The preliminary results of Boundary-layer measurements in Tiksi

A. Artamonov, I. Repina, A. Makshtas, A. Grachev, T. Uttal, and R. Albee
OUTLINE

• Main goals of the tower researches
• History of the tower installation
• Tower measurements and data collection
• The preliminary results
• Further works
Step 1: Tower installation

- **June 2010**

Step 2: Sensors installation

- **August 2010**

Step 3: Beginning of the work: April, 23, 2011

- **Air temperature**

- **Wind velocity**

Turbulence characteristics

- Rotated sonic components: u-blue v-green w-red T-cyan; YD = 117, hr = 07 (UTC)
Main goals of measurements

- Year round monitoring of heat, water vapor, momentum, and carbon dioxide and the temperature of the soil active layer. Comprehensive analysis of observational data, aims to study the interannual and seasonal variability of the energy - gas exchange processes of the surface and the atmosphere in their relationship with large-scale atmospheric processes.

- Atmospheric boundary layer studies under different background conditions, including strong stability condition.

- Developing of the parameterization for turbulent fluxes calculation for climate model.

- Comparing with data of similar measurements on the existing network of Arctic atmospheric observatories, as well as with specialized data of experiments conducted in the Arctic basin.
Atmospheric Boundary Layer Measurements:

The main parameters to be measured:
(from 0 to 20 meters)

1. Air temperature profile
2. Wind velocity and direction profile
3. Air humidity profile
4. Air pressure
5. Radiation budget
6. Surface condition (temperature, snow cover)
7. Heat flux through surface
8. Permafrost temperature from 0 to 1.2 meter
9. Fluctuations of wind velocity, temperature, H$_2$O and CO$_2$ concentrations.
Data transmission
Heat flux and frictional velocity from profile measurements

Summer season
Heat flux and frictional velocity from profile measurements
Winter season
Measurements were made at 4 and 16 m above the surface. Turbulent heat flux was calculated from gradient method on two level. Positive values of heat flux correspond to the unstable (convective) conditions and vice versa.
Further works:

1. Develop recommendations for service of the tower complex of instruments on the results of testing under various meteorological conditions.

2. Change-over of the tower complex of instruments from test to stationery mode. Clarification of the instruments' calibration constants. Completion of the data transmission organisation through communication channels. Technical supervision of the tower instruments condition.

3. The organization of real time data processing and analysis. Quality data control.
Thank for you amazing attention