WWRP Polar Prediction Project

Thomas Jung

Chair of the WWRP Polar Prediction Project

Alfred Wegener Institute
Helmholtz Centre for Polar and Marine Research
Germany
Opportunity and risk

Some statements from the report:

- The Arctic is likely to attract substantial investment over the coming decade ($100 bn)
- The environmental consequences of disasters in the Arctic are likely to be worse than in other regions
- Significant knowledge gaps across the Arctic need to be closed urgently
PPP constitutes the hours-to-seasonal research component of the emerging WMO Global Integrated Polar Prediction System (GIPPS). A closely related WCRP Polar Climate Predictability Initiative covers GIPPS research on seasonal-to-decadal time scales.

PPP Mission Statement
Promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on time scales from hourly to seasonal.
*Formation of Science Steering Group (Dec 2011)
 * 6 meetings so far. Plans include
 Montreal, Aug 2014
 * Science and YOPP meeting at ECMWF June 2013
* Science Plan, Implementation Plan, Year of PP Plan (Draft)
 * Report of Science Symposium working groups
* Project Office (Thomas Jung, AWI)
 * Funding from AWI
 * Trust fund via WMO
* Web Site: http://polarprediction.net/
* Coordination with WCRP PCPI (Climate effort)
* Series of briefings at WMO/WCRP, national agencies
PPP Steering Group

- Thomas Jung (chair)
- Peter Bauer
- David Bromwich
- Paco Doblas-Reyes
- Chris Fairall
- Marika Holland
- Trond Iversen
- Brian Mills
- Pertti Nurmi
- Don Perovich
- Phil Reid
- Ian Renfrew
- Gregory Smith
- Gunilla Svensson
- Mikhail Tolstykh

SG4, Boulder, 1-3 October 2013

- Jonny Day (APECS liaison)
- Neil Gordon (WMO consultant)
Research areas

Research Goals

Service-oriented Research
- User Applications and Societal Benefits
- Verification

Forecasting System Research
- Observations
- Modelling
- Data Assimilation
- Ensemble Forecasting

Underpinning Research
- Predictability and Diagnostics
- Global Linkages

Source: PPP Implementation Plan
Flagship themes

- **Sea ice prediction**
 - Explore predictability
 - Develop of coupled prediction systems

- **Linkages** between polar regions and lower-latitudes
 - Determine mechanisms and strengths
 - Implications for predictions in middle latitudes

- **Improved availability of observations** from polar regions

- The Year of Polar Prediction (YOPP) 2017-2019
Sea ice prediction

MITgcm @ 4km resolution
Simulation described in Nguyen et al (2012) and Rignot et al. (2012)
Linkages

Day 1-5

Day 6-10

Day 11-30

Day 11-30
Improved observational coverage

Synop (Surface stations), AIREP (Airline), DRIBU (Drifting buoys), TEMP (Rawindsone) and PILOT (Pilot balloons)

Polar data coverage of conventional observations in the ECMWF operational analysis analysis on 1 January 2012.

P. Bauer (ECMWF)
The Year of Polar Prediction

- Comprehensive observational snapshot
 - In situ and satellite data
 - Observing system design (data denial experiments)
 - Supersites (model grid boxes ➔ MOSAiC)
- Model development (e.g. Transpose-CMIP)
- Community data sets (reforecasts, special archiving etc.)
- Frontier experiments (e.g. high-resolution modelling)
- See draft YOPP Implementation Plan
The Year of Polar Prediction

Preparation Phase
2013 to mid-2017

Community engagement
Align with other planned activities
Develop implementation plan
Preparatory research
Summer school Workshops
Liaise with funders

YOPP mid-2017 to mid-2019

Intensive observing periods
Dedicated model experiments
Research into use & value of forecasts
Intensive verification effort
Summer school

Consolidation Phase
mid-2019 to 2022

Data denial experiments
Model developments
Dedicated reanalyses
Operational implementation
YOPP publications
YOPP conference
MOSAiC
Multidisciplinary drifting Observatory for the Study of Arctic Climate

Matthew Shupe – U. of Colorado
Ola Persson – U. of Colorado
Michael Tjernström – Stockholm U.
Klaus Dethloff – Alfred Wegener Inst.
And many others
Critical Model Shortcomings

Regional Climate Models evaluated against SHEBA radiative fluxes reveal major biases and spreads, especially under clouds. Such biases can have serious implications for sea-ice.

Downwelling short wave radiation

- Clear: \(~ 0 \text{ W m}^{-2}\)
- Cloudy: \(~ -25 \text{ W m}^{-2}\)

Downwelling long wave radiation - winter

- Clear: \(~ 0 \text{ W m}^{-2}\)
- Cloudy: \(~ -10 \text{ W m}^{-2}\)
The MOSAiC Plan

What:
1) Deploy heavily instrumented, manned, ship-based, Arctic Ocean observatory for comprehensive, coordinated observations of the Arctic atmosphere, cryosphere, and ocean.
2) Network of spatial measurements to provide context and variability (buoys, gliders, UAVs, aircraft, ships, satellites, ice stations).
3) Coordinated modeling activities at many scales from process-study to regional climate models.
Measurements

atmospheric profiling, BL, & dynamics

micro-meteorology gases, aerosols, clouds & precip.

aircraft + UASs

ocean state, profiling, & dynamics

ice profiling, thermodynamics, mass budgets
Further information

http://polarprediction.net