of the variance in

climate sensitivity, Table 1) while aggregate error is

related to another parameter, the entrainment rate for

deep convection (explaining 64% of the variance in

aggregated error; Table 1). If broad diversity in behavior

can arise from underlying simplicity, then the diversity

itself is uninformative. This is an illustrative reminder

that the distribution of climate sensitivity from any

model ensemble cannot be interpreted as an estimate of

the total uncertainty in climate sensitivity.

Second, while the motivation to narrow the distribu-

tion of climate sensitivity estimates is strong, our results

dramatize the danger of focusing exclusively on this

FIG. 4. A tightly focused measure of skill narrows the distribution of climate sensitivity in a simple ensemble. (a)

Equilibrium climate sensitivity as a function of conditionally sampled rms error in CRESW of simulations compared

to satellite observations. The error is computed only in regions of descending air (v500 . 0.03 Pa s21) and moderate

lower-tropospheric thermodynamic stability (13 , LTS , 17 K) over tropical oceans. (b) Distributions of climate

sensitivity estimates before (black) and after weighting by a function of the error in (a). Weighting by this metric

decreases the standard deviation of the distribution by about 23% and increases the mean by 0.35 K.

FIG. 5. Relationships between present-day cloud properties and atmospheric state in a multimodel ensemble.

These plots are constructed as in Fig. 3, but the distribution of cloud radiative effect vs (a) v500 and (b) lower-

tropospheric stability in subsiding regions does not distinguish between high- and low-sensitivity models in the

CMIP3 ensemble.
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goal. Relationships between sensitivity and model fi-

delity in any ensemble emerge from an unknown mix of

underlying similarity in model representation and error,

statistical sampling error, and physical relationships also

present in the natural world. This means that arbitrarily

chosen error measures may arise from underlying sim-

ilarity not present in the physical climate system. We

argue that, because metrics developed from the full

multimodel ensemble alone cannot be falsified by com-

parison to more general ensembles, they cannot be jus-

tified as a model likelihood purely on the basis of the

strength of the statistical connection between that met-

ric and climate sensitivity. Indeed, where observations

have been used successfully to constrain model response

(Hall and Qu 2006; Clement et al. 2009) statistical

metrics have been bolstered by physical arguments.

Much depends on the way weights are chosen since in-

correct weighting (i.e., weighting not related to true

model likelihood) can substantially reduce the benefits

of using an ensemble of projections (Weigel et al. 2010).

Finally, it is possible that present-day models are not

yet sufficiently accurate to benefit from model weight-

ing. Weighting model projections by skill is an assertion

that models are likely to produce accurate estimates of

future climate in proportion to their ability to reproduce

some aspects of the present-day climate; the implicit

assumption is that models with higher skill are more likely

to be accurate representations of the physical climate

system. But, by most measures no current climate model

produces distributions of the present-day climate statis-

tically consistent with observations (Gleckler et al. 2008;

Pincus et al. 2008, see also Figs. 3 and 5), implying that all

models are formally unlikely. Weighting an ensemble

under these circumstances is essentially asserting that

incorrect models are more reliable than even more in-

correct models. But the result of Bayes’ theorem is am-

biguous when the system being modeled is far from the

system being observed, so it may be that model weighting

will be more profitable when the collection of the models

that we have is closer to the world we observe.
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