The NOAA El Niño Rapid Response (ENRR) Field Campaign 2016

Randall Dole1, Ryan Spackman2, Robert Webb3, Chris Barnett4, Robert Cifelli5, Gilbert Compo1,6, Chris Fairall2, Leslie Hartten1,2, Andrew Hoell2, Martin Hoerling2, Janet Intrieri2, Paul Johnston1,2, George Kiladis1, Matthew Newman2, Catherine Smith2, Gary Wick2, Daniel Wolfe3, Klaus Wolter2

1Cooperative Institute for Research in the Environmental Sciences, Boulder, Colorado, USA, 2NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado, USA, 3Science and Technology Corporation (STC), Boulder, Colorado and Columbia, Maryland, USA

ACKNOWLEDGEMENTS

SPECIAL THANKS TO THE IMPLEMENTATION TEAMS THAT ENABLED THE UNPRECEDENTED RAPID RESPONSE INCLUDING:

- NOAA Office of Marine and Aviation Operations (OMAO)
- NOAA Aircraft Operations Center (AOC)
- NOAA Unmanned Aircraft System (UAS) Program
- Mission Tower Suite from NASA Ames Research Center (ARC)
- Alpha Jet Atmospheric Experiment (AJAX) at NASA ARC
- NOAA Global Hawk aircraft out over the tropics and all non-ENRR observations
- Conventional upper air observations, surface pressure observations, ENRR observations relative to
- Forecast error
- Early results suggest G-IV dropsondes are reducing 24 hr
- NCEP GFS global atmospheric model
- Boosting the forecast error
- Evaluation of incremental improvement in
- Improvements Evaluation
- Forecast skill associated with the
- Surface pressure observations, conventional upper air observations, and all non-ENRR observations during this very strong El Niño with
- NCEP GFS global atmospheric model
- Early results suggest G-IV dropsondes are reducing 24 hr
- NCEP GFS global atmospheric model