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ABSTRACT

The properties of clouds that may be observed by satellite instruments, such as optical thickness and

cloud-top pressure, are only loosely related to the way clouds are represented in models of the atmo-

sphere. One way to bridge this gap is through ‘‘instrument simulators,’’ diagnostic tools that map the

model representation to synthetic observations so that differences can be interpreted as model error. But

simulators may themselves be restricted by limited information or by internal assumptions. This paper

considers the extent to which instrument simulators are able to capture essential differences between the

Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Cli-

matology Project (ISCCP), two similar but independent estimates of cloud properties. The authors review

the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simu-

lator, and detail datasets developed for comparison with global models using ISCCP and MODIS sim-

ulators. In nature MODIS observes less midlevel cloudiness than ISCCP, consistent with the different

methods used to determine cloud-top pressure; aspects of this difference are reproduced by the simu-

lators. Differences in observed distributions of optical thickness, however, are not captured. The largest

differences can be traced to different approaches to partly cloudy pixels, which MODIS excludes and

ISCCP treats as homogeneous. These cover roughly 15% of the planet and account for most of the op-

tically thinnest clouds. Instrument simulators cannot reproduce these differences because there is no way

to synthesize partly cloudy pixels. Nonetheless, MODIS and ISCCP observations are consistent for all but

the optically thinnest clouds, and models can be robustly evaluated using instrument simulators by in-

tegrating over the robust subset of observations.

1. Evaluating simulations of present-day cloudiness
with satellite observations

The fidelity of global climate models is frequently

judged by comparing simulations of the present day with
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observations (e.g., Gleckler et al. 2008; Reichler and Kim

2008). Evaluating the distribution of clouds produced

by these models (e.g., Pincus et al. 2008) is of particular

interest because clouds have such strong and variable

impacts on the earth’s radiation budget. Satellite obser-

vations are central to this task because of the near-global

view they provide.

The evaluation of cloud properties is more compli-

cated than that of, say, temperature, because the cloud

properties observable by remote sensing instruments are

quite different from the variables used to represent

clouds within a model. One way to narrow this gap is to

build a diagnostic tool that converts the model state into

synthetic observations. The ‘‘International Satellite Cloud

Climatology Project (ISCCP) simulator’’ (Klein and Jakob

1999; Webb et al. 2001), for example, uses the internal

model representation of cloudiness to produce estimates

of the cloud-top pressure and optical thickness that would

be reported by a particular satellite observing program.

The simulator accounts for effects at the pixel scale, in-

cluding the screening of clouds low in the atmosphere by

clouds above them, the interpretation of measurements

as if they arise from clouds in a single homogeneous layer,

and the estimation of cloud-top pressure based on in-

frared brightness temperatures. The treatment of pixel-

scale observations is similar to, though less rigorous than,

the observation operators used in data assimilation.

Because climate models are compared to observations

on a statistical basis, the simulator also reproduces the

averaging strategies adopted during the processing of

ISCCP observations.

The ISCCP simulator has proved quite valuable in di-

agnosing GCM performance (see, e.g., Norris and Weaver

2001; Zhang et al. 2005; Williams and Webb 2009; among

many others) This has inspired a number of other simu-

lators for cloud-related instruments, including spaceborne

radars (CloudSat; Haynes et al. 2007), lidars [Cloud–

Aerosol Lidar and Infrared Pathfinder Satellite Observa-

tions (CALIPSO; Chepfer et al. 2008)], and multiangle

radiometers [Multiangle Imaging SpectroRadiometer

(MISR; see Marchand and Ackerman 2010)]. CALIPSO

and MISR have also produced summary datasets against

which the results of the simulator may be compared

(Chepfer et al. 2010; Marchand et al. 2010). What these

efforts share is the desire to put model predictions and

observations on the same footing so that differences be-

tween the two can be unambiguously interpreted as

model error.

But not all ambiguities can be removed. Here we in-

vestigate the large impact that differing treatments of

one class of difficult-to-interpret observations can have

on the climatological distribution on cloud properties,

demonstrate why this subset of observations cannot be

modeled by instrument simulators, and show that com-

parisons between models and observations that exclude

such observations are nonetheless robust. The next sec-

tion describes long-term observations obtained from

two similar but independent satellite records [ISCCP

and Moderate Resolution Imaging Spectroradiometer

(MODIS)], and section 3 explores the most prominent

differences between these two views of the earth’s clouds.

Section 4 describes a method for emulating MODIS ob-

servations within a climate model, and section 5 illus-

trates the degree to which differences between these two

sets of observations are captured by instrument simula-

tors. We conclude by discussing the roles and limitations

of instrument simulators in enabling model evaluation

and diagnosis.

2. Global observations of cloudiness: ISCCP
and MODIS

There are at least nine available climatologies of cloud

properties based on satellite observations (Stubenrauch

et al. 2009). We focus on two—ISCCP and MODIS, de-

scribed below—with long data records, good spatial

sampling, and the ability to detect clouds throughout

the atmosphere. MODIS and ISCCP estimate many of

the same quantities but, as we will show, often arrive

at different answers. In this section we review the way

these two cloud climatologies are constructed, including

descriptions of individual pixel-level retrievals and the

strategies used to aggregate the observations in space and

time. Our goal is to highlight the similarities and differ-

ences in these datasets and understand the consequences

for model evaluation, including motivating decisions

made in constructing the MODIS simulator described in

section 4. Readers seeking greater detail might start with

Rossow and Schiffer (1999) for descriptions of ISCCP,

Platnick et al. (2003) and King et al. (2003) for MODIS,

and Marchand et al. (2010) for somewhat lengthier ex-

planations and several illuminating case studies; many

of the conclusions we reach in this section are also ev-

ident in that paper. We limit ourselves to observations

made during daytime, as these contain a richer set of re-

trievals and better accuracy in cloud detection.

a. ISCCP observations

The ISCCP (see Rossow and Schiffer 1991) has pro-

duced a long (26 yr and growing), well-documented,

and well-used record of cloudiness. ISCCP obtains and

calibrates observations at two wavelengths from opera-

tional sensors aboard geostationary and polar-orbiting

satellites, interprets these observations to deter-

mine which pixels are cloudy, then estimates the

cloud-top pressure pc of the highest cloudy layer and
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column-integrated optical thickness t within each (Rossow

and Schiffer 1999).

ISCCP uses observations in the visible (approximately

0.6 mm, nominally 1-km resolution) and infrared (11 mm,

1–4-km resolution depending on the instrument) portions

of the spectrum. Clouds are detected by comparing the

observed values with estimates of the clear-sky contri-

bution; pixels that are somewhat colder and/or brighter

than the clear sky are expected to be are flagged as cloudy.

Retrievals assume that each pixel is entirely covered with

homogeneous clouds. Cloud-top temperature is estimated

from the infrared brightness temperature, from which pc

is computed by comparing the temperature with a profile

normally obtained from sounding instruments. Cloud

optical thickness is inferred by assuming a thermody-

namic phase based on the brightness temperature and

then interpreting the observed visible reflectance as an

optical thickness based on precomputed tables assuming

constant particle size distributions. If the cloud is opti-

cally thin, the infrared emissivity is adjusted and a new

cloud-top temperature and pressure inferred; if no self-

consistent solution can be found, the cloud is assigned

a pressure just above the tropopause.

Pixel-level retrievals are aggregated on an equal-area

grid with roughly 250-km resolution 8 times per day. The

ISCCP reports monthly averages for each of the eight

daily observation times (i.e., the monthly average di-

urnal cycle) and for the daily mean (averaging uniformly

over time is equivalent to assuming that the distribution

of cloud properties is well observed at each hour of each

month). The mean optical thickness reported is not the

average of the individual values, but rather the ‘‘radia-

tive mean’’ tr defined as the value of t that produces the

mean albedo using tables that map t to albedo and vice

versa. It is possible to reconstruct the linear-mean t

using the mean liquid and ice water paths and assumed

particle sizes. ISCCP also provides a joint histogram of

the cloud fraction cf as a function of t and pc; this his-

togram has six categories of t and seven categories of

pc in the 3-hourly observations, though this is reduced

to three categories for each parameter in the monthly

average files. Nighttime cloud amounts are adjusted to

correct for systematic differences between the day-

time and nighttime algorithms; these adjustments are

applied to the monthly mean cloud amounts.

ISCCP processes observations from both geosta-

tionary and polar-orbiting satellites, preferring geosta-

tionary observations where they are available for more

uniform temporal sampling and more stable calibration.

But because cloud detection and cloud property retrievals

depend on the zenith angle at which the scene is viewed

(e.g., Rossow and Garder 1993; Maddux et al. 2010), the

ISCCP record contains modest but significant spatially

dependent artifacts (Norris 2000; Evan et al. 2007) visible

as radial patterns centered on the subsatellite point below

the geostationary platforms. These patterns are unique to

ISCCP, since no other global satellite cloud climatology

relies so heavily on geostationary observations.

ISCCP OBSERVATIONS FOR CLIMATE

MODEL EVALUATION

We have constructed a special-purpose climatology of

ISCCP cloud properties to facilitate comparisons with

MODIS and with global models using the ISCCP sim-

ulator. We begin with the original 8-times-daily, gridded

observations and average all daytime values within

a month. We provide two estimates of mean cloud al-

bedo, cloud-top pressure, and cloud-top temperature in

each grid cell: one is a linear average over time and the

second is weighted by the cloud fraction at each time,

consistent with the MODIS averaging strategy de-

scribed in the next section. Albedo is computed using an

analytic approximation (described in the appendix) to

the ISCCP lookup tables.

We have included the full-resolution joint histogram

cf(t, pc) to complement the reduced-resolution joint his-

togram distributed by ISCCP. Monthly mean files in net-

work Common Data Form (netCDF) format may be

obtained online (at http://climserv.ipsl.polytechnique.fr/

cfmip-obs.html); we also plan to distribute them on the

Earth System Grid alongside climate model results from

the upcoming Coupled Model Intercomparison Project

phase 5 (CMIP5) experiment (http://cmip-pcmdi.llnl.gov/

cmip5/).

b. MODIS observations

Cloud observations from MODIS provide a useful

complement to the ISCCP record. There are two MODIS

instruments, one each aboard the Terra and Aqua satel-

lites. Some of the 36 spectral observations available allow

for different approaches for retrieving pc and identi-

fying thermodynamic phase than are taken by ISCCP,

while others allow for the retrieval of complementary

information, such as particle size. [Data products by the

MODIS Science Team are available at http://ladsweb.

nascom.nasa.gov. A separate set of retrievals is made in

support of the Clouds and the Earth’s Radiant Energy

System (CERES) products, as described in Loeb et al.

(2005) and Minnis et al. (2011), among others. Those re-

trievals follow somewhat different logic and have differ-

ent error characteristics.]

MODIS pixel-scale retrievals, as described in detail by

Platnick et al. (2003), proceed in steps:

d Cloud detection/masking: Clouds are initially identi-

fied by a cloud mask that uses tests incorporating

1 JULY 2012 P I N C U S E T A L . 4701



a large number of spectral bands (Frey et al. 2008).

Different tests are used in different domains (over

oceans, vegetation, ice, etc.). The cloud mask summa-

rizes these tests by computing a likelihood that each

pixel is clear (Ackerman et al. 1998), and then it

assigns the result to one of four categories (confident

clear, probably clear, uncertain/probably cloudy, and

cloudy) based on probability boundaries 0.99, 0.95,

and 0.66 for clear sky. The cloud mask is clear-sky

conservative: the label ‘‘cloudy’’ means ‘‘containing

some amount of cloud (or maybe heavy aerosol).’’
d Cloud-top properties: Cloud-top pressure retrievals

are initially attempted using CO2 slicing (Menzel

et al. 1983), which infers the amount of CO2 above

an emitting cloud from brightness temperature mea-

surements in several closely spaced bands near 15 mm

(pressure can be inferred from the amount of carbon

dioxide because the gas is well mixed). The method

fails when the integrated amount of carbon dioxide

becomes optically thick and clear-sky emission dom-

inates the signal. This limits CO2 slicing to values of pc

less than about 700 hPa; for clouds below this level, pc

is retrieved by matching the brightness temperature at

11 mm to a temperature profile (this is similar to the

ISCCP algorithm). Cloud-top pressure is computed at

5-km scale based on 1-km pixels; it includes all such

regions in which more than 4/25 ($16%) of the un-

derlying 1-km pixels are deemed cloudy or probably

cloudy by the cloud mask.
d Cloud thermodynamic phase and optical properties:

Optical thickness and effective radius re are retrieved,

following Nakajima and King (1990), by minimizing

the difference between the observed reflectance in one

nonabsorbing and one absorbing wavelength (nomi-

nally 0.86 and 2.13 mm, respectively, both at 1-km

scale) and forward calculations tabulated across this

parameter space. The thermodynamic phase of each

pixel is required because the retrievals use separate

forward calculations (i.e., lookup tables) for liquid and

ice clouds. This determination is made based on a

range of tests in the visible, near-infrared, and infrared

portions of the spectrum (see King et al. 2010); where

these tests disagree the pixel is labeled ‘‘unknown/

mixed phase’’ and liquid water cloud libraries are used

in the retrieval. When the simultaneous retrieval of t

and re fails (i.e., the observations cannot be fit to the

forward calculations to within the desired accuracy),

the pixel is not included in aggregated statistical sum-

maries. For these pixels a retrieval of optical thickness

alone is attempted using the fixed particle sizes assumed

by ISCCP and is available in the pixel-level data.

Uncertainty estimates are computed for each re-

trieval of t and re. These include only the effects of

uncertainties in instrument calibration and nominal

plane-parallel forward models, surface spectral al-

bedo, and spectral atmospheric correction (primarily

due to above-cloud atmospheric moisture uncertainty).

Other error terms can be important on a pixel-level

basis (e.g., vertical and/or horizontal inhomogeneity)

so the uncertainty estimates provided are a lower

bound on the true uncertainty. Uncertainties are

calculated from the cloud reflectance lookup tables

used in the retrievals and depend on viewing and

illumination geometry.

Beginning with the ‘‘collection 5’’ processing algo-

rithms introduced in 2006, MODIS retrievals identify

pixels that are not likely to be completely cloud covered

(see King et al. 2006)—in other words, those pixels that

are a poor fit to the plane-parallel, homogenous model

used to interpret the observed reflectances in terms of

optical properties—and use these to produce a cloud-

conservative mask. This identification is based on tests

for spectral and spatial uniformity to identify dust,

smoke, snow or ice, sunglint, and some partly cloudy

pixels, and on cloud-edge detection, which is also to

remove partly cloudy pixels. In samples we have ex-

amined, the edge detection test is the trigger approx-

imately 70% of the time. In collection 5, retrievals are

not performed for pixels identified by this ‘‘clear-sky

restoral’’ algorithm.

MODIS pixel-scale observations are aggregated on a

18 equal-angle grid (King et al. 2003). Observations

from Terra and Aqua are aggregated separately. All ob-

servations from a given platform within a UTC day are

included so the frequency of observations increases

with distance from the equator, and observations from

overpasses at different times (with potentially very dif-

ferent viewing and illumination geometries) may be in-

cluded in the statistics. Statistics are weighted over

time by the number of observations on each day; for

cloud-related variables, this means that cloudier days

count more than less-cloudy days when computing cloud

properties (e.g., optical thickness, cloud-top pressure,

particle size). Cloud fractions and cloud properties are

summarized for all clouds and separately for ice- and

liquid-phase clouds.

Two estimates of cloud fraction are produced: one

counts the proportion of pixels deemed by the cloud

mask to be cloudy or probably cloudy, and the other

counts the proportion of available pixels for which cloud

optical properties are successfully retrieved. We refer to

these as the ‘‘mask cloud fraction’’ and ‘‘retrieval cloud

fraction’’ below. Differences between these two esti-

mates include the proportion of pixels for which re-

trievals are unsuccessful but are dominated by pixels
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removed by clear-sky restoral. We have recently iden-

tified an error in the collection 5 processing: the number

of failed retrievals is not included in the total number of

observations used to determine the retrieval cloud frac-

tion, so this quantity is slightly overestimated. The effect

is not large because the number of failed retrievals is

quite small.

Averages are reported for both optical thickness

(i.e., t) and its base-10 logarithm log
10

(t). Mean al-

bedo A computed using, for example, two-stream

methods can, to a good approximation, be computed

as A ’ A[10 log10(t)], making tl 5 10 log10(t) comparable

to the radiative mean optical thickness tr reported by

ISCCP (see the appendix for more details).

Liquid and ice water path are computed at the pixel

scale, assuming that clouds are vertically homogeneous,

and then averaged separately for liquid and ice clouds.

We estimate the uncertainty in the mean of t and re

from pixel-level uncertainties by assuming that errors

are perfectly correlated within each grid cell on a given

day but perfectly uncorrelated from day to day. This has

the effect of greatly reducing typical daily uncertainties

in a grid cell (by a factor of about
ffiffiffiffiffi
30
p

if roughly the

same number of cloudy pixels is observed on each day of

the month and cloud properties are reasonably consistent

over the month). True errors are almost certainly not

uncorrelated from day to day—calibration and modeling

errors, in particular, are probably not well represented as

random errors—but neither are errors within each day

likely to be perfectly correlated. Uncertainty estimates

are still the subject of active development (Platnick et al.

2004) and are intended as rough guidance.

MODIS OBSERVATIONS FOR CLIMATE

MODEL EVALUATION

We have developed a dataset of MODIS observations

targeted at the evaluation of clouds in climate models.

We extract a small subset (listed in Table 1) of the many

datasets available from the gridded monthly files pro-

duced by the MODIS project and reformat them as

netCDF files that include the climate and forecast (CF,

http://cf-pcmdi.llnl.gov/) metadata widely used in the

climate community. The joint histogram of cloud-top

pressure and cloud optical thickness included here uses

the same bin definitions as does the analogous histogram

produced by ISCCP. A second joint histogram with finer

resolution is available in the original data. We produce

separate files for the Terra (morning) and Aqua (after-

noon) platforms along with an estimate that combines

observations from the two platforms, weighted by the

number of pixel-level observations. New files are added as

data from the operational MODIS system become avail-

able and will be updated to reflect algorithmic updates

as the MODIS record is reprocessed. The data are

available online (at http://ladsweb.nascom.nasa.gov/)

and are mirrored on another website (at http://climserv.

ipsl.polytechnique.fr/cfmip-obs.html) and on the Earth

System Grid.

3. Understanding differences between ISCCP
and MODIS climatologies of cloudiness
and cloud properties

MODIS retrievals exploit the diversity of spectral

information to offer a wider range of observations than

ISCCP, but many MODIS observations (see Table 1)

have analogs in the ISCCP climatology. In this section

we compare the climatology of cloudiness, t, and pc, in

these two datasets. Because cloud detection and the

retrieval of optical thickness follow parallel approaches

in the two datasets, one might expect MODIS and

ISCCP climatologies of cloud fraction and the distri-

bution of optical thickness to be similar. But, as we will

show, differences between these two datasets can be large

and arise in large part from quality-control decisions

made during pixel-scale retrievals and aggregation. Here

we compare long-term means (July 1983–June 2007 for

ISCCP, July 2002–June 2010 for MODIS) using the da-

tasets described in section 2.

a. Cloudiness (cloud fraction)

Cloud identification (masking) defines the starting

population of pixels for which other cloud properties are

Table 1. Parameters available in the MODIS dataset intended

for climate model evaluation. All quantities are available as

monthly averages on a 18 equal-angle grid. The difference between

the total and (liquid 1 ice) retrieval cloud fractions is the fraction

of detections for which phase is undetermined. Bin boundaries for

the joint histogram of cloud top pressure and optical thickness

follow the ISCCP definition.

Parameter Subsets

Uncertainty

provided

Cloud fraction – mask Total

High, middle, low

Cloud fraction – retrieval Total

High, middle, low

Liquid, ice

Mean cloud top pressure

Mean optical thickness Total

Liquid, ice Yes

Mean log10(t) Total

Liquid, ice Yes

Mean particle size Liquid, ice Yes

Mean water path Liquid, ice Yes

Optical thickness/cloud top

pressure joint histogram
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determined, so comparisons of cloud properties be-

tween datasets can be expected to agree no better than

does cloud fraction. The differentiation between clear

and cloud-affected pixels is consistent between MODIS

and ISCCP despite the much richer range of spectral

information available to MODIS: daylight cloud frac-

tions from ISCCP are quite similar to those from the

MODIS cloud mask, as illustrated in Fig. 1. But the dif-

ference between the MODIS cloud mask and retrieval

cloud fractions is striking, exceeding 20% in some sub-

tropical latitude bands [see also Fig. 8 in Marchand et al.

(2010)]. The retrieval cloud fraction includes all ther-

modynamic phases: ice, liquid, and undetermined, as

described above.

The differences between the MODIS mask and re-

trieval cloud fractions, though large, are consistent with

a high frequency of partly cloudy pixels at the ;1-km

scale of the MODIS pixels. Partly cloudy pixels (as

identified by clear-sky restoral) are counted as cloudy by

the cloud mask, which seeks to identify fully clear pixels,

and as clear by the retrieval process, which seeks to in-

clude only fully cloudy pixels. The large sensitivity of

total cloud fraction to decisions about the fate of partly

cloudy pixels has been known for as long as satellite

observations of clouds have been available (see, e.g.,

Shenk and Salomonson 1972; Minnis and Wielicki 1988;

Wielicki and Parker 1992; among many others); the mag-

nitude of the difference between the two MODIS esti-

mates (about 17% in the global, climatological daytime

average) is quantitatively consistent with other estimates

of this sensitivity.

The ‘‘Taylor diagram1’’ (Taylor 2001) in Fig. 2 shows

the differences between these observational datasets in

the way climate model simulations are normally evalu-

ated against observations (see, e.g., Gleckler et al. 2008;

Pincus et al. 2008): by summarizing the components of

the total RMS difference between multiple datasets

and a single reference. This example summarizes the

agreement in the composite annual cycle in cloud fraction

with our ISCCP daytime-only climatology (here and in

Fig. 12 all datasets are mapped onto a 2.58 equal-angle

grid). Although the diurnal cycle of cloudiness can be

large in some locations (e.g., Cairns 1995), temporal

sampling does not strongly affect cloudiness estimates

at the global scale: both the ISCCP-provided diurnal

average (labeled ‘‘D2’’ in the figure, and including cor-

rections for nighttime cloud detection alluded to in sec-

tion 2a) and the ISCCP daytime climatology sampled

only at MODIS overpass times (labeled ‘‘Resamp,’’ cre-

ated by averaging only those observations that fall within

458-wide longitude bands centered on the Terra and Aqua

overpass times) are in very good agreement with the

daytime-only dataset. We infer that the somewhat greater

disagreement between ISCCP and the MODIS cloud

mask reflects differences in performance in thin clouds,

where the many spectrally dependent tests used by

MODIS may have a different outcome than the two-

threshold tests used by ISCCP, and other sampling dif-

ferences, including the more uniform sampling of viewing

and illumination angles by MODIS. Results for the

MODIS retrieval fraction are omitted because the large

bias dominates the figure, but the space–time standard

deviation of this field and its correlation with ISCCP are

about the same as the estimate from the MODIS cloud

mask.

FIG. 1. Climatological zonal-mean distribution of daytime cloud

fraction from ISCCP (green), the MODIS cloud mask (red), and

MODIS cloud retrievals (blue, including all ice, liquid, and un-

determined clouds). Tick marks on the ordinate show the corre-

sponding global-mean cloud fraction and the range of zonally

averaged cloud fractions. ISCCP and the MODIS cloud mask pro-

duce similar distributions of cloud occurrence, while the MODIS

retrievals (which exclude pixels thought to be partly cloudy) are

much more conservative.

1 Taylor diagrams indicate agreement with respect to a reference

dataset. The radial axis denotes the standard deviation of each

dataset and the azimuthal axis denotes the space–time correlation

coefficient between each test dataset and the reference, and the size

of each marker shows the bias with respect to the reference dataset;

the magnitude of the bias can be measured against the radial axis.

A light green line indicates the standard deviation of the reference

dataset; perfect agreement would be shown as a point (zero bias)

where the dashed line intersects the horizontal axis (correlation

one and matching standard deviations). Arcs surrounding this

point denote constant root-mean-square error. Points close to one

another in a Taylor diagram are equally far from the reference

dataset but not necessarily close to one another.
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Thus, MODIS cloud properties are derived from two

distinct populations: those detected by the cloud mask,

counted in the cloud mask fraction, and included in re-

trievals of cloud-top pressure, and the subset of these

that remain after the removal of failed retrievals and

filtering by clear-sky restoral, from which the retrieval

fraction and statistics of optical thickness, particle size,

and liquid and ice water path are computed. Because

ISCCP estimates of cloudiness are consistent with MODIS

cloud detection, differences between MODIS and ISCCP

estimates of cloud-top pressure in the next section can be

attributed to sensor capabilities and algorithmic differ-

ences, while differences in optical properties (section 3c)

must have other roots, including, but not limited to, this

filtering.

b. Cloud-top pressure

The estimation of cloud-top pressure is where MODIS

and ISSCP rely most heavily on different information,

with ISCCP using infrared window brightness tempera-

ture to infer pressure and MODIS using CO2 slicing for

higher clouds. Because the population of clouds for which

cloud-top pressure is retrieved is roughly the same for

MODIS and ISCCP, large differences in these estimates

reflect errors in one or both of the retrievals. In practice,

the largest differences between the two datasets are for

midlevel clouds (440 # pc , 680 hPa), which are much

less frequent in the MODIS climatology than in ISCCP

(see Fig. 3). This is likely due to ambiguities in the ISCCP

algorithms: thermal emission techniques may interpret

the emission from high, cold, thin clouds over low, warm,

brighter clouds as being a single layer of midlevel clouds

(see, e.g., Mace et al. 2006), while CO2 slicing is less

susceptible to this error. Low clouds are correspondingly

more frequent in the MODIS cloud mask than in ISCCP,

indicating that a majority of pixels from the large, cloud-

affected population that are described by ISCCP as

midlevel is assigned higher cloud-top pressures by

MODIS. In the population remaining after clear-sky re-

storal, however, the proportion of low clouds is roughly

similar in ISCCP and MODIS, while the amount of high

cloudiness is unaffected, implying that clear-sky restoral

is more likely to exclude low clouds (as identified by

MODIS) than high clouds. Since edge detection is the

primary trigger for clear-sky restoral, we infer that low

clouds are more spatially inhomogeneous than high clouds

on the scales observed by MODIS (see also Maddux et al.

2010).

c. Optical thickness

Figures 1 and 2 demonstrate that the population of

pixels included in ISCCP retrievals is roughly the same

population of clouds identified by the MODIS cloud

mask, while the population for which MODIS performs

and aggregates retrievals is smaller (and, in some re-

gions, substantially smaller). Because retrieved values of

t do not depend strongly on the value of re (see, e.g.,

Nakajima and King 1990), filtering by clear-sky restoral

would seem to be the largest algorithmic difference be-

tween ISCCP and MODIS estimates of optical thickness.

Indeed, the largest differences between the two distri-

butions of optical thickness (Fig. 4, top) is in the fre-

quency of clouds with 0.3 # t , 3.6, which cover 10.6% in

the MODIS record and 33.1% in the ISCCP record. The

very thinnest detectable clouds (0.3 # t , 1.3) are ob-

served almost 10 times more frequently by ISCCP (14.2%)

than MODIS (1.7%). As one result, the logarithmic-

mean optical thickness tl reported by MODIS is sub-

stantially larger than the radiative mean tr reported by

ISCCP (Fig. 5). This result is robust to differences in the

definition of tl with tr, as the appendix demonstrates.

When optically thin clouds are excluded, global-mean

cloud fraction estimates from the two platforms are quite

similar (Fig. 4, bottom). The amount of all but the thin-

nest clouds is identified consistently in both datasets:

space–time correlations between MODIS and ISCCP

FIG. 2. Agreement in the composite annual cycle of daytime-

mean climatology between daytime-only ISCCP observations (see

subsection in section 2a) and other measures of cloud fraction.

Standard deviation and correlation coefficients are computed over

the 12 months of the composite annual cycle, weighting spatially

according to area. Climatologies created using different strategies

for averaging ISCCP data over the diurnal cycle (‘‘D2’’ and ‘‘Re-

samp’’) are quite similar to the daytime-only climatology, implying

that differences between ISCCP and the MODIS cloud mask

(‘‘M’’) reflect other sampling differences, including the sampling of

viewing geometry.
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estimates of cf (t $ tmin) exceed 0.8 for 1.3 , tmin # 23

(above which sample sizes are quite small), consistent

with case studies showing that MODIS, ISCCP, and

MISR estimates of the presence of optically thick clouds

agree quite well (Marchand et al. 2010).

Many of the tests used in clear-sky restoral, and par-

ticularly the frequently invoked edge detection trigger,

are to identify and remove partly cloudy pixels from the

population considered by MODIS. Our results are con-

sistent with this goal having been achieved: the largest

differences between the distributions derived from

ISCCP (which does not filter for partly cloudy pixels) and

MODIS are at low values of t, and the optical thickness

retrieved from partly cloudy pixels is systematically

smaller than from fully cloudy pixels (Chang and Coakley

2007). Furthermore, the optically thinnest pixels are as-

signed cloud-top pressures throughout the atmosphere by

ISCCP (Fig. 6) and categorized as low clouds by MODIS

(cf. middle and right columns of Fig. 3). More than a third

of these clouds are assigned the lowest possible cloud-top

pressure by ISCCP, consistent with, though not proof of,

ISCCP being unable to find self-consistent solutions for

t and pc from visible and infrared observations. [That

being said, neither case studies by the reviewers of this

paper, among others, nor the spatial distribution of clouds

in this category (Rossow et al. 2005) are consistent with

broken low clouds being the only contributors to the

lowest-t, lowest-pc bin.]

But partly cloudy pixels are not the whole story.

Though the largest differences between ISCCP and

MODIS estimates of the optical thickness distribution

are for low values of t, differences exist across the entire

range. In particular, clouds with t . 3.6 are observed

more frequently by MODIS (39.2%) than by ISCCP

(32.9%). And though clear-sky restoral filters a sizable

proportion of the MODIS observations, there are several

other reasons why MODIS and ISCCP estimates of op-

tical thickness might differ, including the following.

d Differing viewing and illumination geometry: Optical

thickness retrievals are sensitive to both the viewing

and illumination zenith angle (see Maddux et al. 2010;

Loeb and Coakley 1998, respectively), which are sampled

quite differently in the two datasets. MODIS observa-

tions are nominally made within about 1.5 h of local

noon but include a wide range of viewing zenith angles.

ISCCP observations are made at all sunlit times and so

include low solar zenith angles, while viewing angles

FIG. 3. Annual-mean distribution of (top) high (pc , 440 hPa), (middle) middle (440 , pc , 680 hPa), and (bottom) low (pc . 680 hPa)

clouds obtained from (left) ISCCP, (middle) the MODIS cloud mask, and (right) MODIS cloud retrievals. ISCCP depends on signals in

the thermal infrared and assigns clouds to midlevels more frequently than MODIS (which uses CO2 slicing) or other sensors. The clear-sky

restoral that distinguishes the MODIS retrievals from the MODIS cloud mask is more likely to exclude low clouds than high clouds; we

infer that low clouds are more spatially inhomogeneous.
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remain constant for long periods in many locations

equatorward of 608 due to the preference for geosta-

tionary observations. Marchand et al. (2010) offer this

as a possible explanation for differences in optical

thickness distributions between ISCCP, MISR, and

MODIS.

d Differing observation times: MODIS observations are

taken near midday, while ISCCP accumulates obser-

vations over all daylight hours, which could lead to

systematic differences where the diurnal cycle of t is

not roughly symmetric about local noon.
d Differing approaches to thermodynamic phase detec-

tion: Phase detection affects the retrieval of optical

thickness because it determines which forward calcu-

lations are matched to observed intensities. ISCCP

separates ice from liquid clouds based on a single

threshold of infrared brightness temperature where

MODIS uses a wide range of spectral tests with poten-

tially higher accuracy.
d Differing assumptions about cloud single-scattering

properties: ISCCP uses fixed particle size distributions

(and hence fixed single-scattering properties) for each

thermodynamic phase, while MODIS sizes can vary

from pixel to pixel. The larger impact, however, is

likely to be the choice of particle shapes used to

represent ice crystals: the polycrystal habit used by

ISCCP (Macke 1993) produces lower values of asym-

metry parameter (and hence lower optical depths for

a given observed reflectance) than does the physically

based model used by MODIS (Baum et al. 2005).

FIG. 4. (top) Global-mean climatological distribution of optical

thickness from ISCCP and MODIS. The larger value of total

cloudiness viewed by ISCCP is due to much higher values of op-

tically thin (t # 3.6) clouds, while clouds of moderate-to-high op-

tical thickness are more prevalent in the MODIS observations.

(bottom) Global-mean climatological value of daytime cloud

fraction cf (t $ tmin) as a function of the minimum optical thick-

ness. Though the two datasets disagree on the detailed distribution

of t, the overall amount of cloudiness for all but the thinnest clouds

is similar in magnitude and in the sensitivity to tmin.

FIG. 5. (top) Climatological zonal-mean distribution of ‘‘radia-

tively effective’’ optical thickness (i.e., the optical thickness that

produces the mean albedo, described in section 2) from ISCCP (tr,

green) and MODIS cloud (tl, blue). Tick marks on the ordinate

show the corresponding global mean for each dataset and the

overall range. Temporal averaging is uniform: monthly means are

weighted by the daily faction and then combined linearly over

years. MODIS optical depths are substantially higher than ISCCP

because the edge detection invoked by clear-sky restoral prefer-

entially removes optically thin pixels.
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We isolate the role of filtering decisions by creating

two alternate MODIS datasets for April 2005. We begin

with a special-purpose pixel-level dataset in which re-

trievals are attempted for all pixels labeled as being cloud

affected by the cloud mask. We then create an ‘‘omit-

failed’’ dataset (Fig. 7, dotted line) that includes sta-

tistics for all pixels for which simultaneous estimates

of t and re are available, and an ‘‘ISCCP like’’ dataset

(Fig. 7, dashed line) that also aggregates optical thickness

from pixels, in which the simultaneous retrievals failed

but single-parameter retrievals using assumed particle

sizes were successful. Global-mean cloud cover from the

ISCCP-like dataset is within 1% of the ISCCP estimate

for this month.

Both filtering strategies (omitting failed retrievals,

evidenced by the difference between the ISCCP-like

and omit-failed datasets, and the addition of clear-sky

restoral, as the difference between the omit-failed and

default results) are most active at low optical thickness:

both remove essentially all observations with t , 0.3,

most with t , 1.3, and have essentially no effect on the

population of clouds with t $ 9.4. Clear-sky restoral has

the largest relative impact on the population of clouds

with 1.3 # t , 9.4. But aggregation strategies alone do

not explain the much higher frequency of optically

thin (t , 3.6) clouds in the ISCCP dataset relative to

MODIS, nor the correspondingly lower frequency of

optically thick clouds. Even after moving to an ISCCP-

like filtering strategy, in fact, half the discrepancy be-

tween ISCCP and MODIS estimates of cloud fractions

for t , 3.6 remains.

The precise distribution of optical thickness may, in

fact, be quite difficult to determine even in the best of

circumstances. Figure 8 shows the marginal and cumu-

lative distributions of optical thickness for April 2005

over the western Pacific (108N–108S, 1708W–1308E) ob-

tained from ISCCP, three sets of MODIS observa-

tions filtered with various levels of stringency, and, over

ocean only, the MISR instrument using the retrievals

described in Marchand et al. (2010). During this month

ISCCP observations in this domain are obtained from

a geostationary satellite sitting at its center so that

ISCCP viewing angles are near nadir. The character of

the differences between ISCCP and MODIS, and the

sensitivity to filtering strategy, are similar to those for

the entire globe (Fig. 7), in that the distribution of op-

tical thickness derived from MODIS observations con-

tains fewer optically thin clouds and correspondingly

more optically thick clouds. This suggests that differ-

ences in the global distribution are not driven primarily

by the distribution of ISCCP viewing angles. The MISR

retrieval technique is quite similar to the one used by

ISCCP, especially in the fixed assumptions made re-

garding particle distributions, and both are restricted to

near-nadir views in this comparison. Nonetheless, the

two disagreements in cloud amount outside the range

3.6 # t , 60 are considerable.

FIG. 6. Climatological distribution of global-mean cloud fraction

as a function of cloud top pressure (vertical axis) and cloud optical

thickness (horizontal axis) observed by (top) ISCCP and (bottom)

MODIS. ISCCP provides retrievals for all pixels identified as cloud

affected, while MODIS excludes those identified as marginal by the

clear-sky restoral process described in the text. The partly cloudy

pixels most frequently removed during the clear-sky restoral rep-

resent almost all the optical thinnest clouds (t , 1.3) observed by

ISCCP. The frequent observation of very high, very thin clouds by

ISCCP may indicate that many of these observations are difficult to

interpret self-consistently.
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d. Interpreting observations from partly cloudy pixels

All satellite retrievals, including those made by

MODIS and ISCCP, relate reflectance measurements

to physical properties using simple models of the at-

mosphere. In particular, optical property retrievals as-

sume that each pixel is completely covered by a single

FIG. 7. (top) Impact of filtering strategies on the global-mean

distribution of optical thickness for April 2005. Solid lines indicate

the distributions obtained by ISCCP (green) and the operational

MODIS algorithm (solid blue). The dotted line (omit-failed) shows

the distribution of MODIS retrievals when clear-sky restoral is not

invoked but failed retrievals (i.e., those for which self-consistent

values of t and re cannot be found) are discarded. The dashed line

(ISCCP like) shows results from a liberal strategy that ignores

clear-sky restoral and also aggregates optical thickness retrievals

using assumed particle sizes that are attempted when the normal

retrievals fail to find self-consistent values of t and re. (bottom)

Fraction of ISCCP-like cloudiness removed by omit-failed and

operational filtering. Both strategies are intended to remove pixels

that do not fit the plane-parallel, homogenous model used to derive

t, and both provide similar results: many pixels flagged by clear-sky

restoral also fail to produce simultaneous retrievals, and these

represent most of the optically thinnest clouds.

FIG. 8. (top) Marginal and (bottom) cumulative distributions of

optical thickness as observed by ISCCP (green), MODIS (blue),

and MISR (purple, ocean only) under good viewing and illumi-

nation conditions: during the month these data were obtained

(April 2005), ISCCP relied on a geostationary satellite almost

perfectly centered over this domain, the western Pacific. Dotted

and dashed lines show results for MODIS using the increasingly

liberal omit-failed and ISCCP-like filtering strategies described in

the text, respectively. The MISR retrieval technique is quite similar

to the one used by ISCCP, but the two estimates disagree at high

and low optical thickness.
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vertically and horizontally uniform cloud layer. One-

kilometer (pixel size) regions that fit this model pre-

cisely are rare in the earth’s atmosphere if they exist at all,

and there are many ways in which a given pixel may

fail to match this model. For some combinations of model

failure and retrieval, this may not be relevant: top-of-

atmosphere visible-wavelength reflectance for a given

optical thickness, and hence the value of t inferred from

that reflectance, is essentially unaffected by the vertical

distribution of particle size (Zhang et al. 2010), for ex-

ample. But the ability to determine when the model is

failing in relevant ways depends in part on how much

information is available. Figure 7, for example, shows that

requiring that consistency in simultaneous retrievals of

optical thickness and particle size alone significantly re-

duces the population of pixels considered useful, while

studies based on angular consistency of optical thickness

retrievals (Horváth and Davies 2004; Liang et al. 2009;

Di Girolamo et al. 2010) suggest that only roughly 30% of

1-km pixels in marine boundary layer clouds fit the in-

terpretive model within 5% reflectance across the view-

ing angle space sampled by MISR.

Clear-sky restoral was introduced into MODIS pro-

cessing because it was thought that the large values of

effective radius frequently produced by MODIS might

be the result of retrievals in partly cloudy pixels. Ex-

cluding cloud edges did not, as it turns out, make a sub-

stantial difference to the average particle size, in part

because many retrievals at cloud edges failed to produce

consistent retrievals of t and re and so were ignored

during aggregation. Pixels excluded by clear-sky restoral

are quite frequent (about 17% as a global average);

though the majority of these pixels was removed for being

near cloud edges, it is also the great majority of optically

thin (t # 1.3) pixels observed by MODIS (Fig. 7). This

distribution, along with the high frequency of the cloud

edge trigger, suggests that many of the pixels identified by

clear-sky restoral are only partly cloudy. We argue that it

is misleading to interpret retrievals of optical thickness

from these clouds literally.

Cloud detection algorithms require thresholds to

separate clear and cloudy skies; these thresholds may be

adjusted depending on the purpose of the cloud mask

(Yang and Di Girolamo 2008). Values for ISCCP were

selected in part to minimize the differences between

ISCCP-derived cloud amounts and independent esti-

mates of this quantity (Rossow et al. 1993; Rossow and

Schiffer 1999). In partly cloudy pixels, the desired thresh-

old is that which balances ‘‘overestimates due to low

spatial resolution offset by underestimates due to finite

radiance threshold’’ (Rossow et al. 1993, p. 2394). MODIS

thresholds were tuned differently (i.e., to provide a

probability that the field of view contains some cloud;

see Ackerman et al. 1998) but produce results quite

similar to ISCCP. Still, MODIS cloud fraction is known to

be biased in fields of small (subpixel-scale) clouds (Zhao

and Di Girolamo 2006), suggesting that perfect thresh-

olds are not achievable.

But even cloud masks tuned to produce unbiased es-

timates of cloud fraction will not produce unbiased cloud

retrievals. Masks for cloud fraction attempt to balance

over- and underestimations of cloud occurrence; this

would yield unbiased retrievals in partly cloudy pixels

only if retrievals were proportional to the product of the

cloud fraction and the underlying property. This seems

unlikely even in plane-parallel clouds, since strict line-

arity would require 1) that the measured reflectance is

proportional to the product of cloud optical thickness

and cloud fraction, and 2) that the retrieval of cloud

properties from reflectance measurements is linear in

reflectance. Given the nonlinear dependence of radia-

tion fields on cloud properties and surface reflectance

this is unlikely to be true in general.

Partly cloudy pixels are also those in which three-

dimensional radiative transfer effects may be expected

to affect the distribution of reflectance observed from

satellites, especially if the subpixel cloud fraction is small

(Yang and Di Girolamo 2008; Evans et al. 2008). The

underlying pixel size for both MODIS and ISCCP re-

trievals of optical thickness is approximately 1 km near

nadir and increases with viewing zenith angle. Three-

dimensional effects can be expected where the scale of

the clouds is commensurate with or smaller than the

‘‘radiative smoothing scale’’ (Marshak et al. 1995); this

depends on the local value of optical extinction but is of

order 300 m—commensurate, in other words, with the

scale of broken fields of cumulus (e.g., Koren et al. 2008).

Fundamentally, then, the interpretation of optical

thickness retrievals from partly cloudy pixels is ambig-

uous, and MODIS and ISCCP treat this ambiguity dif-

ferently. ISCCP identifies these pixels as cloudy and

retrieves optical properties retrieved from them con-

sistently, even though more than a third (5.1% of 14.2%)

of the clouds assigned 0.3 # t # 1.3 are assigned pc ,

180 hPa, consistent with ISCCP retrievals that did not

produce self-consistent solutions for t and pc. The two

primary cloud properties reported by ISCCP (t and pc)

are most relevant to studies of the earth’s radiation

budget and the project’s success can be judged, in part,

by noting that the top-of-atmosphere radiation budget

can be closed to good accuracy using the cloud proper-

ties retrieved by the project (Zhang et al. 2004); even

very numerous clouds with t # 1.3 have a modest effect

on this budget. MODIS takes a more conservative ap-

proach, identifying these pixels as cloud affected but

excluding them from cloud retrievals. This approach
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accepts a truncation error in lieu of introducing unknown

biases (caused by applying algorithms assuming plane-

parallel, homogeneous clouds outside that range) that

might be expected to differ by retrieved variable. Ei-

ther choice can be rationalized but, as we discuss be-

low, the decision can have a strong influence on model

evaluation.

4. Synthesizing MODIS observations of clouds
from model states

The cloud properties observable from space are only

indirectly related to the internal representation of those

clouds in global models. In general, clouds are repre-

sented by a time-evolving probability distribution of

cloud condensate in each grid cell; the most frequent

representation is the cloud fraction and mean liquid and

ice water contents. Instrument simulators combine the

model’s internal description of clouds with information

about the retrieval process to produce the statistics avail-

able in the observational record. Simulators can be divided

into three parts: 1) a treatment of subgrid-scale variabil-

ity, 2) the simulation of pixel-scale retrievals, and 3) the

calculation of statistics.

The first step is required because any given profile of

cloudiness, in all but the simplest cases, implies a distri-

bution of possible retrievals. The ISSCP simulator in-

troduced the idea of drawing Monte Carlo samples,

known as ‘‘subcolumns,’’ from this distribution (see also

Yu et al. 1996). The samples are constructed so that each

subcolumn can be considered homogeneous, while a

large ensemble reproduces the input statistics (e.g., frac-

tional cloudiness in each layer). The rules for doing so

can be arbitrarily simple or complex according to the

assumptions made by the host model; readers seek-

ing more details on the construction of subcolumns

should see Fig. A1 of Klein and Jakob (1999) as well

as Räisänen et al. (2004). This step is not necessary in

cloud-scale models with sufficient resolution that subgrid-

scale homogeneity can be assumed (e.g., Marchand and

Ackerman 2010).

Steps 2 and 3 have direct analogies to the steps used to

process observations (see section 2). Step 2 is also con-

ceptually similar to the forward operators used to predict

observations of, for example, satellite radiance during data

assimilation. Instrument simulators in climate models tend

to be less detailed than the operators used in data assimi-

lation, however, in part because comparisons to observa-

tions are done statistically, rather than one by one.

We have developed a MODIS simulator in this frame-

work. We assume that subcolumns are available. The soft-

ware first operates on these to produce synthetic pixel-

level retrievals, and then a second procedure aggregates

collections of retrievals to produce temporal averages

and joint histograms. The simulator is integrated into the

Cloud Feedback Model Intercomparison Project (CFMIP)

Observation Simulator Package (COSP) software suite

(Bodas-Salcedo et al. 2011) though it can easily be

adapted to other contexts (e.g., cloud-resolving models).

The MODIS simulator is available on the COSP website

(http://cfmip-obs-sim.googlecode.com).

a. Simulating ISCCP observations

To provide context for the MODIS simulator, it may

be useful to review the ISCCP simulator that inspired it

[see also the discussion in Mace et al. (2011)]. In each

subcolumn, the ISCCP simulator computes t by sum-

ming the optical depth (integrated extinction) in each

layer. Clear- and all-sky infrared zenith intensities are

then computed using a simple radiative transfer model and

user-provided cloud emissivity in each layer. Cloud-top

temperature Tc is inferred from t, the top-of-atmosphere

infrared intensity, and the surface temperature and emis-

sivity. Two adjustments are made at this point. First, if

a cloud-top temperature cannot be found that reproduces

the top-of-atmosphere infrared intensity (i.e., if the re-

trieval fails), then the cloud-top temperature is set to 5 K

less than the temperature at the tropopause (effectively

placing the cloud-top pressure at the tropopause itself).

Second, the optical thickness of very thin clouds may be

slightly increased to account for ‘‘IR-only’’ detection.

Finally, the temperature profile of the troposphere is

searched to find the pressure corresponding to the cloud-

top temperature, and the cloud albedo determined by an

analytic approximation (described in the appendix) to the

tables used in processing ISCCP observations.

The ISCCP simulator aggregates pixel-scale retrievals

to report grid-mean values of cf (the fraction of sub-

columns with t $ 0.3), A, tr, Tc, pc, and the joint histogram

cf (t, pc); the latter contains a category for subcolumns

with t , 0.3 that are present in the model but would be

too thin to be observed.

b. Simulating pixel-scale MODIS observations

In keeping with the wider diversity of retrievals pro-

duced by MODIS instruments, the MODIS simulator

requires a greater diversity of inputs than does the

ISCCP simulator, including profiles of particle size for

liquid and ice clouds, re,l and re,i, and the corresponding

liquid and ice optical depths at 0.67 mm within each

layer of each subcolumn as a function of the model’s

vertical coordinate z. Users may opt to provide a single

value of optical depth and the mixing ratios of cloud

ice and liquid, in which case optical depth is partitioned

by phase, assuming that particles are in the geometric

optics limit. Mixed-phase clouds may be represented by

1 JULY 2012 P I N C U S E T A L . 4711



providing values of particle size and optical depths for

both phases within a grid cell. The value of cloud-top

pressure in each subcolumn as diagnosed by the ISCCP

simulator is also required.

For each subcolumn we return a binary cloud mask

and, for subcolumns deemed cloudy, the phase P (liq-

uid, ice, or undetermined), pc, t, and retrieved particle

size re.

As with the ISCCP simulator, optical thickness is de-

rived by integrating the sum of the extinction s due to

liquid and ice clouds through the depth of the atmo-

sphere as follows:

t 5

ðsfc

TOA
sl(z) 1 si(z) dz, (1)

where the extinction is computed by dividing the optical

depth in each layer by the physical thickness of the layer.

This is implemented as a sum of the optical depths in

each layer and, like the ISCCP simulator, assumes that

optical thickness can be retrieved with no error.

We mimic the daytime cloud mask as specifying a

minimum detectable optical thickness tmin. In the present

version, we set tmin 5 0.3 based on comparisons between

MODIS and high-sensitivity lidars (Ackerman et al.

2008). Note that the same threshold is used in the ISCCP

simulator.

Proxies for the phase and cloud-top pressure retrievals

are fairly rough. Comparisons of CO2 slicing retrievals of

pc with profiles of extinction from spaceborne lidar, sug-

gest that the pressure reported is insensitive to cloud

beyond the first optical depth (Holz et al. 2006). We ap-

proximate the retrieval of cloud-top pressure by report-

ing the mean extinction-weighted pressure of the first

optical depth, that is,

pc 5
1

t

ðt

TOA
p(z)[sl(z) 1 si(z)] dz,

t 5 min[1,

ðsfc

TOA
sl(z) 1 si(z) dz]. (2)

The retrieved value of cloud-top pressure is not con-

strained to fall at a model interface level. We mimic the

upper limit of CO2 slicing (see section 2b) by reporting

the cloud-top pressure from the ISCCP simulator for

subcolumns where Eq. (2) provides a value greater than

700 hPa.

Similarly, calculations performed by Wind et al. (2010)

suggest that MODIS phase determination is sensitive to

the phase in the highest portion of the cloud. We model

this simply by computing

P 5
1

t

ðt

TOA
Pl(z)sl(z) 1 Pi(z)si(z) dz,

t 5 min[1,

ðsfc

TOA
sl(z) 1 si(z) dz], (3)

where P is an integer indicating liquid Pl or ice (Pi 5

Pl 1 1). Where less than 70% of the extinction in the first

optical depth arises from a single phase (i.e., where 0.3 ,

jP 2 Plj , 0.7), the phase is considered undetermined;

otherwise, P is rounded to identify the phase as entirely

liquid or ice.

Particle size is estimated using a simplified pseudo-

inversion. During the development of the operational

MODIS algorithms we built two large lookup tables,

one each for liquid and ice clouds, summarizing the

optical properties of cloud particle size distributions as

a function of effective radius. For use in the MODIS

simulator, we approximate the lookup tables for wave-

length l 5 2.1 mm with polynomial fits for the depen-

dence of single-scattering albedo v0 and asymmetry

parameter g on re. We use these fits to determine the

total (liquid plus ice) cloud single-scattering albedo

v0[re(z)] and asymmetry parameter g[re(z)], which we

combine with the total extinction sl(z) 1 si(z) to com-

pute a predicted top-of-atmosphere near-infrared albedo

Rp for each subcolumn using the two-stream approxi-

mation in each layer and adding methods to compute the

reflectance of the entire column. We compare this albedo

to a set of albedos Rt(re) made for homogenous clouds of

phase P [as determined in Eq. (3)] using the value of

optical thickness obtained in Eq. (1). We compute albedo

at a fixed set of trial sizes and linearly interpolate to find

the value of re that minimizes Rp 2 Rt(re). As in the

processing of MODIS observations, subcolumns for

which phase is undetermined, assume liquid drops in the

retrieval of particle size. If the pseudoretrieval fails, the

values of all cloud properties are set to missing values.

Uncertainties due to the clear atmosphere and surface

are neglected.

c. Simulating grid-scale MODIS observations

Synthetic MODIS pixels are aggregated to produce

the statistics available in the custom observational dataset

(see Table 1), although only a single set of cloud fractions

is produced. Liquid and ice water paths for each pixel

are inferred from t and re assuming a vertically uniform

cloud. In practice, statistics are normally computed for

each model column at each diagnostic time step. This

slightly complicates time averaging: MODIS observa-

tions represent the average over the number of pixels

observed, so a time series of aggregate results from the

MODIS simulator must be weighted by the appropriate
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cloud fraction at each time in order to produce a time

mean comparable to the observations (the ISCCP simu-

lator shares this trait).

5. Understanding differences in ISCCP-like
and MODIS-like views of a climate
model’s cloudiness

To what extent can the differences between the MODIS

and ISCCP views of the earth’s cloudiness described in

section 3 be captured by instrument simulators like those

described in section 4? We address this question using

results from the Atmospheric Model, version 3 (AM3;

Donner et al. 2011), a new global model developed by

the Geophysical Dynamics Laboratory, in which we have

implemented the full COSP. The description of the sub-

grid-scale structure in AM3 is fairly involved, and in-

cludes a method for diagnosing internal variability based

on cloud condensate amounts and cloud fraction in each

layer as well as an overlap assumption that accounts for

correlations in condensate concentration (Pincus et al.

2005, 2006). The model also predicts aerosol concentra-

tion and cloud drop sizes; MODIS is one of just a few

publicly distributed global observational datasets avail-

able for evaluation of the latter [others include the Ad-

vanced Very High Resolution Radiometer Pathfinder

Atmospheres Extended dataset (PATMOS-x, available

from http://cimss.ssec.wisc.edu/patmosx/) and the retri-

evals from the MODIS CERES team]. Results here

are taken from a 26-yr run (1980–2006) using observed

sea surface temperatures and greatly simplified sulfate

chemistry.

Comparing the descriptions of the ISCCP and MODIS

simulators (sections 4a and 4b, respectively), one can

see that the determination of optical thickness (and

hence cloud detection) in individual subcolumns is nearly

the same in the MODIS and ISCCP simulators. There

are two (presumably rare) exceptions: subcolumns con-

taining very optically thin clouds, for which the ISCCP

may increase the optical thickness to flag the subcolumn

as cloudy, and subcolumns that are excluded because

the MODIS simulator’s particle size pseudoretrieval

fails. Indeed, total cloud cover produced by the ISCCP

simulator running in AM3 (56.2%, counting only ‘‘de-

tectable’’ clouds with t . 0.3) is only slightly larger than

that produced by the MODIS simulator (54%). Almost

half this difference is due to clouds with 1.3 # t , 3.6

(see Fig. 9), although simulated ISCCP cloud fractions

exceed simulated MODIS values slightly across the

range of optical thickness, which we attribute to failures

of the MODIS simulator particle size pseudoretrieval in

mixed-phase clouds for which liquid cloud lookup tables

were used.

The degree to which the two simulators produce dif-

ferent distributions of cloud-top pressure, on the other

hand, depends more strongly on the joint distribution of

t and pc produced by the host model. If, for example, all

high clouds in the model are optically thick, then in-

frared-based estimates should agree well with the proxy

for CO2 slicing [Eq. (2)]. This is not the case with AM3,

however: the largest differences between synthetic

MODIS and ISCCP observations is related to high

clouds (Fig. 10), which the ISCCP simulator puts in the

highest bin (pc # 180 hPa) and the MODIS simulator

places somewhat lower in the atmosphere. This result is

somewhat surprising at face value, since both simulators

assume perfect knowledge of t, but it may arise from

inconsistencies between the clouds’ true emissivity, as

computed by AM3, and that assumed by the ISCCP

simulator based on visible wavelength optical thickness;

the joint histograms of cloud-top pressure and optical

thickness (Fig. 11) for the two simulators are quite

similar for clouds with t . 3.6, while the ISCCP simu-

lator puts essentially all clouds with t # 1.3 in the highest

cloud-top pressure category, consistent with the failure

to find consistent t, pc pairs.

FIG. 9. Marginal histogram of global-mean cloud fraction as

a function of optical thickness in observations (solid) and from

instrument simulators running in the AM3 climate model (dashed):

ISCCP and the ISCCP simulator are in green, MODIS and the

MODIS simulator are in blue. The instrument simulators produce

very similar distributions, though some MODIS simulator cloud

fractions are slightly smaller at most values of t due to failed re-

trievals of particle size in mixed-phase clouds. Neither simulator

accounts for retrievals in scattered clouds where the observations

disagree most sharply (see section 3). Clouds with t # 0.3 are quite

common in AM3 though they are not detectable in passive ob-

servations.
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Figures 9 and 10 also include verifying observed dis-

tributions of cloudiness, and Fig. 11 can be compared

with Fig. 6. Robust differences between the model and

observations, such as the lack of modeled clouds with

pc . 800 hPa, can be confidently attributed to model

error. For clouds with t # 1.3, however, the difference

between the observations is commensurate with the dif-

ference between the model and either set of observations.

6. Interpreting differences among observations and
model estimates of cloud properties

a. How well can the distribution of optical thickness
be measured?

Instrument simulators codify knowledge about ob-

servational uncertainties. The ISCCP and MODIS sim-

ulators assume that optical thickness can be determined

perfectly [as does the MISR simulator described by

Marchand and Ackerman (2010)], based in part on com-

parisons between optical thickness retrievals and in-

dependent measurements in very carefully controlled

situations (e.g., Platnick and Valero 1995). But compar-

isons of the distribution of optical thickness obtained by

these programs (section 3c) disagree substantially, in-

dicating that the true uncertainty is far from zero.

Some of the differences between MODIS and ISCCP

are likely to be explained by the sensitivity of cloud

FIG. 10. Marginal histogram of global-mean cloud fraction as

a function of cloud top pressure in observations (solid) and from

instrument simulators running in the AM3 climate model (dashed):

ISCCP and the ISCCP simulator (excluding clouds with t # 0.3)

are in green, MODIS and the MODIS simulator are in blue. Total

observed cloud fractions are lower in MODIS than ISCCP pri-

marily because MODIS does not aggregate marginal pixels, which

tend to be optically thin and low in the atmosphere. ISCCP thermal

algorithms assign far more cloudiness to the middle of the atmo-

sphere (pc # 440 , 680 hPa) than does MODIS’s CO2 slicing

method. The MODIS and ISCCP simulators do not capture this

detail, in part because the joint distribution of clouds in AM3 is not

the same as the distribution in nature.

FIG. 11. Climatological distribution of global-mean cloud frac-

tion as a function of cloud top pressure (vertical axis) and cloud

optical thickness (horizontal axis) from the (top) ISCCP and

(bottom) MODIS simulators running in the AM3 climate model.

Very optically thin clouds (t # 0.3) cover about 11% of the earth in

AM3; these are not detectable in either set of observations. The

simulators reproduce the higher cloud-top pressures observed by

ISCCP (Fig. 6) but not the divergent treatments of partly cloudy

pixels. Robust differences between the model and observations,

such as the lack of modeled clouds with pc . 800 hPa, can be

confidently attributed to model error.
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detection and optical thickness to viewing and illumi-

nation geometry, and quantifying how this sensitivity

impacts climatological estimates would be useful. Others

differences are due to different assumptions and ancillary

data, and these will continue to be refined. As one ex-

ample, recent comparisons between the optical thickness

derived from MODIS observations in the visible with

those in the infrared and those from active sensors sug-

gest that the model of ice particles used by MODIS is too

strongly forward scattering, which will lead to systematic

overestimates of optical thickness in ice clouds. Based on

this evidence, the MODIS science team has plans to

change the ice model used in our retrievals; ice cloud

optical thicknesses will change accordingly.

Some of the uncertainty, too, no doubt arises from

interpreting top-of-atmosphere measurements using

plane-parallel, homogeneous models. Mace et al. (2011,

and references therein), for example, show that ISCCP

and similar algorithms routinely underestimate cloud

optical thickness relative to simultaneously obtained

surface measurements. They attribute this difference to

small (subpixel)-scale variability in cloud properties

within fully cloudy pixels; a similar explanation has been

offered to explain counterintuitive relationships between

the strength of absorption by water and the particle size

retrieved by MODIS as a function of wavelength (Zhang

and Platnick 2011). Since the observed radiation field is

only rarely consistent with plane-parallel, homogeneous

clouds (Liang et al. 2009; Di Girolamo et al. 2010), it

seems useful to quantify the impacts of realistic small-

scale variability on cloud retrievals and, where possible,

to find ways to identify observations strongly affected.

The largest differences between distributions of op-

tical thickness derived by MODIS and ISCCP, though,

stem from the treatment of partly cloudy pixels (section

3c). These account for almost all pixels with t , 1.3 in

the MODIS record (Fig. 7) and for 17% of all MODIS

observations. This suggests that the ISCCP distribution

contains a significant proportion of retrievals from partly

cloudy pixels.

Partly cloudy pixels are a dramatic failure of the plane-

parallel, homogeneous model—such a dramatic failure,

we argue, that it is not clear what is meant by ‘‘optical

thickness’’ in broken clouds: though the quantity is for-

mally defined as the vertical integral of extinction at any

location, there is little utility in using this measure when it

does not describe the interaction of clouds with the ra-

diation field. Rossow et al. (2002, p. 560) made the same

point a decade ago: ‘‘There is a minimum horizontal scale

at which the optical thickness is a meaningful quantity.

This scale is imposed by the interaction of the radiation

field with the inhomogeneous extinction field: when 3D

radiative effects are important, then optical thickness is not

a meaningful parameter’’ (italics in the original). We ar-

gue that it is misleading to interpret optical thickness

retrievals from partly cloudy pixels in the same way as

measurements from pixels that more closely fit the ho-

mogeneous, plane-parallel model.

b. On the limits of instrument simulators

Forecast or climate model evaluation relies on the

comparison of simulations with observations, and where

some aspect of a model’s state is not directly observable

a further model of the observation process must be in-

voked. Instrument simulators are one class of such in-

terpretive models. Using retrievals of physical quantities

(e.g., water and ice concentrations from radar reflectiv-

ity observations) is, in many ways, less direct. Users are

stuck with whatever mapping between physical and

observable properties is used in the retrievals, even when

this is inconsistent with the model being evaluated: there

can be no accounting for missing observations in, for

example, very thick or thin clouds, and so on. Some

mapping between model state and observations is always

necessary; instrument simulators can be thought of as the

most direct mapping for satellite observations of clouds.

We stress that the term ‘‘instrument simulator’’ is a

misnomer, since all three steps described in section 4 are

relevant for global models: assumptions made about the

vertical coherence of clouds can have a profound impact

on model predictions of column-integrated quantities,

such as optical thickness (Morcrette and Jakob 2000;

Pincus et al. 2006), and comparisons of optical thickness

must account for the averaging strategy (e.g., radiative

or linear weighting).

But, like all models, instrument simulators are incom-

plete. Our results suggest at least five circumstances in

which even perfect instrument simulators may not re-

produce artifacts in the observations.

1) Some observational errors depend on the state of the

clouds and atmosphere. Adjustments to cloud-top

pressures derived from infrared intensity, for exam-

ple, are large only when the cloud is optically thin. If

the distribution of cloud parameters in nature differs

from those in the model being evaluated, then even

ideal simulators will reproduce a different mixture of

observations and observational artifacts than is ob-

served. As one example, it appears that the large

values of midlevel cloudiness provided by ISCCP are

primarily observational artifacts that arise from the

relatively frequent occurrence in nature of optically

thin high clouds over optically thick low clouds, so

the amount derived from models using simulators

will be quite sensitive to the frequency and optical

thickness distribution of high clouds.
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2) Some observational errors are caused by erroneous

ancillary data. As one example, ISCCP relates cloud-

top temperature to pressure using a temperature

profile derived from sounding instruments, but these

profiles rarely contain the sharp inversions that cap

many boundary layer clouds. The resulting underes-

timation of cloud-top pressure (Wang et al. 1999; Del

Genio et al. 2005) cannot be reproduced by instru-

ment simulators using perfect soundings. MODIS

estimates for low clouds exhibit a similar bias (Holz

et al. 2008). Similarly, errors caused by imperfect

forward models, such as the possible overestimation

of optical thickness caused by ice models used in

MODIS retrievals, cannot be captured by the instru-

ment simulator.

3) Simulators may assume no error in some part of the

retrieval process, as both the MODIS and ISCCP

simulators do for the retrieval of cloud optical thick-

ness, when errors may be present in the observations.

Making this assumption, even if there are no reasonable

alternatives, may have further implications. In particu-

lar, we expect that assuming perfect knowledge of t,

even for small t, means that the ISCCP and MISR

MODIS simulators are more likely to find self-consistent

retrievals than are the corresponding observations.

4) Observational artifacts may be caused by factors that

are neglected by the simulators. The modest but clear

geographic patterns in ISCCP observations (section 2a),

for example, are due to the dependence of retrieved

cloud properties on view angle and ISCCP’s prefer-

ence for geostationary observations. Including this

effect in global models is possible but has not yet been

considered important enough to warrant the consider-

able effort.

5) Observational artifacts may be caused by factors that

are conceptually incompatible with some aspect of

the simulators. As we showed in section 3, differences

in the way ISCCP and MODIS treat partly cloudy pixels

have a dramatic effect on the climatology of cloudiness

and the distribution of optical thickness in thin clouds.

The frequency of these pixels depends directly on the

relative spatial scales of the satellite instruments and the

clouds themselves. But the Monte Carlo generation of

subcolumns (section 4) is agnostic with respect to scale

and cannot produce partly cloudy pixels. One might,

for example, develop a model of cloud spatial scale

that depends on cloud type (e.g., Alexandrov et al.

2010), but the synthetic observational artifacts in-

troduced would depend entirely on this model and so

might be better addressed independently.

Given that the ISCCP simulator predicts cloud-top

pressure quite accurately given accurate inputs (Mace

et al. 2011), we suspect the large discrepancies between

the observed and simulated distributions of cloudiness

with height (Fig. 10) is due to some combination of the

first three factors in addition to model errors being

sought, while the simulation for optical thickness re-

trieval is affected by the second (e.g., erroneous models

for ice particle scattering in one or both sets of re-

trievals), fourth (no accounting for artifacts caused by

viewing and illumination geometry), and fifth (no

treatment of partly cloudy pixels) factors.

c. Designing robust measures for model evaluation

Although instrument simulators cannot entirely close

the gap between models and observations of clouds,

there are broad regimes in which they work well: we

showed in section 3 that MODIS and ISCCP agree when

integrating over all but the optically thinnest pixels and,

in section 5, that the corresponding instrument simula-

tors share this behavior (see also Mace et al. 2011). This

suggests that model evaluation can be made more ro-

bust by focusing on that part of parameter space where

instrument simulators capture the bulk of the obser-

vational artifacts, and by focusing on measures that

integrate over this space rather than the detailed dis-

tribution of clouds within it (e.g., Williams and Webb

2009).

One specific implication is that total cloud fraction is

too fragile a measure to be useful in model evaluation.

Cloud fraction has historically been attractive because it

has been considered easier to make a binary decision

about the presence or absence of cloud than to infer the

value of some continuous quantity (see, e.g., Pincus et al.

2011). But, as the results of section 3 highlight, total

cloud fraction is quite sensitive to the spatial scale at

which it is measured (see also Wielicki and Parker 1992;

Di Girolamo and Davies 1997), and at the kilometer

scales of current satellite instruments, different assump-

tions can have dramatic impacts on the climatology. The

agreement between MODIS and ISCCP is greatly im-

proved when clouds with t , 1.3 are excluded, suggesting

that applying a similar (entirely empirical) filter to the

models before evaluation would make the comparisons

more robust. Figure 12 demonstrates how this impacts the

evaluation of AM3. The top panel shows an evaluation of

cloud fraction (ISCCP and MODIS retrieval fraction)

against the respective simulators; the biases between the

two observational datasets (pink) is much larger than ei-

ther model estimate and a substantial fraction of the var-

iability in cloudiness. Restricting the comparison to pixels

and subcolumns with t $ 1.3 brings agreement between

the two sets observations to nearly the levels seen in

comparing the cloud-affected area (cf. with Fig. 2). Using

more restrictive thresholds (as in Marchand et al. 2010,
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e.g.) reduces bias differences between the MODIS and

ISCCP datasets but degrades other measures, including

the bias relative to the remaining cloud fraction and the

correlations between the two climatologies.

The stark differences between MODIS and ISCCP

estimates of cloudiness suggest more flexible strategies

for aggregating observations. The treatments of marginal

pixels in the present versions of the observations lie at

two ends of a spectrum. The next revision of the MODIS

data will include separate aggregation of one or more

categories of pixels flagged by the clear-sky restoral al-

gorithm, allowing users to compute statistics for larger

populations at the cost of increasing uncertainty. ISCCP

could follow suit by separately aggregating those pixels

for which self-consistent pairs of t and pc could not be

found. Even a small number of categories would allow

users to explore the consequences of making less drastic

decisions and to more sharply delineate more substantive

disagreements.
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APPENDIX

Computing ‘‘Radiatively Effective’’ Optical
Thickness

One of the fundamental properties retrieved by MODIS

and ISCCP at the pixel scale is the optical thickness t

measured at some wavelength in the visible portion of the

spectrum. Optical thickness is the primary control on al-

bedo, but the relationship between these quantities is

nonlinear. For this reason, both datasets provide ways to

estimate the optical thickness corresponding to the mean

albedo: ISCCP provides tr (see section 2a), while MODIS

provides tl (section 2b). This appendix briefly explores the

comparability of these two measures.

The ISCCP simulator uses an analytic approximation

[A 5 ta/(c 1 ta), where a 5 0.895 and c 5 6.82] to the

lookup tables used to relate albedo A to t during oper-

ational processing. We used this approximation to com-

pute temporal averages when building the ISCCP dataset

described in section 2a(1). The approximation to the

lookup tables is quite good (Fig. A1). Albedo is linear

FIG. 12. Taylor diagrams showing agreement between measures

of (top) total cloudiness and (bottom) clouds with greater than 1.3

between AM3’s ISCCP simulator and ISCCP observations (green),

AM3’s MODIS simulator and MODIS observations (blue), and the

two sets of observations (pink). Statistics are computed globally

over the composite seasonal cycle. Observations are the reference

for comparison with the model; because the reference varies among

the comparisons, the Taylor diagram has been nondimensionalized.

Excluding optically thin clouds from the comparison greatly reduces

the bias and improves the correlation between the two sets of ob-

servations, making model evaluation more robust.
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in log(t) over a large range of optical thickness (roughly

2–50); within this range tl and tr are comparable.

When integrated over a distribution of optical thick-

ness (i.e., when using tl or tr to represent averages over

space and/or time), the difference between the two

measures depends on the details of the underlying dis-

tribution. Figure A2 shows this difference as a function

of the parameters of a gamma distribution [as suggested

by the observations of Barker et al. (1996)]. Note that

tr . tl for every choice of parameters for this distribu-

tion, while tl derived from MODIS is significantly larger,

on average, than tr derived from ISCCP (see Fig. 5). Ty-

pical values of the shape parameter n at daily time scales

in 18 areas are roughly 2–4 (see Table 3b in Oreopoulos

and Cahalan 2005), for which values of tr 2 tl are less than

2 for almost all values of t. The monthly averages in

sections 2 and 5 will be broader because they include

temporal variability (Pincus et al. 1999), but this will

be mitigated by the weighting by cloud fraction at each

observation time. This suggests that the result in Fig. 5

is indeed due to averaging over different populations of

observations.

Top-of-atmosphere reflectance depends on surface

albedo in addition to cloud properties, so that tl and tr

provide the optical thickness corresponding to the aver-

age albedo only over dark surfaces. Users seeking more

refined estimates must combine the distribution of optical

thickness with temporally and spatially varying estimates

of surface albedo.
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G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate

the cloudiness simulated by a climate model. Geophys. Res.

Lett., 35, L15704, doi:10.1029/2008GL034207.

——, ——, ——, G. Cesana, J.-L. Dufresne, P. Minnis, C. J.

Stubenrauch, and S. Zeng, 2010: The GCM-Oriented CALIPSO

Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115,

D00H16, doi:10.1029/2009JD012251.

Del Genio, A. D., A. B. Wolf, and M.-S. Yao, 2005: Evaluation of

regional cloud feedbacks using single-column models. J. Geo-

phys. Res., 110, D15S13, doi:10.1029/2004JD005011.

Di Girolamo, L., and R. Davies, 1997: Cloud fraction errors caused

by finite resolution measurements. J. Geophys. Res., 102 (D2),

1739–1756.

——, L. Liang, and S. Platnick, 2010: A global view of one-

dimensional solar radiative transfer through oceanic water

clouds. Geophys. Res. Lett., 37, L18809, doi:10.1029/

2010GL044094.

Donner, L. J., and Coauthors, 2011: The dynamical core, physical

parameterizations, and basic simulation characteristics of the

atmospheric component of the GFDL global coupled model

CM3. J. Climate, 24, 3484–3519.

Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments

against a physical long-term trend in global ISCCP cloud

amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/

2006GL028083.

Evans, K. F., A. Marshak, and T. Várnai, 2008: The potential for

improved boundary layer cloud optical depth retrievals from

the multiple directions of MISR. J. Atmos. Sci., 65, 3179–3196.

Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R.

Key, and X. Wang, 2008: Cloud detection with MODIS. Part I:

Improvements in the MODIS cloud mask for collection 5.

J. Atmos. Oceanic Technol., 25, 1057–1072.

Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance

metrics for climate models. J. Geophys. Res., 113, D06104,

doi:10.1029/2007JD008972.

Haynes, J. M., Z. Luo, G. L. Stephens, R. T. Marchand, and

A. Bodas-Salcedo, 2007: A multipurpose radar simulation

package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 1723–1727.

Holz, R. E., S. A. Ackerman, P. Antonelli, F. Nagle, R. O. Knuteson,

M. McGill, D. L. Hlavka, and W. D. Hart, 2006: An improve-

ment to the high-spectral-resolution CO2-slicing cloud-top alti-

tude retrieval. J. Atmos. Oceanic Technol., 23, 653–670.

——, ——, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A.

Vaughan, and B. Baum, 2008: Global Moderate Resolution

Imaging Spectroradiometer (MODIS) cloud detection and

height evaluation using CALIOP. J. Geophys. Res., 113,

D00A19, doi:10.1029/2008JD009837.
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