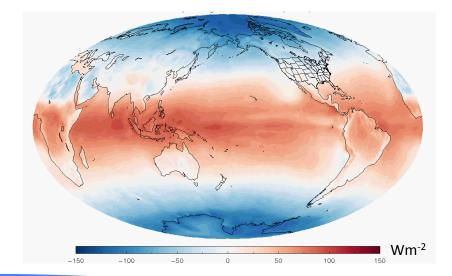


Radiation: Pathways to Accuracy and Implications for Interpretation

Robert Pincus

Science Review 12-14 May 2015 Boulder, Colorado


Context

- Radiation is the fundamental driver of weather and climate. Accurate representation is key to weather prediction and climate projection.
- Radiation is on uniquely solid theoretical grounds among physical parameterizations, but balancing computational cost and accuracy have been a challenge
- I'll describe work to improve the representation of radiation in models, assess errors, and determine how those errors impact interpretation of climate simulations

Unpacking radiative transfer

- 1. Determine optical properties of
 - Gases
 - Clouds
 - Aerosols

2. Compute transport

 Coupling: use heating rates, surface fluxes to advance the model

Science Review • Boulder, CO • 12-14 May 2015

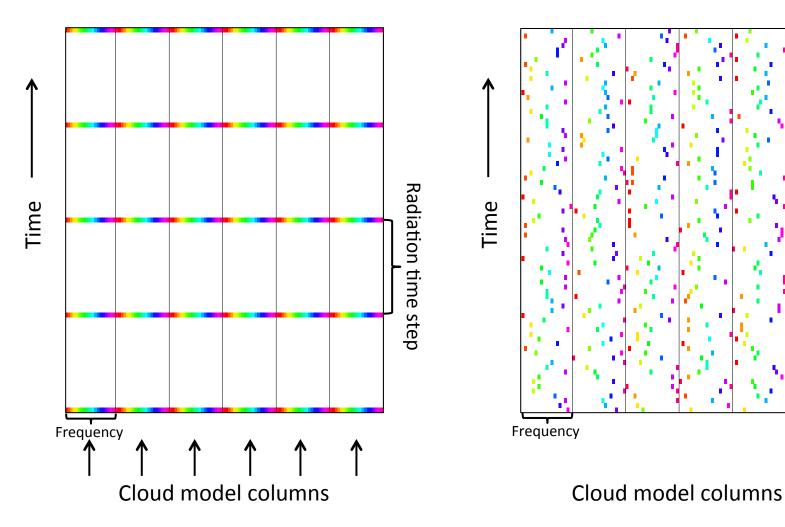
Coupling radiation to dynamics

• Radiation is really computational intensive, so we approximate $F(x, y, z, t) \approx c(x, y, t) \sum_{g}^{G} w_g F_g(x, y, z, t_{rad}(t) \mid t_{rad}(t) - t \leq \Delta t_{rad})$

that is we compute radiation fluxes less frequently than other terms and correct for time dependence

- Consistent with slow forcing by radiation
- We assume hope this works

Coupling radiation to dynamics


Insight: Frequent randomly-chosen subsets of the spectral integration are an unbiased estimate of the full calculation

$$F(x, y, z, t) \approx \frac{G}{G'} \sum_{g(i \in [1..G])}^{G'} w_g F_g(s'; x, y, z, t)$$

Why is this useful?

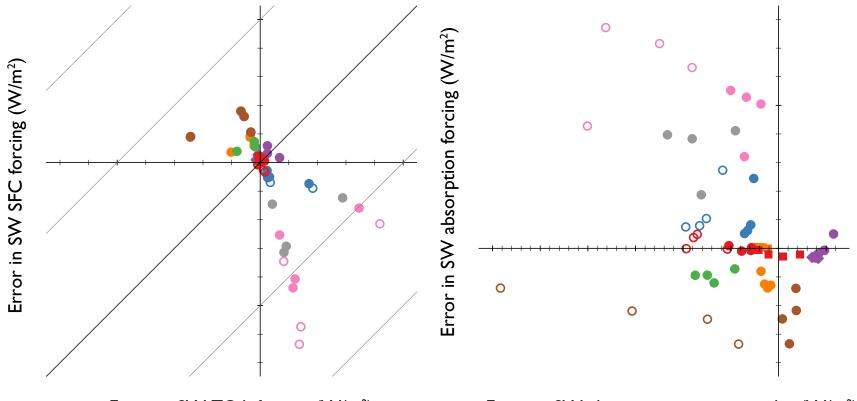
- Samples temporal variability
- Can save computation time
- Converges properly

Temporally Sparse, Spectrally Dense

Monte Carlo Spectral Integration

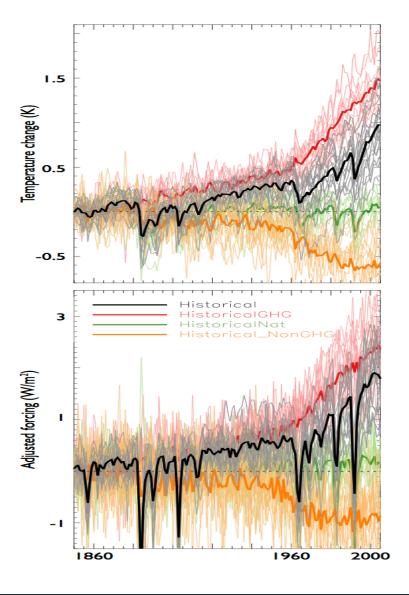
Monte Carlo Spectral Integration: impacts

- Understanding why this works helped us better understand the coupling of radiation and cloud dynamics
- MCSI *enabled* realistic radiation in large-eddy simulations


...leading to new insights into cold pool/cloud dynamics, aerosol cloud interactions...

• Interactive land surface makes this problem harder Experiments in weather and climate contexts show no obvious advantage but the jury is still out

Coupling strategies aside, the accuracy of radiation parameterizations can be assessed...


... and are getting better, but still show a surprising range of skills especially in forcing calculations

Error in SW TOA forcing (W/m²)

Error in SW absorption in present-day (W/m²)

NOAA RESEARCH • ESRL • PHYSICAL SCIENCES DIVISION

Even in "controlled" experiments each GCM is subject to different radiative forcing. This diversity arises from *errors*, loose specifications, and specific aspects of the model that modify the instantaneous forcing.

We can't understand diversity in response without quantifying the diversity in forcing and understanding how much of that diversity is plausible.

Radiative Forcing (RF) model intercomparison project

- Motivation
 - Disentangle variability in forcing from variability in response across models
- Approach
 - Characterize and assess radiative forcing for each model
 - Coordinate simulations in which RF is tightly specified
- Components
 - Offline assessment of parameterizations (Pincus)
 - Online diagnosis of effective radiative forcing (Forster)
 - Integrations with tightly-controlled RF (Stevens)

Summary

We are making models better by

- improving radiation parameterizations for weather and climate applications
- exploring radical new coupling strategies

We are leading an international effort to understand how relationships between forcing and climate response past, present, and future. This is key to interpreting projections, and to detection and attribution.

• Feeds directly into climate assessments such as IPCC AR6.