

Theme 3: Modeling the Physical System

Improving Model Processes - Summary

Rob Cifelli

Science Review 12-14 May 2015 Boulder, Colorado

Science Issues Addressed

- Use-inspired research addressing PSD science goals
 - Rigorously <u>characterize</u> and <u>predict</u> weather, water, and climate extremes and their uncertainties to inform decision-making
 - Develop <u>new process understanding</u>, observational and modeling capabilities to predict conditions associated with too much or too little water for improved early warnings, preparedness and resource management

Notable Successes

- PSD research is improving model predictions
 - Provide increased confidence in forecasts across time scales
 - Inform policy makers on regional to global variability and trends

What You Heard

- Addressing PSD goals to *understand* and *predict* extremes across the weatherclimate continuum
 - Accurate projections of future global climate require improved understanding of model uncertainty (R. Pincus)
 - Increased complexity in model physics doesn't necessarily translate to improved prediction (J.-W. Bao)

What You Heard

- Addressing PSD goals to *understand* and *predict* extremes across the weatherclimate continuum
 - Using models with sophisticated parameterizations to inform models with simpler parameterizations, targeted at key weather-climate phenomena (S. Tulich)
 - High resolution modeling of extreme events to inform flood risk management (K. Mahoney)

Future Directions

- Apply lessons learned to produce "seamless water prediction"
 - Support NOAA concept for an Integrated Water Information System
 - PSD contributions are extensive
 - Characterization of forecast uncertainty from flash floods to global climate change
 - Provide policy makers with actionable information over a range of time scales
 - Flood risk
 - Water supply

Examples of potential PSD Contributions

Past to Present: Reanalyses, attribution, and assessments of past and ongoing conditions and their impacts. Improved real-time observations and monitoring.

Future: Seamless forecasts of water-related risks across time scales

Needs for observations, process understanding and user interactions extend across all time scales

Session Speakers

- Robert Pincus: Radiative Forcing in CMIP6
- Jian-Wen Bao: Evaluation of Microphysics Schemes for Numerical Weather Prediction
- Stefan Tulich: Improving Weather and Climate Prediction Models Through the Super-Parameterization Approach
- Kelly Mahoney: High Resolution Modeling to Understand Flood Risk and Hail Impacts in Future Climates