

Budgetary Evaluation of Microphysics Schemes Used in Numerical Weather Prediction

Jian-Wen Bao

Science Review 12-14 May 2015 Boulder, Colorado

Basis for budgetary evaluation

- Gain and loss of a hydrometeor due to gravitational sedimentation
- Gain of a hydrometeor due to nucleation on aerosols
- Gain and loss of a hydrometeor due to collision and coalescence
- Gain and loss of a hydrometeor due to self-collection or breakup

What is the minimal complexity in microphysics schemes required in NWP model?

An idealized tropical cyclone intensification case

WRF-ARW (v3.5) is run nested 9km and 3km domains, 43 vertical levels, with the following 4 MP schemes.

Microphysics Parameterization	Predicted Variables
Ferrier (a version of NOAA's operational scheme)	Mixing ratios of <mark>cloud water, rain water, snow</mark> ; rime factor
WSM6	Mixing ratios of cloud water, rain water, cloud ice, snow and graupel
Thompson	Mixing ratios of cloud water, rain water, cloud ice, snow and graupel; number concentration of rain water and cloud ice
Morrison	Mixing ratios of cloud water, rain water, cloud ice, snow and graupel; number concentration of rain water, cloud ice, snow and graupel

Sensitivity of intensification to microphysics parameterization

NOAA RESEARCH · ESRL · PHYSICAL SCIENCES DIVISION

Domain and time averaged MP diabatic heating: 1-24 Hours (gestation period)

Science Review • Boulder, CO • 12-14 May 2015

Mixing ratios of cloud and rain water and MP diabatic heating

Science Review • Boulder, CO • 12-14 May 2015

Budgets of rain water mixing ratio tendency at hour 6: Morrison vs Ferrier (a version of NOAA's operational scheme)

Different size assumptions embedded in all the sink/source terms

Single- vs double-moment formulation for rain water

Caution: it has been unclear so far if the differences are important or if they can be validated.

Summary and Conclusions

- No significant differences in cloud water production between the four schemes are found in this idealized case study.
- Differences in the parameterized rain water production are in the size distribution assumption embedded in the calculations of autoconversion, collection growth, sedimentation and evaporation.
- Double-moment schemes *differ* from single-moment ones in the parameterizations of self-collection/breakup process and number concentration sorting.
- There is a tradeoff between the complexity needed to represent detailed microphysical processes and the uncertainties introduced by the added complexity.