

The Processes Underlying the Pacific Decadal Oscillation

Michael Alexander

Science Review 12-14 May 2015 Boulder, Colorado

Why study the PDO?

- Leading pattern of SST variability in the North Pacific (> 20°N)
- Associated with climate, ecosystem and hydrologic fluctuations
- Develop a process understanding - key to prediction and applications

Random Forcing Aleutian Low Variability

- Ocean is a simple slab no currents thus no ENSO or ocean gyres
- Leading pattern => changes in strength of the Aleutian Low
- Changes in surface fluxes
 forces ocean
- Ocean integrates flux forcing creates SST anomalies that resemble the PDO

Science Review • Boulder, CO • 12-14 May 2015

Alexander, 2010; AGU Monograph Chapter

NOAA RESEARCH · ESRL · PHYSICAL SCIENCES DIVISION

Midlatitude Ocean Processes

- Reemergence
 - Acts to "lengthen" ENSO & random atmospheric forcing
- Wind generated Ocean Rossby waves
 - Impacts SST near Japan, along the Kuroshio-Oyashio Extension (KOE) front

Newman, Alexander et al., 2015; BAMS, submitted

4

Kuroshio-Oyashio frontal variability

SST anomalies and the atmospheric response to the frontal anomalies in an atmospheric model

300 hPa height (m)

Science Review • Boulder, CO • 12-14 May 2015 Smirnov, Newman, Alexander et al., 2015; J. Climate 5

NOAA RESEARCH · ESRL · PHYSICAL SCIENCES DIVISION

Building the PDO

- Empirical Model (LIM)
- Leading Pacific dynamical modes
 - Not EOFs, not orthogonal
- Time series show projection of each mode onto the PDO

6

Summary and Conclusions

- Processes:
- Atmospheric Bridge (ENSO)
- Random forcing
- Reemergence
- Ocean Rossby waves & ocean fronts
- Atmospheric response to KOE SST anomalies?

Science Review • Boulder, CO • 12-14 May 2015

7

Additional slides

Science Review • Boulder, CO • 12-14 May 2015

"Re-emergence" : SST anomalies can recur in consecutive winters in the extratropics

Acts to lengthen ENSO and Random Aleutian Low forcing

Depth vs. time crosssection of ocean temperature anomalies (°C) in two regions, correlated on the PDO (1958-2004)

Newman, Alexander et al., 2015; BAMS, submitted.

NOAA RESEARCH • ESRL • PHYSICAL SCIENCES DIVISION

PDO and ENSO "climate signals" are not independent

Epoch differences in SST

Science Review • Boulder, CO • 12-14 May 2015

NOAA RESEARCH • ESRL • PHYSICAL SCIENCES DIVISION

Local and remote forcing of the PDO

Top: atmosphere (NPI) leads SST by three months

Middle: SST leads NPI by three months

Bottom: ENSO index leads SST by three months NDJ NPI leads SST by 3 months (correlated with FMA SST)

FMA NPI lags SST by 3 months (correlated with NDJ SST)

NDJ tropical Pacific -PC1 leads SST by 3 months (correlated with FMA SST; flipped sign)

NOAA RESEARCH · ESRL · PHYSICAL SCIENCES DIVISION

Pacific Ocean currents and variability

Kuroshio-Oyashio Extension (KOE) system is a key component of the North Pacific oceanatmosphere system

Shifts in the subarctic SST front are associated with longer time scales (westward propagating Rossby waves)

0.5

0.7

0.9

1.1

1.3

1.5

Removing tropically-forced portion of the PDO yields "internal" North Pacific SST mode

Multivariate AR1 model (LIM):

 $d\mathbf{x}/dt = \mathbf{B}\mathbf{x} + \mathbf{F}_{s}$

Determined from observations, where **x** represents seasonal mean anomalies (1958-2008) of

• **Tropical Pacific** [SST, thermocline depth]

North Pacific

[SST, mixed layer temp (30-100m)] Top: Leading pattern of North Pacific variability (PDO)

Bottom: Leading pattern of "internal" North Pacific seasonal variability (after uncoupling Tropics and North Pacific dynamics within **B**)

Leading North Pacific SST EOF for uncoupled North Pacific

ENSO-PDO representation in CMIP5

Taylor diagram compares PDO determined from HadISST, 1901-2004, to

- CMIP3 : green
- CMIP5: red
- Black dots: 50-yr Monte Carlo subsampling
- Triangles: other data sets

Key result:

 Models reproduce a PDO EOF but none reproduce PDO well

c. PDO Taylor Diagram

ENSO-PDO representation in CMIP5

 $PDO(n) = r PDO(n-1) + a PC1_{Tropics}(n) + b PC2_{Tropics}(n) + e$

Fitting (simpler) AR1 model to observations and CMIP5 models, 1901-2004

Key results:

- Most models reproduce PDO EOF
- Almost all models underestimate tropical forcing of PDO (a)
- Most models (slightly) overestimate *r*

PDO/ENSO spectra

Gray shading: 1000 1000-yr LIM (multivariate AR1) realizations

CMIP5 spectra lies within confidence interval (a-c)

receptructione