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ABSTRACT
The Madden-Julian Oscillation (MJO) is a prominent feature of the intraseasonal 
variability of the atmosphere. The MJO strongly modulates tropical precipitation 
and has implications around the globe for weather, climate and basic atmospheric 
research. The time-dependent state of the MJO is described by MJO indices, which are 
calculated through sometimes complicated statistical approaches from meteorological 
variables. One of these indices is the OLR-based MJO Index (OMI; OLR stands for 
outgoing longwave radiation). The Python package mjoindices, which is described in 
this paper, provides the first open source implementation of the OMI algorithm, to 
our knowledge. The package meets state-of-the-art criteria for sustainable research 
software, like automated tests and a persistent archiving to aid the reproducibility of 
scientific results. The agreement of the OMI values calculated with this package and 
the original OMI values is also summarized here. There are several reuse scenarios; the 
most probable one is MJO-related research based on atmospheric models, since the 
index values have to be recalculated for each model run.
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(1) OVERVIEW
INTRODUCTION
The Madden-Julian Oscillation (MJO) is a prominent 
feature of the Earth’s atmosphere-ocean system with a 
high relevance for weather, climate and basic atmospheric 
research. In order to explain the purpose and structure of 
the software package introduced here, we first mention a 
few meteorological key points of the MJO.

The Madden-Julian Oscillation
The MJO was described for the first time by [9] and 
is characterized by a strong tropical convective 
rainfall anomaly, which is perceptible as enhanced 
cloudiness and precipitation. This disturbance appears 
periodically in the Tropics over the Indian Ocean, then 
travels eastward and decays over the Pacific. It is of 
major relevance for variability in rainfall and wind in 
large parts of the Tropics and is therefore one of the 
most important recurring patterns of variability in the 
Earth’s atmosphere-ocean system. Although the MJO 
is primarily observable in these tropical regions, its 
state has implications for many other locations in the 
atmosphere, which is still a subject of current research 
(e.g., temperature and dynamical features in the polar 
regions and in higher atmospheric layers [3, 2, 14] or 
modifications of extreme precipitation events over 
northeast Africa, the Middle East, and eastern China 
[5]. Reviews of the MJO are given in [15] and [16]. One 
important aspect of the MJO is that it acts on the intra-
seasonal timescale (periods of 30–90 days) in contrast 
to for example the well-known El Niño-Southern 
Oscillation (ENSO), which acts on time scales of years. A 
better understanding of the MJO is therefore not only of 
interest for general atmospheric and climate research 
but is also thought to be helpful for improving the 
forecast skill of weather forecasts [16].

The passage of the convective anomaly from the 
Indian Ocean to the Pacific is conventionally split into 8 
temporal phases, roughly defined by the position of the 
anomaly as shown in Figure 1. For each of these phases, 
the weather at an individual tropical location tends to 
have particular characteristics. However, such an ideally 
clear definition of the phases and the corresponding 
weather patterns for particular regions is difficult for 
the real Earth, since the MJO pattern is superimposed 
on all other kinds of natural variability on various time 
scales from days to years (e.g., common weather 
fluctuations, seasonal variations, the state of ENSO). 
Hence, one recent aim of MJO research was to establish 
statistical approaches, with which the state of the MJO 
can be extracted from observed meteorological data as 
objectively as possible in the form of time dependent 
index values. Several indices have been formulated in the 
past with the most important ones being the Real-time 
Multivariate MJO index (RMM) [12] and the OLR-based 
MJO index (OMI) [6].

MJO index OMI
The software package introduced here provides a 
modern and sustainable reimplementation of the OMI 
algorithm and we first outline the general approach of 
the index calculation, before the software package itself 
is introduced. For details on the underlying algorithm 
see Kiladis et al. [6]. As with most of the MJO index 
algorithms, the OMI calculation is based on a principal 
component analysis (PCA, also known as empirical 
orthogonal function analysis). The PCA is basically a 
linear algebraic basis transformation. The new basis 
vectors, called empirical orthogonal functions (EOFs), are 
defined such that the first few of them cover most of the 
variability in the dataset, which allows for neglecting the 
other basis vectors and therefore reducing the amount 

Figure 1 Depiction of the definition of the 8 MJO phases 
according to the position of the convection anomaly. The figure 
is taken from the original publication by Madden and Julian [9], 
where more details can also be found.

https://doi.org/10.5334/jors.331
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of data treated in the analysis. In the case of OMI, the 
data to which the PCA is applied are temporally resolved 
and filtered maps of OLR. The time dependency of the 
data is then contained in time dependent coefficients 
with respect to the EOFs, which are called the principal 
components (PCs). Wilks [13] or other textbooks offer 
a detailed description of the PCA in the context of the 
atmospheric sciences. For OMI and other MJO indices 
it turns out that only the first two EOFs are needed to 
describe the MJO sufficiently [12, 6]. Hence, only two 
PCs are needed to approximately cover the bulk of the 
temporal and spatial evolution of the MJO. The values 
of the time dependent PCs together with the associated 
EOFs form the MJO index. Once the index has been 
computed, the phase and the strength of the MJO can 
be calculated from the PCs following simple rules [12]. 
Note that the calculation is somewhat more complicated 
for OMI. To better represent the seasonal variations, the 
PCA is not computed for the whole dataset at once, 
but in a climatological sense for each day of the year 
(DOY) separately. Hence, the PCA is executed 366 times 
(including leap days) resulting in 366 pairs of EOFs. The 
PCs for each particular date are then calculated using the 
EOFs of the corresponding DOY [6].

While the RMM index is a good choice to conduct real-
time analyses of the MJO, OMI overcomes a few drawbacks 
of RMM at the expense of the real-time capability [10, 6], 
although a real-time version of OMI, called ROMI, is also 
available [6]. Hence, OMI is a good choice for general MJO 
research that does not depend on real time information 
of the MJO. This applies for many research goals, e.g., the 
improvement of the understanding of the MJO based on 
retrospective analysis of meteorological data or based on 
data of atmospheric models.

Ideas behind the reimplementation of OMI
In contrast to these widespread possible applications, 
to our knowledge there is no publicly available software 
to compute OMI from data. Only available is the official 
description paper [6], which summarizes the general 
properties of the algorithm, and a website (https://www.

esrl.noaa.gov/psd/mjo/, last access on 06/10/2020), which 
provides the corresponding OMI values for the real-world 
MJO evolution. The OMI index time series on this website 
is extended sporadically, which makes this dataset 
suitable for most MJO research based on retrospective 
data (note that the values of the real-time version ROMI 
are updated daily). However, this does not help for model 
analyses, because the OMI index has to be recalculated 
based on the modeled OLR instead of the real-world OLR 
to get a consistent representation of the MJO in modeled 
data.

Given the importance that OMI has gained in MJO 
research there are collectively a number of reasons to 
provide a quality-tested open source code to compute 
OMI:

•	 Facilitate MJO research using the OMI index based on 
modeled data.

•	 Facilitate MJO research based on real-world data 
without being dependent on updates of the respective 
web page (although the dependency on the 
availability of the observational OLR data remains).

•	 Enable researchers to easily further understand the 
characteristics of OMI by modifying an established 
and tested version of the original OMI calculation 
(which depends on some choices of thresholds etc.). 
A recent example of such a case has been brought up 
by Hoffmann and von Savigny [4], whereas a previous 
example for the need to assess MJO index properties 
is given by Wang et al. [11].

•	 Make OMI also conveniently available to all 
researchers, whose research questions might involve 
the MJO and who can be spared from the effort to 
characterize the MJO themselves.

•	 Publish the source code as a special kind of technical 
documentation of the rather complicated calculation 
approach with 100%-coverage of all its details in 
addition to the original publication [6].

•	 Check and demonstrate the reproducibility of the 
involved and potentially error-prone statistical 
approach as a contribution to good scientific practice. 
(The reimplementation actually led to an update [7] 
of the official description paper [6].)

The reimplementation in Python, which is presented here, 
was motivated by two of the points listed above, particu-
larly the analysis of modeled data and the further investi-
gation of OMI characteristics. While the implementation 
approach was at first solely based on the description 
paper [6], it quickly turned out to be crucial to discuss the 
implementation details directly with the designers of OMI 
to speed up the development. Hence, a cooperation with 
the original authors of [6] was established, who provided 
not only these details, but also parts of the original code 
and intermediate calculation results against which the 
reimplementation could be tested. Overall, we realized 
that it requires a considerable effort to understand and 
reimplement the OMI calculation, so that it appears to be 
worthwhile to share the code with the community. Hence, 
we compiled the implementation in the Python package 
mjoindices and added quality control mechanisms, 
examples and documentation. The code includes the 
complete processing chain: the preprocessing of the OLR 
data, the calculation of the EOFs, the calculation of the 
PCs, the post processing of the results, as well as I/O and 
plotting utilities. The name of the package mjoindices 
indicates that it is intended to include also the calculation 
of other MJO indices. However, this is a long-term goal 
and since the OMI calculation is of interest on its own, we 
decided to publish the OMI calculation now.

Since the package has been released only recently, 
there is so far no big community using it. However, there 

https://www.esrl.noaa.gov/psd/mjo/
https://www.esrl.noaa.gov/psd/mjo/
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are numerous research papers using OMI and we have 
already gotten numerous requests regarding the usage 
of the package prior to the release. In one case we have 
already shared a preliminary version of the code.

IMPLEMENTATION AND ARCHITECTURE
The package structure is designed to be easily extendable 
to other MJO indices in the future. Basic modules are 
therefore placed directly in the mjoindices packages, 
whereas modules specific for OMI are placed in the 
mjoindices.omi sub-package.

Data handling
The basis for the data handling and all numerical 
operations is the numpy package, especially the class 
numpy.ndarray. Dates are treated consistently as 
numpy.datetime64 objects.

There are four classes that handle the data exchange 
between the mjoindices package and the calling code 
developed by the users:

•	 The class mjoindices.olr_handling.OLRData 
represents the input OLR data. The only code that 
the users have to develop themselves in order to 
run the package is actually a method that creates 
an OLRData object filled with the three-dimensional 
OLR dataset and the corresponding numerical grids 
for latitude, longitude and time. This class is also 
internally used to represent intermediate results of 
the OLR preprocessing.

The other three classes represent the calculation results:

•	 A calculated pair of EOFs and associated statistical 
diagnostic quantities are stored in mjoindices.
empirical_orthogonal_functions.EOFData.

•	 The list of all 366 pairs of EOFs is stored in 
mjoindices.empirical_orthogonal_functions.
EOFDataForAllDOYs.

•	 The PC time series, which is the basic output that repre-
sents the temporal evolution of the MJO, is represented 
by mjoindices.principal_components.PCData

All these classes come with routines for I/O and basic 
diagnostic plots.

Note that it is in principle possible to provide the OLR 
data on freely chosen spatial and temporal grids as 
input for the OMI calculation. However, the original OMI 
calculation has been performed on spatial grids with a 
spacing of 2.5° between 20° S and 20° N in latitude and 
0° to 360° in longitude as well as daily averages in the 
time domain [6]. Although it might be expected that the 
algorithm returns consistent values over a wider range 
of spatial resolutions (particularly for higher resolutions), 
this has not been rigorously tested. Hence, it is highly 
recommended that the users either provide the OLR data 

on the original grid or at least carefully confirm that the 
characteristics of the index calculated on a different grid 
are similar to those of the original OMI values.

Implementation of the OMI algorithm
The calculation of the OMI EOFs and PCs itself is 
implemented in the module mjoindices.omi.omi_
calculator. The EOF calculation is more complex 
than the calculation of the PCs and is separated into a 
preprocessing of the OLR data, the execution of the PCA 
and a post processing of the resulting EOFs. These steps 
are callable separately to evaluate intermediate results, 
however in most cases all steps will be executed together, 
which is done by the method calc_eofs_from_olr().

The preprocessing consists of a temporal and spatial 
filtering of the input data. This is actually a rather 
involved centerpiece of the OMI calculation and has been 
implemented in the separate module mjoindices.omi.
wheeler_kiladis_mjo_filter, which should, however, 
not be relevant for the end-users.

For the PCA step, two different implementations can 
be chosen via an argument of the method call: the 
internal implementation, which follows the description 
by Kutzbach [8] or the implementation in an external 
Python package, namely the eofs package described 
by Dawson [1]. There is no noteworthy difference in 
the results between both variants, as the usage of 
the external package has originally been included to 
validate the internal implementation. The internal 
implementation now remains in the code to have a self-
contained and fully understandable package for the OMI 
calculation, so it is more for purposes of documentation. 
Using the external general PCA package instead promises 
perhaps to be a higher performance implementation in 
terms of computation time. Overall, the differences are 
marginal and the users will probably simply use the 
external package without further considerations.

The post processing consists of two pragmatic steps, 
introduced in the original calculation of OMI. First, the 
signs of the EOFs calculated by the PCA are arbitrary. This 
means that the signs may switch from one DOY to another, 
which is undesirable. Therefore, the signs of all 366 pairs of 
EOFs are aligned after their computation as the first step, 
i.e. arbitrary sign reversals of EOFs between neighboring 
DOYs will be removed. Note that this post processing step 
might cause problems if the calculation is not performed 
on the original spatial grids. In this case, the users should 
call the preprocessing and the PCA calculation separately 
and then implement individual post processing solutions 
themselves if needed at all. Second, it was found that 
reasonable EOFs for some DOYs at the beginning of 
November were difficult to obtain [6], so that they were 
replaced by an interpolation between the EOFs for the DOYs 
293 and 316 (Note that the range was stated differently 
in Kiladis et al. [6] and has been corrected as a result of 
the reimplementation described here). This interpolation 
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was also included in this package to achieve compatability 
with the original index. However, it is probably specific to 
the calculation based on the observational OLR dataset 
and might either be unnecessary or only be relevant for a 
different period in the case of other datasets. Hence, this 
post processing step is configurable and each user has to 
consider the application depending on the specific case.

Relation to the original OMI implementation
The reimplementation presented here should not be 
understood as a one-to-one porting of the original 
code. Instead, it is essentially a new implementation 
following the statistical steps described in Kiladis et 
al. [6]. This means that the computation results will 
slightly differ due to both, numerical artifacts and 
differences in the implementation details (note that one 
advantage of a completely independent implementation 
is that it challenges the reproducibility of the scientific 
description during the implementation process). The 
still very high degree of the agreement between the 
new implementation and the results of Kiladis et al. [6] 
will be outlined below together with the quality control 
description. In addition, the complete code for the 
recalculation of the original OMI values and the validation 
is included as an example in the package so that it can 
be executed by the users to evaluate the differences in 
detail themselves.

One subtle detail, probably responsible for a part of 
any differences in the results obtained, is the treatment of 
leap years in the selection of the data samples. We have 
included two options in the code, which are selectable 
for the users with the keyword argument strict_leap_
year_treatment of the respective functions. The first 
option (strict_leap_year_treatment=False), which 
is the default, leads to results which are closer to the 
original values, however, the treatment of leap years has 
a practical aspect (explaining the details would be beyond 
the scope of this overview, but a respective comment is 
included in the documentation of the code). The second 
option (strict_leap_year_treatment=True) uses the 
modern numpy date-time routines to treat the leap years 
more explicitly at the expense of the agreement with 
the original values. Although we have decided to include 
both options and leave the choice to the users, we note 
the second option has to be used with care; the EOFs for 
DOY 366 may strongly differ from those of DOY 365 and 
DOY 1, which may produce unwanted jumps in the PC 
time series. In any case, we emphasize that neither of the 
implementations is necessarily identical to the original 
code, but the results of both are very close to the original 
based on the results of our evaluation (see below).

Conceptual separation of the core package and 
additional material
For convenience, the package is listed in the Python package 
index (https://pypi.org/project/mjoindices/), so that it can be 

installed with common Python package managers like pip. 
However, this Python package in the narrower sense only 
contains the operational code itself, but neither the test 
suite nor the examples. Those are available together with 
the complete source code and the documentation in the 
broader sense of the Python package on GitHub or Zenodo 
(see below) and can be run with the installed package.

QUALITY CONTROL
Manual evaluation of calculated OMI values using 
example code
The package includes a basic example, which is available as 
a common Python script (recalculate_original_omi.py) 
or as a Jupyter Notebook file (recalculate_original_omi.
ipynb). It recalculates the original OMI values, i.e., executes 
the reimplemented algorithm with the original input files. 
Hence, this example not only shows how the package is 
used, but also provides a direct comparison of the original 
and the recalculated OMI values. This basic comparison 
is extended by the script evaluate_omi_reproduction.
py (or evaluate_omi_reproduction.ipynb, respectively), 
which provides a more detailed comparison. This script 
does not run the OMI algorithm again, but only analyzes 
the previously recalculated and saved values in more 
detail. Overall, the users can use both scripts to become 
familiar with the usage of the package, but they can also 
judge the degree of agreement with the original values. As 
stated before, a perfect agreement is not expected, since 
the implementation is not a one-to-one port of the original 
code. Instead, the expected tolerances are described 
below. This description also allows for a comparison with 
the individual calculations performed by the users to judge 
the performance of their local installations. Note that the 
input data and also the original OMI dataset have to be 
downloaded from the official websites or Zenodo (see 
below) before running the example. Respective information 
and links are given in the upper part of the example code.

Automated testing
The software quality control includes three levels of 
automated testing routines, which are based on the pytest 
framework. First, many functions are routinely tested using 
unit tests. These unit tests cover those classes, which 
provide simple and self-contained functionality apart from 
the main numerical calculation, i.e. the classes used for 
the data handling and respective I/O routines. These tests 
are mainly based on hard-coded simple sample data, for 
which the expected operation results should be obvious. 
Second, an integration test validates the results of the 
complete calculation chain against the original OMI data. 
Since slight deviations are expected, the test operates 
with specific tolerances, which are specified below. Third, 
another integration test validates the complete calculation 
chain against OMI values, which were previously 
computed using the mjoindices.omi package itself. 
Hence, equivalence of the results is expected here, so that 

https://pypi.org/project/mjoindices/
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this test will guarantee the stability of the results in case of 
installations on different systems or code changes. Note 
that both integration tests are implemented in one routine 
to save computing time during the test execution. Note  
further that some data files, which are not included in the 
package, have to be downloaded before the integration 
tests can be executed. These files are permanently available 
at Zenodo (https://doi.org/10.5281/zenodo.3746563). Details 
are given in a specific Readme document, which is included 
in the test suite (basically, this concerns similar external 
files, as are needed for the examples described above).

Quantitative comparison of recalculated and 
original OMI values
As stated before, the code in the mjoindices package 
is a new implementation and not a one-to-one port of 

the original code, so that slight deviations between the 
results of both implementations have to be expected. As 
a reference, some basic comparison results are discussed 
here. This information can also be used to compare it to 
the local output of the example code, which produces 
similar figures, among others. In addition, the following 
figures also describe the tolerances accepted by the 
respective integration test mentioned before. Note that 
the comparison results depend slightly on the calculation 
setup, particularly the treatment of leap years (see above). 
All figures are based on calculations with the setting 
strict_leap_year_treatment=False, which is closer 
to the original and is the default setting. In contrast, the 
Tables 1 and 2 show results for both settings. In this case 
the comparison statistics are shown for both including 
and excluding DOY 366, which is the DOY that shows the 

Table 1 Comparison of recalculated and original EOFs summarized over all DOYs. Note that we did not include numbers for the 
setup “strict leap year treatment/DOY 366 included”, since these numbers are only determined by the EOFs of DOY 366, which is 
intentionally different from the original. Hence, no conclusion on the overall agreement can be drawn from these numbers.

EOF INDICATOR LEAP YEAR TREATMENT DOY 366 VALUE

1 Correlation not strict both >0.994

2 Correlation not strict both >0.993

1 99% percentile not strict both <0.0084 W/m2

2 99% percentile not strict both <0.0065 W/m2

1 Correlation strict excluded >0.994

2 Correlation strict excluded >0.993

1 99% percentile strict excluded <0.0084 W/m2

2 99% percentile strict excluded <0.0065 W/m2

PC INDICATOR LEAP YEAR TREATMENT DOY 366 VALUE

1 Correlation not strict both >0.998

2 Correlation not strict both >0.998

1 Std.-Dev. of difference not strict both <0.0458

2 Std.-Dev. of difference not strict both <0.0488

1 99% percentile not strict both <0.157

2 99% percentile not strict both <0.1704

1 Correlation strict excluded >0.998

2 Correlation strict excluded >0.998

1 Std.-Dev. of difference strict excluded <0.0449

2 Std.-Dev. of difference strict excluded <0.0484

1 99% percentile strict excluded <0.1523

2 99% percentile strict excluded <0.1671

1 Correlation strict included >0.998

2 Correlation strict included >0.998

1 Std.-Dev. of difference strict included <0.0509

2 Std.-Dev. of difference strict included <0.0501

1 99% percentile strict included <0.1552

2 99% percentile strict included <0.1708

Table 2 Comparison of recalculated and original PCs considering the complete period of the available original data (01/01/1979 to 
28/08/2018).

https://doi.org/10.5281/zenodo.3746563
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most pronounced deviation compared to the original 
data when using strict_leap_year_treatment=True.

Figure 2 shows the EOF functions 1 and 2 for 
two selected DOYs. Shown is one example, which is 
representative for the best agreement (DOY 23), and one, 
which is representative for the worst agreement (DOY 
218). For the worst case, the visual resemblance of the 
original and the recalculated EOFs is also obvious and it 
is seen that the magnitude of the deviation is small for 
both examples.

Figure 3 provides a quantitative overview of the 
agreement of the EOFs 1 and 2 for all DOYs based on 
different statistical values: The correlation of the EOFs 

(upper panel), the mean and the standard deviation 
of the differences between the EOFs (the two panels in 
the middle), and different percentiles of the absolute 
differences between the EOFs (bottom panel). In 
particular the correlation, which varies between 0.994 
and 0.999, shows that the agreement is nearly optimal 
for all DOYs, including the previously called worst cases. 
The other numbers have to be seen in the context of the 
total magnitude of the EOFs (which can be estimated 
from Figure 2) and also indicate satisfying agreement. 
Note that the meaning of, e.g., the 99% percentile is that 
99% of the absolute differences between the original and 
the recalculated EOFs are lower than the stated number.

Figure 2 Examples of recalculated EOFs in comparison to the original EOFs for DOY 23, which is among the DOYs with the best 
agreement, and DOY 218, which has the worst agreement. Note that the color scale of the panels with the differences varies.

https://doi.org/10.5334/jors.331
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Table 1 summarizes the minimum agreement, which 
can be expected for the individual EOFs, considering 
all DOYs. In other words, these numbers indicate the 
maximum tolerance that must conservatively be 
allowed if the EOFs for each DOY are not assessed 
individually. This is also done in the respective 
integration test, so that these numbers state the test 
tolerances.

Figure 4 shows the recalculated and the original 
time series of the PCs 1 and 2 for the year 2011, 
which has been arbitrarily chosen. The PC time series 
contain the principal information on the temporal 
evolution of the MJO and are therefore of major 
interest for the users. Visually, almost no difference 
between the original and the recalculated values can 
be seen. This is confirmed by Table 2, which summarizes 
the agreement between the PC time series for the 
complete period (01/01/1979 to 28/08/2018), for 
which the original data was available at the time of the  
implementation.

(2) AVAILABILITY
OPERATING SYSTEM
Tested on Ubuntu 18.04 Linux and Windows 10.

Figure 3 Detailed comparison statistics for the EOFs of all DOYs. See text for details.

Figure 4 Comparison of the recalculated and original PCs for an 
arbitrarily chosen sample period (the year 2011).
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PROGRAMMING LANGUAGE
Python > = 3.6 (tested with Python 3.6, 3.7, and 3.8)

ADDITIONAL SYSTEM REQUIREMENTS
There are no special hardware requirements in addition 
to a state-of-the-art personal computer system (e.g., 
1.5 GHz Processor, 8 GB memory, a few GB free disk 
space). The complete algorithm will run for a few hours 
on such a system.

DEPENDENCIES
The package depends on the following standard Python 
packages. These can be installed using common Python 
package managers (e.g., pip) and will usually also be 
automatically installed along with mjoindices.

•	 numpy, version >= 1.17.0
•	 matplotlib, version >= 3.1.1
•	 pandas, version >= 0.25
•	 scipy, version >= 1.3.0

In order to run the unit and integration tests, the 
following package is needed:

•	 pytest, version >= 5.0.1

To have the possibility to use an external implementation 
of the PCA as described before, the following package 
can be installed:

•	 eofs, version >= 1.4.0

Some of the unit and integration tests depend on external 
datasets, which serve either as input or as reference for 
the results. These datasets are also permanently availa-
ble from Zenodo (https://doi.org/10.5281/zenodo.3746563). 
They have to be downloaded and saved into a particular 
directory before these tests can be successfully executed. 
Details are given in a Readme document, which is part of 
the test suite. Also the examples need these or similar 
files. In this case, the description of the necessary files is 
found in the source code documentation of the examples.

LIST OF CONTRIBUTORS
•	 Christoph G. Hoffmann (University of Greifswald, 

Germany) has written the code and led the project.
•	 George N. Kiladis (NOAA/Physical Sciences Laboratory, 

Boulder, Colorado) has contributed code samples as 
a reference (which are not included in the package) 
and discussed several implementation issues.

•	 Maria Gehne (CIRES, University of Colorado Boulder, 
and NOAA/Physical Sciences Laboratory, Boulder, 
Colorado) has tested the package from the 
perspective of the original designers of OMI.

•	 Juliana Dias (CIRES, University of Colorado Boulder, 
and NOAA/Physical Sciences Laboratory, Boulder, 
Colorado) has provided a file with reference data.

•	 Christian von Savigny (University of Greifswald, 
Germany) has contributed to the discussion of the 
general approach.

SOFTWARE LOCATION
Archive

Name: Zenodo
 Persistent identifier: https://doi.org/10.5281/zenodo.395 

7857

Licence: GNU General Public License v3.0
Publisher: Christoph G. Hoffmann
Version published: 1.2.0
Date published: 23/07/2020

Code repository
Name: GitHub
 Persistent identifier: https://github.com/cghoffmann/

mjoindices

Licence: GNU General Public License v3.0
Date published: 23/07/2020

LANGUAGE
The language of the code and the documentation is 
English.

(3) REUSE POTENTIAL

The reimplementation of the OMI algorithm as open 
source code can be helpful for climate, weather, and 
basic atmospheric research in diverse aspects as has 
been outlined in the introduction. This also includes 
documentation aspects and good scientific practice.

The primary reuse case of the package in terms of 
actually running the code to calculate OMI values consists 
of the analysis of the MJO behavior in complex models of the 
atmosphere. The major point is that it will be necessary to 
recalculate OMI for the atmospheric conditions simulated 
by a specific model to get a consistent representation of 
the MJO in that particular model. Due to the chaotic nature 
of the Earth’s atmosphere even an ideal numerical model 
would not able to precisely reproduce the Earth’s weather 
at a particular point in space and time for many days 
after its initialization. Hence, although state-of-the-art 
atmospheric models produce realistic weather patterns 
and realistic climatological conditions (in the sense of 
large-scale and long-term averaging), the conditions for 
individual periods and locations cannot be reasonably 
compared to the real world for long-term runs. This 
implies that it is impossible to use the original OMI index 
calculated for the real world based on OLR observations 
to also describe the MJO in a modeled atmosphere. Put 
in other words, each MJO-related study based on free 
running atmospheric models has to recompute the OMI 
index for each model run based on the modeled OLR data 
to get a consistent representation. This is easily possible 
with the presented Python package. Given the various 
atmospheric models (of which all are run with many 

https://doi.org/10.5281/zenodo.3746563
https://doi.org/10.5281/zenodo.3957857
https://doi.org/10.5281/zenodo.3957857
https://github.com/cghoffmann/mjoindices
https://github.com/cghoffmann/mjoindices
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different setups depending on the particular science 
questions) and the rising awareness of the relevance of 
the MJO for tropical and extra-tropical meteorology, we 
expect a high reuse potential, as long as the community 
becomes aware of the existence of this code.

A more specific reuse case is to understand the 
characteristics of OMI itself. This knowledge can become 
useful, when subtle interactions between the MJO 
and other processes in the earth system are studied. 
In this case, it must be considered that the particular 
representation of the MJO (here OMI) influences the 
results. For this, it can be helpful to be able to recompute 
OMI with slight modifications, e.g., with different values 
for the filter constants of the bandpass filter. We do 
not expect, however, that these individual exploratory 
variations of the implementation should feed back 
into the basic source code, as the basic code should 
unambiguously represent the original documented and 
scientifically approved OMI algorithm.

CONTRIBUTIONS
We expect that the results, which are produced by the 
package, will be stable right from the outset, since 
all major features for the complete reproduction of 
OMI have already been implemented and tested. 
Nevertheless, we welcome contributions to the code, 
such as code optimizations or implementations of other 
MJO indices. These contributions will also have to meet 
the high quality standards in terms of automated testing 
etc. to keep the results stable and scientifically reliable. 
For contributions and questions, we can be contacted 
using the project’s GitHub page (e.g., “Pull requests” and 
“Issues”) and the author contacts of this manuscript.
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