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The bottom line (literally) is the W/m? (the
irradiance) transferred between the
atmosphere and the surface - the SURFACE
ENERGY BUDGET (SEB)

e Sealce Extent

e Seasonal Snow Extent

e Onset of melt and freeze

 Permafrost morphology
e Green house gases fluxes
e Greening of the Arctic

e Glacier melt




Surface Energy Balance

The surface energy balance is usually defined with respect to an active layer of
infinitesimal small thickness. In this case the storage of energy in the layer can
be neglected and the energy balance equation takes the form:
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Sign convention

Fluxes are considered positive when directed
toward the surface (energy sources) and
negative when directed away from the surface
(energy sinks). Exceptions are LT andas T
(outgoing radiation fluxes), for which a minus
sign is explicitly used in the energy balance
equation.

http://www.iac.ethz.ch/education/bachelor/climate systems/notizen/Surface-Energy-Balance.pdf

The Institute for Atmospheric and Climate Science (IACETH) is part of the Department of Environmental
Sciences (D-UWIS) of the Swiss Federal Institute of Technology Zurich (ETH Zurich).
The IACETH is active both in research and education.



http://www.iac.ethz.ch/education/bachelor/climate_systems/notizen/Surface-Energy-Balance.pdf
http://www.env.ethz.ch/index_EN
http://www.ethz.ch/

I\/Ieasuring the COmpOnentS
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Deploy LOTS of
Radiometers,
Photometers,
Anemometers,
Thermometers,
Humidity Sensors
(Gas Samplers)




Measurements to Provide Closure

e Active Layer Temperatures
e Snow Depth

Vegetation Surveys
Heat Flux Plates




Gas Samplers (CH,, CO,, H,0)

CO./H,0 -analyzer. Li-cor LI-7000
CH, -analyzer: LGR RMT-200

Sonic anemometer: Metek USA-1

=

Tower Mounted Li-cor Li-7500
ATI SAIK-3K Sonic CO, and H,0O
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|. Repina and A. Artamanov — Diurnal Variability can be observed in
Fluxes for all seasons with net positive flux in the summer and net
negative flux in the winter
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Measurements were made at 4 and 16 m above the surface. Turbulent heat
flux was calculated from gradient method on two level. Positive values of
heat flux correspond to the unstable (convective) conditions and vice versa.
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A. Grachev and L. Matrosova — Net Heat Flux and Snow Depth can vary
considerably from year to year with consequent impacts on the active
layer temperature structure
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O. Persson — Mesoscale wind regimes and local terrain have impacts
on atmospheric structure that is transmitted through the active layer
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A. Grachev — During the summer, raw co-spectra of the H,0 and CO, Fluxes
are generally in anti-phase and Eureka is a CO, sink
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M. Aurela and T. Laurila— Methane Fluxes from Different Wind
Directions show Impact of Surface Types
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T. Laurila — Examining the relative impacts of local (marine
and terrestrial) vs. long-range impacts on local methane
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O. Persson: You can get a very similar net annual cycle of
atmospheric fluxes with a completely different combination
of components implying different mechanisms

g

(4,1
[=

(a) (b)
200 '
~ SHEEA, T4.8 -80.4° N
Wy, = 426 W m’ E:Jiﬁ';fzuiul W= 227 Wm* Data: 101007-10/1058
LW, =-39.0Wm? %,-.21,3w..1!-=
| Hy =-58Wm' . 150 Hy, =-22Wm
He =68Wm® H, =11wWm?
F.. =28Wm! e F’m = 2.8 W Y (25 oo pRr annuen)
F,  =63wm® E
=100
SWinat x
= et
L
) = &0
Hip &
. I
W Hib s
LW et
) E0 |
LW et
Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mow

Dec Jan Feb Mar Apr May Jun Jul Aug Sep  Oct Nowv
Month Month

ALERT SHEBA

Figure 1: Monthly means of the surface energy budget terms for a) Alert
(terrestrial site) and b) SHEBA (pack ice site). The annual mean of the
various terms are given to the upper left in each frame.
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A. Makshtas — Impacts on shore-fast and drifting ice in the Sogo Bay

Tiksi
Increased air temperature,
Long-term historical records show the increased pressure and increased
increase in ice-free days in the Sogo cloudiness. Tiksi is representative of
Bay adjacent to Tiksi relating to: the region when compared to
0 adjacent weather stations.
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IASOA is the International Arctic Systems for Observing the Atmosphere

The coordination of Arctic Flux data sets and analysis will be facilitated by an
IASOA working group (www.iasoa.org)
Many IASOA Observatories are Global Atmosphere Watch Stations
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GCW is the Global Cryosphere Watch
and is developing an a counterpart program to Global
Atmosphere Watch (http://globalcryospherewatch.org/)
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More Cryosphere in the News »

GCW News and Highlights
Greanland Cumulative Melt Days

Sea and Freshwaler lce : Jan 1 = jul3 Barry Goodison awarded the 2012 3
RE o Patterson Distinguished Serace Kedal

WGKS Summer School on Mass Balance
Mezsuramenis and Analysis 2013, 2-7
Septamiber =

Snow and Solid Precip

Glaciers & Ice Caps Third Meeting of the WO Polar Spaca Task

Group, 22-23 May 2013, Paris, France


http://globalcryospherewatch.org/

The Potential Synergies Between IASOA and GCW are Obvious
for providing long-term monitoring and understanding of the
atmosphere and the underlying ice-snow surfaces
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The “Marriage Bed” will be ISO-Standard Based Data Portals
providing rapid access to fundamental digital data sets supporting

original research
For Information please contact: Taneil.Uttal@noaa.gov or jeff.key@noaa.gov
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