

The U.S. Navy's Sea Ice Prediction Capabilities: Present and Future Plans

Richard Allard¹, Tim Campbell¹, David Hebert¹, E. Joseph Metzger¹, Michael Phelps², Pamela Posey¹, Ole Martin Smedstad³, Alan Wallcraft¹

> ¹NRL Oceanography Division ²Jacobs Engineering ³QinetiQ North America

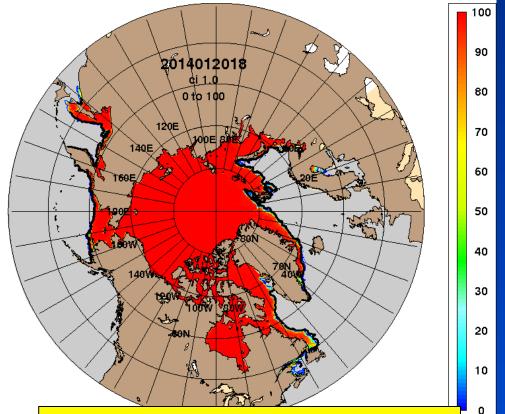
13-15 May 2014

Outline

- Arctic Cap Nowcast/Forecast System
- Sea Ice Outlook
- Global Ocean Forecasting System (GOFS 3.1)
- Regional COAMPS-Arctic
- Summary & Future Plans

Arctic Cap Nowcast/Forecast System (ACNFS)

 ACNFS consists of 3 components: <u>Ice Model</u>: Community Ice CodE (CICE)

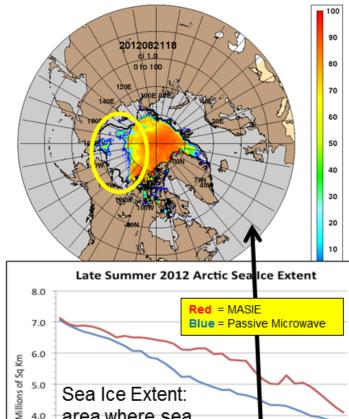

Ocean Model: HYbrid Coordinate Ocean Model (HYCOM)

Data assimilation: Navy Coupled Ocean Data Assimilation (NCODA)

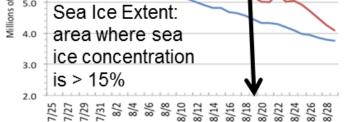
- Declared operational Sept 2013
- ACNFS outputs nowcast/7-day forecasts of ice concentration, ice thickness, ice drift, sst, sss and ocean currents
- Products pushed daily to the U.S. National Ice Center (NIC) and NOAA

http://www7320.nrlssc.navy.mil/hycomARC/

ARCc0.08-03.8 Ice Concentration (%): 20140118

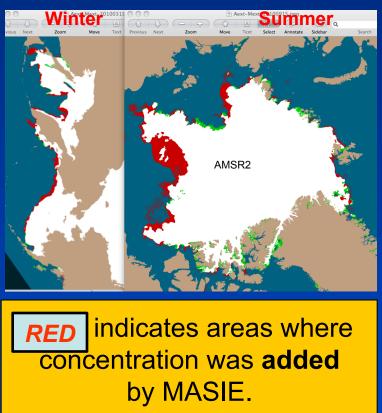

Model grid resolution ~ 3.5 km

Black line is the independent ice edge location (NIC). Animation spans 18 Jan – 18 Feb 2014



Ice Concentration Assimilation

- For the Navy, ice edge location for general transit, search and rescue is extremely important.
- Navy has been using passive microwave (PM) sea ice concentration from DMSP (SSMI and SSMIS) since early 1990's.
- During the summer, PM has known problems detecting melt ponds as open water.
- As a direct result of the OPTEST, NIC suggested the use of the Multi-sensor Analyzed Sea Ice Extent (MASIE) product.
- National Snow and Ice Data Center (NSIDC) has developed a blended ice concentration product using the MASIE ice mask and AMSR2.



ARCc0.08-03.5 Ice Concentration: 20120819

Ice Modeling Assimilation from Satellites

GREEN indicates areas where concentration was **removed** by MASIE.

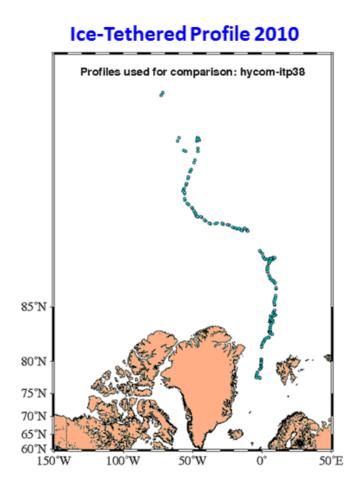
NSIDC's blended product (MASIE + AMSR2)

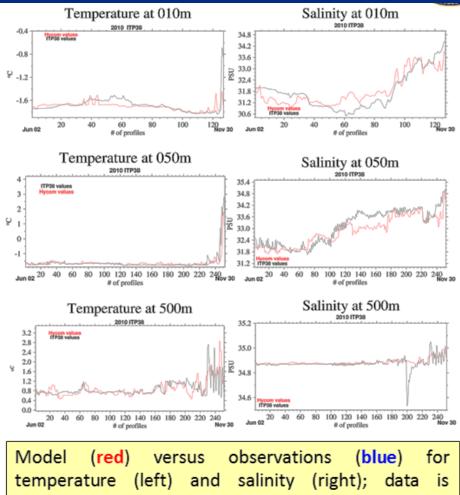
Mean Ice Edge Error (km) between ACNFS and NIC's ice edge location July 2012 – July 2013

Region	ACNFS w/ SSMIS 25km res	ACNFS w/blended 4km res	% Improve ment
Greenland	37km	28km	25%
Barents	28km	20km	28%
Laptev	66km	46km	30%
Sea of Okhotsk	38km	19km	51%
Beaufort	63km	33km	48%
Canadian Archipelago	53km	39km	27%
Total Arctic	54km	32km	41%

Currently, MASIE has a 4 km resolution, a 1 km resolution product is scheduled to be released by May 2014.

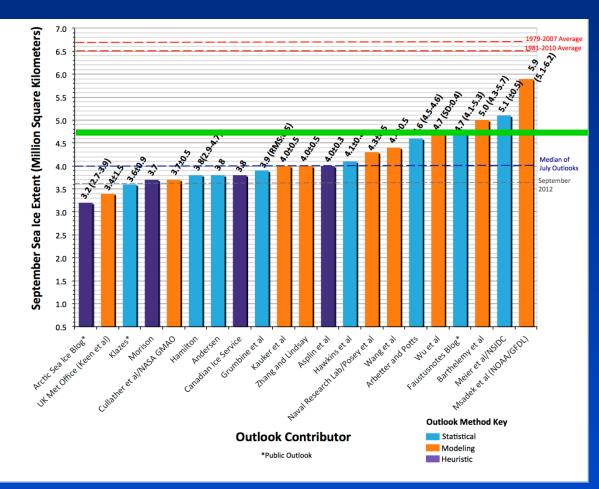
13-15 May 2014


Improved Ice Edge with MASIE/AMSR2


ACNFS Daily Mean Ice Edge Error | Bering/Chukchi/Beaufort Seas July 2012 – July 2013 400 SSMI/S [Mean = 63 km] AMSR2 [Mean = 40 km] 350 MASIE + AMSR2 [Mean = 33 km] 300 The blended product (green) during summer time period (August/Sept) shows the greatest reduction in 250 Kilometers daily mean error. 200 150 100 Oct12 Nov12 Dec12 Jan13 Feb13 Mar13 Apr13 May13 Aug1 Sep1 Jun13 Jul13

13-15 May 2014

ACNFS Assimilation of ITP Data



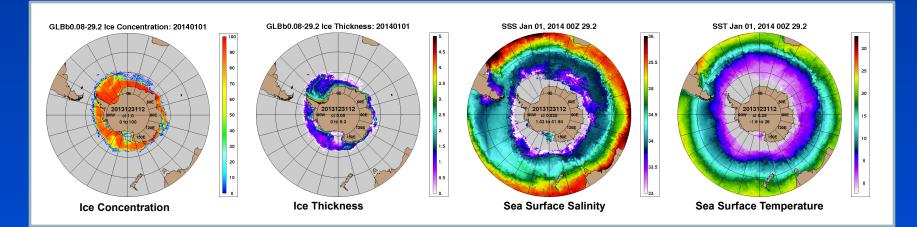
assimilated into HYCOM ocean model. Highly correlated agreement when data is assimilated.

13-15 May 2014

2013 Sea Ice Outlook (July Report)

Observed Minimum ice extent

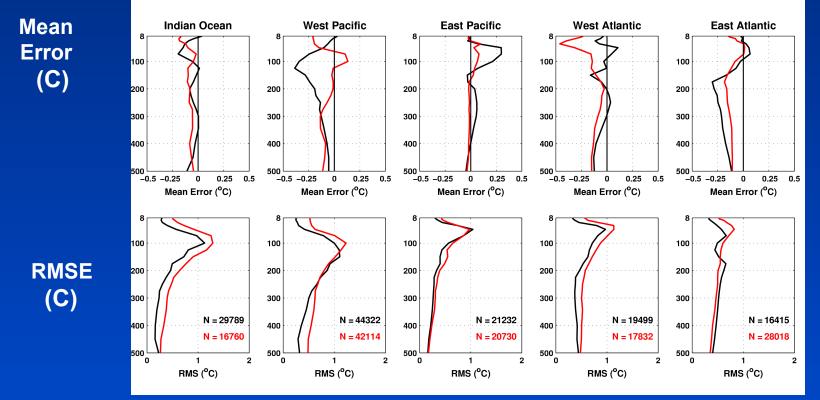
2014 Plans:


- Run ensembles with GOFS 3.1 (global system) and ACNFS
- Generate map showing ice extent minimum

http://www.arcus.org/search/seaiceoutlook

13-15 May 2014

Global Ocean Forecast System (GOFS 3.1)

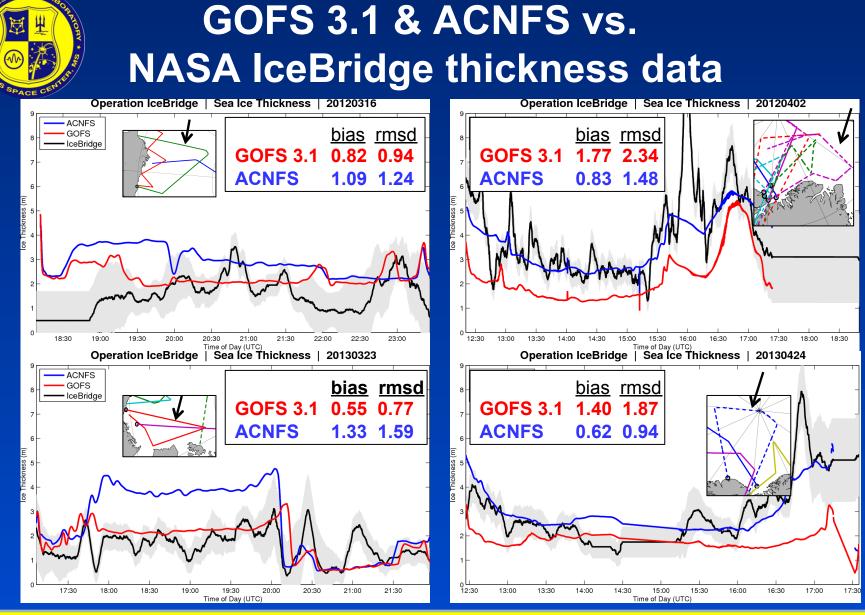

- 1/12°global two-way coupled HYCOM-CICE modeling system with data assimilation
 - 41 layer HYCOM/NCODA-3DVAR
 - Forced with Navy's NAVGEM out to 7 days
 - Will replace ACNFS

Large Scale Ocean Prediction Preliminary temperature vs. depth error analysis GOFS 3.0 vs. GOFS 3.1

Temperature vs. depth error analysis

Analysis over the period August – December 2013 Both use NAVGEM 1.1 forcing

13-15 May 2014

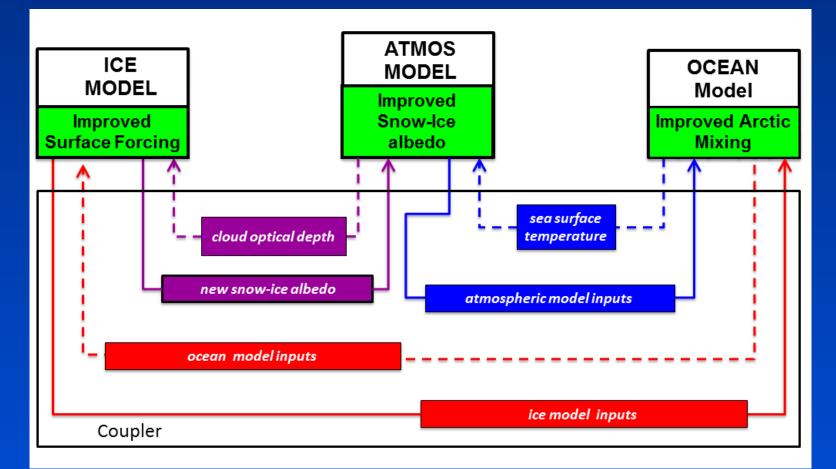

GOFS & ACNFS vs independent NIC ice edge Northern Hemisphere

Mean ice edge error (km)	ACNFS	GOFS 3.1	% Improvment
Greenland/Norwegian Seas	36km	28km	22
Barents/Kara Seas	26km	29km	-13
Laptev/E. Siberian Seas	56km	27km	52
Sea of Okhotsk	32km	34km	-8
Bering/Chukchi/Beaufort Seas	45km	39km	13
Canadian Archipelago	44km	38km	12

If ACNFS and GOFS are both HYCOM/CICE/ data assimilation, why are there lower ice edge errors in GOFS?

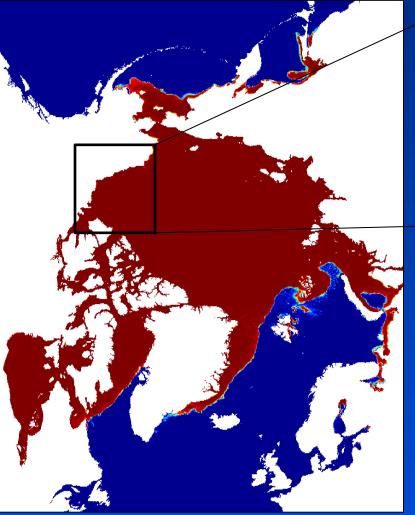
- 1) More realistic initial conditions (mainly better ice thickness)
- 2) Assimilating ice concentration data across the whole domain (not just along the ice edge)
- 3) Improved HYCOM code

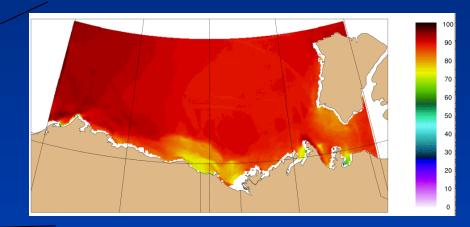
13-15 May 2014



Assimilation of ice thickness data is necessary

13-15 May 2014

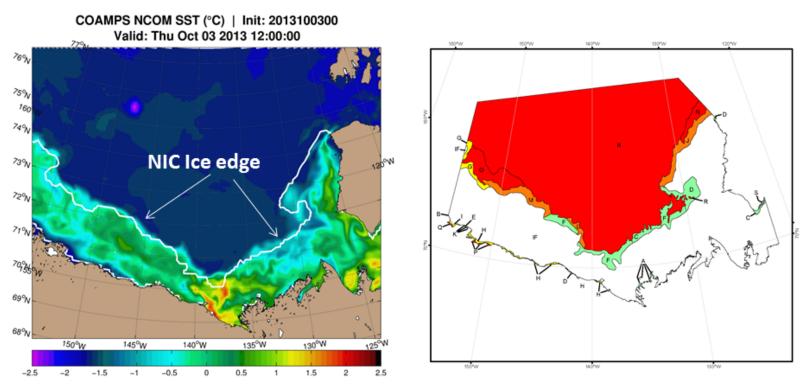

Coupled Air-Ocean-Ice Modeling with COAMPS


Beaufort Sea Regional CICE

ACNFS

13-15 May 2014

Regional CICE - Uncoupled



- Interpolate ACNFS restart to desired domain
- Rotated ACNFS to North-East coordinate system (could be arbitrary rotation).
- Made ocean forcing directly from ACNFS output. Required same interpolation method as ACNFS restart file

NCOM Simulations Forced with COAMPS

October 3, 2013

NCOM initial/boundary conditions provided by HYCOM component in ACNFS

13-15 May 2014

Challenges

- Develop improved algorithms for deriving data products (i.e ice concentration) from satellites especially along the marginal ice edge.
- Gaining access to real-time river discharge from Canada and other nations as input to our coupled regional models.
- Assimilation of ice thickness data (in situ and satellite-derived) is a critical need.
- Access to under ice observations is near realtime for data assimilation.

Opportunities

- Work jointly with NOAA in Sea Ice Outlook; add to ensemble mix with NOAA atmospheric forcing.
- Work with analysts at NIC for verification
- Work with 1) NASA ICESat-2 Early Adopter program and 2) ONR field programs (e.g., MIZ, Sea State DRI)

Summary

- GOFS 3.1 will replace ACNFS as global operational coupled model in 2015
 - Plans to increase horizontal resolution of atmospheric forcing (NAVGEM)
 - Future upgrades of HYCOM (1/25 deg) will include tides and waves
- Regional COAMPS-CICE testing will continue through 2015
- Future efforts will investigate ice thickness assimilation