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Summary: A human-induced warming and wetting of California State since preindustrial times is 13	
  

shown to increase the frequency of severe droughts whose metric incorporates shallow soil 14	
  

moisture, but to decrease the frequency of severe drought whose metric incorporates deep soil 15	
  

moisture.  16	
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Abstract 21	
  

The 2011-2014 California drought (i.e., 3 years) has cast a heavy burden on statewide agriculture 22	
  

and water resources, further exacerbated by concurrent extreme high temperatures. Furthermore, 23	
  

industrial-era global climate warming brings into question the role of long-term climate change 24	
  

on the 2011-2014 CA drought. How has human-induced climate change affected California 25	
  

drought risk? Here we apply observations and model experimentation to characterize this 26	
  

drought employing metrics that synthesize drought duration, cumulative precipitation deficit, and 27	
  

soil moisture depletion. Our model simulations show that climate change since the late 19th 28	
  

Century induces both increased annual precipitation and increased surface temperature over 29	
  

California, consistent with prior studies. As a result, droughts defined using bivariate indicators 30	
  

of precipitation and 10-cm soil moisture become more frequent because shallow soil moisture 31	
  

responds most sensitively to increased evaporation driven by warming. However, when using 1-32	
  

m soil moisture as co-variate, droughts become less frequent because deep soil moisture 33	
  

responds most sensitively to increased precipitation. The results illustrate different land surface 34	
  

responses to anthropogenic forcing at this time with return periods for severe droughts either 35	
  

increasing or decreasing about 10% depending on drought metric.  36	
  

 37	
  

 38	
  

 39	
  

 40	
  

 41	
  

 42	
  

 43	
  



2	
  
	
  

Introduction 44	
  

The failure of three consecutive rainy seasons since 2011 has produced severe California 45	
  

moisture deficits reducing agricultural productivity and depleting ground water (1,2). Aggravated 46	
  

by record surface air temperatures (3), the concern is that this drought may be symptomatic of 47	
  

human-induced change, and that a new normal of dryness is emerging that will soon rival the 48	
  

worst droughts since 1000 AD (4). The question has been raised how human influences on 49	
  

climate have played a role in this drought event. Whereas some initial evidence indicates that 50	
  

human-induced climate change has unlikely caused the failed rains (5,6), questions nonetheless 51	
  

remain about the role of global warming. How, for instance, has the return period for such an 52	
  

extreme drought occurrence over California changed as a result of the change in climate since 53	
  

pre-industrial times?  54	
  

Event return period is an essential characteristic of natural hazards that informs decision makers 55	
  

and management agencies seeking to mitigate societal impacts and ensure resilience (7-9). In the 56	
  

case of precipitation alone, the recurrence interval/frequency of deficits that contribute to 57	
  

drought is typically evaluated from single indicator/univariate approaches (e.g., deficit in 58	
  

precipitation, Standardized Precipitation Index, i.e., SPI) (10,11). Yet, as the 2011-2014 59	
  

California drought (hereafter, CA drought) suggests, both dynamic and thermodynamic 60	
  

processes characterize dry conditions that thus dictates the use of multiple indicators for 61	
  

characterizing drought conditions. The traditional univariate analysis cannot account for the 62	
  

combined effects of multiple extremes (e.g., heat waves, soil moisture) on droughts (12); neither 63	
  

can they address the interdependence between drought characteristics (e.g., drought severity, 64	
  

duration) (13). A potential consequence is misinterpretation of drought risk, and how changes in 65	
  

some meteorological elements may bear upon a change in drought risk itself (14).  66	
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Over the last decade, copulas have emerged as an effective method to describe multivariate 67	
  

probability distributions and for addressing the interrelationship between variables (15,16). Here, 68	
  

we attempt to characterize CA drought from the multivariate viewpoint (e.g., drought duration 69	
  

and severity, rainfall and soil moisture), assess the return period of the current event, and 70	
  

quantify how the return period has changed as a consequence of human-induced climate change.  71	
  

One way of accounting for the combined effects of rainfall and temperature on drought is to 72	
  

examine soil moisture. However, long-term soil moisture observations are not readily available. 73	
  

Here, we analyze the combined effects of precipitation and soil moisture on droughts using long-74	
  

term historical simulations from the Community Climate System Model 4.0 (hereafter, CCSM4) 75	
  

with preindustrial (i.e., the year of 1850, hereafter, Y1850) and industrial/current (i.e., the year of 76	
  

2000, hereafter, Y2000) climate forcings, respectively. We investigate the current role of 77	
  

anthropogenic climate change in CA drought, defined in a multivariate sense involving 78	
  

precipitation and soil moisture, by quantifying the changes in drought frequency for a range of 79	
  

severities between preindustrial and current climate.  80	
  

 81	
  

Results 82	
  

a. Characterizing CA drought from historical precipitation 83	
  

Our analysis of the historical California water year (WY) precipitation time series (see Section a 84	
  

in Materials and Methods) identifies 30 drought events in the past 119 years, 10 of which have 85	
  

had three-year or longer duration (see Fig. 1). The 2011-14 three-year drought has been the most 86	
  

severe of all prior three-year events, having an accumulated precipitation deficit of 522 mm 87	
  

corresponding to almost a full WY loss.   88	
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Fig. 2A summarizes the joint distribution (see Section c in Materials and Methods) of CA 89	
  

drought duration (abscissa) and severity (ordinate) for these 30 historical events. A red asterisk 90	
  

identifies the current CA drought. In terms of duration alone, 6 prior events were longer lasting. 91	
  

In terms of severity alone, only two prior events have had larger cumulative precipitation deficits 92	
  

(1987-1992 and 1928-1931). The result of a bivariate copula analysis based on these 93	
  

precipitation co-variates indicates that the 2011-14 CA drought has a roughly 30-year return 94	
  

period. This is to be contrasted with 19-year and 41-year return periods estimated from 95	
  

univariate analysis of drought duration and precipitation deficit, respectively (see Fig. S1). 96	
  

Clearly, the interdependence/combined effect of physical attributes of drought alters the 97	
  

perceived intensity of the current event and its expected recurrence. Nonetheless, whether using 98	
  

univariate or bivariate precipitation-based methods, the data indicate that the current CA drought 99	
  

is neither unprecedented nor rare within the 119-year instrumental record. This interpretation is 100	
  

consistent with inferences based on comparing the current event to univariate drought statistics 101	
  

derived from a 400-year paleo-reconstruction of CA precipitation (17).  (We note, at the time of 102	
  

this writing,  that the current event is ongoing with precipitation conditions during the first half 103	
  

of the 2015 rainy season suggesting a 4th year of drought is likely.) 104	
  

Our results are largely insensitive to the use of other precipitation indices, which provide 105	
  

guidance in drought management. For example, Fig. 2B shows the result of a bivariate analysis 106	
  

for 18-month SPI (SPI18). While based on monthly statistics, such a time window is broadly 107	
  

consistent with WY averages used here. When applied to the current CA drought event, SPI18 108	
  

yields a 29 month duration drought event that broadly matches the 3 consecutive dry years 109	
  

diagnosed from observed WY data. The result of the bivariate analysis of duration and severity is 110	
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in good agreement with results using observed WY precipitation, with a return period estimated 111	
  

to be about 30 years.   112	
  

 113	
  

b. CA drought in climate simulations 114	
  

Climate simulations are based on two long runs of CCSM4 (see Section b in Materials and 115	
  

Methods). As a measure of CCSM4 suitability for addressing the role of human-induced climate 116	
  

change in CA drought, we first repeat a bivariate analysis (see Section c in Materials and 117	
  

Methods) for duration and severity of SPI18 using the 2133 years of model simulations. The 118	
  

results in Fig. 2C show the isolines of return periods for droughts occurring relative to the 119	
  

model’s equilibrium climate of year 1850 (black) and year 2000 (magenta). The red asterisks and 120	
  

red circles denote drought events having similar duration and severity attributes as the 2011-14 121	
  

CA drought. For such analogous conditions, the CCSM4-derived recurrence interval analyses 122	
  

yield return periods of 20-30 years, close to the estimated return period of the 2011-14 drought 123	
  

defined using the instrumental record. 124	
  

The model-based analysis reveals numerous drought events having much longer duration and 125	
  

greater severity, akin to the impression gained from the short observational record. The model 126	
  

result thereby strengthens the evidence that a 30-year CA drought is not a rare event from the 127	
  

bivariate viewpoint using SPI. With the benefit of the much larger sample, it is now also evident 128	
  

that for particular drought duration (e.g. 40 months), drought severity can greatly vary. This 129	
  

yields a wide range in return periods, from as short as 20 years to as long as 150 years (see Fig. 130	
  

2C). The results thus illustrate the importance of using multiple indicators for characterizing CA 131	
  

drought in order to accurately express the event and posit a meaningful return period. 132	
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The statistics of drought in the two equilibrium climates are not appreciably different from each 133	
  

other. Note the similarity in bivariate SPI-based return periods denoted by isolines for the 134	
  

cold/dry preindustrial CA climate compared to the warm/wet current CA climate of CCSM4. 135	
  

This result suggests that monthly and interannual statistics of CA precipitation (e.g. consecutive 136	
  

dry months or dry years) are not materially different within each of these two climate states, and 137	
  

as such drought characteristics are not materially altered. However, the assessment in Fig. 2 does 138	
  

not directly express climate change impacts, which requires calculating statistics of the Y2000 139	
  

data relative to the Y1850 reference. And, by focusing solely on precipitation, it does not 140	
  

demonstrate how a warmed CA climate is currently affecting the intensity of CA drought. 141	
  

 142	
  

c. The current role of climate change on CA drought  143	
  

To assess the current effects of human-induced climate change on CA droughts, such as the 144	
  

2011-14 event, we diagnose the long-term change in return periods for droughts characterized 145	
  

using two different covariates. One involves drought defined by the joint deficits of precipitation 146	
  

and 10-cm soil moisture, and the other by the joint deficits of precipitation and 1-m soil 147	
  

moisture. The analysis is applied to droughts having duration from 2 to 4 years (hereafter, 3-yr 148	
  

drought) in order to be representative of the 2011-2014 event’s longevity. In order to evaluate the 149	
  

impact of climate change on 3-yr droughts, the statistics of precipitation and soil moisture in the 150	
  

Y2000 simulation are calculated relative to the climatology of the Y1850 simulation. 151	
  

Fig. 3A shows the occurrences of 3-yr drought events given by the joint conditions of averaged 152	
  

10-cm soil moisture anomalies (abscissa) and accumulated precipitation deficit/severity 153	
  

(ordinate), both standardized with respect to the annual pre-industrial climatology. Fig. 3B shows 154	
  

the same analysis except using 1-m soil moisture as co-variate. The joint return periods, based on 155	
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copula analysis for the Y1850 simulations, are indicated by the black contours (top). To quantify 156	
  

the changes in drought frequency, a box-whisker analysis of the count of drought events 157	
  

exceeding different quantiles/isolines (black contours) is shown in the lower panels. We 158	
  

summarize the change in the frequency of 3-yr drought events relative to their pre-industrial 159	
  

frequency.  160	
  

Two very different impacts of human-induced climate change arise, a result mostly of depth-161	
  

dependent soil moisture sensitivity to meteorological forcing. For drought metrics involving 10-162	
  

cm soil moisture the results indicate a statistically significant increase (i.e., at 95% significance 163	
  

level) in the drought frequency across all categories of severity, with the most notable increase in 164	
  

the frequency of moderate (e.g., 10~30-yr) to severe (e.g., 50-yr) droughts. Recalling that the 165	
  

simulated long-term climate change is wetter and warmer for CA, this metric of drought ---166	
  

incorporating a very shallow soil layer---indicates that increased evaporative demand trumps the 167	
  

increase in precipitation thereby yielding more frequent droughts. Soil moisture deficits in this 168	
  

shallow layer thus increase, and droughts would be intensified as a result of the warmer climate.  169	
  

Of course, a significant portion of the increased precipitation would infiltrate to deeper layers, 170	
  

and furthermore these deep layers would lose moisture primarily by transpiration rather than 171	
  

both transpiration and evaporation as in the 10-cm layer, leading to different sensitivities to the 172	
  

change in meteorological conditions. For drought metrics involving 1-m soil moisture and 173	
  

precipitation, the results (Figs. 3B and 3D) indicate a statistically significant decrease (i.e., at 174	
  

95% significance level) in the drought frequency across all categories of severity, with the most 175	
  

notable decrease in the frequency of severe to extreme droughts. It is clear in this 176	
  

characterization of drought that the increase in CA precipitation in response to the human-177	
  

induced climate change is dominating the drought statistics when the covariate is deep layer soil 178	
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moisture. Unlike the surficial 10 cm of soil that is depleted by both transpiration and direct 179	
  

evaporation, water loss in the deep soil layer depends much more on transpiration, making it less 180	
  

susceptible to temperature effects.  181	
  

How do these very different land surface responses to anthropogenic forcing change the 182	
  

occurrence frequency and return periods of severe California drought? From a perspective of 183	
  

shallow land surface moisture balances (i.e., 10 cm), we find the frequency of California drought 184	
  

having return periods of 30-50 years to increase from 30 events in pre-industrial climate to 34 185	
  

events in the current climate. In other words, a drought event that would occur about every 30-186	
  

50-years is now occurring every 26-44-years. From a perspective of deep land surface moisture 187	
  

balances (i.e., 1 m), we find the 30-50-year drought event of pre-industrial climate now occurs 188	
  

once every 35-58 years. Whereas the availability of over 4000 years of model simulations has 189	
  

permitted a statistically robust estimate of these modest changes, it is important to emphasize 190	
  

that detectability of either a 10% increase or a 10% decrease in the return periods of severe CA 191	
  

drought at this time in the observational record is exceedingly unlikely.  192	
  

 193	
  

Discussion 194	
  

Current understanding is that while human-induced climate change has unlikely caused the failed 195	
  

rains (18-20), questions nonetheless remain about the role of global warming (21). Here we have 196	
  

examined how the return period for such an extreme drought occurrence over California has 197	
  

changed since preindustrial times. Given the scientific detection for a regional warming in the 198	
  

western United States that is attributable to human influence (22), we explored how 199	
  

characteristics of the current drought, especially warming surface temperatures, carry a 200	
  

fingerprint of anthropogenic forcing.  201	
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By examining soil moisture and precipitation from the model simulations, we find droughts of all 202	
  

severities (i.e., the joint return periods of 10- to 200-year) in the preindustrial period become 203	
  

more frequent in the current climate when using a bivariate drought definition of 10-cm soil 204	
  

moisture and precipitation. The same analysis with the 1-m soil moisture and precipitation 205	
  

reveals that droughts of the 1850-vintage become less frequent in the current climate. The 206	
  

changes in return period are found to be small, making it very difficult to detect such human-207	
  

induced change in severe drought events at this time.  208	
  

A strength of our assessment on how land surface moisture responds to long term climate change 209	
  

is its use of physically-based multivariate drought definitions that explicitly incorporate different 210	
  

meteorological variables and land surface properties. Using a global climate model coupled to a 211	
  

sophisticated land surface model (CCSM4), we calculate soil moisture deficits and their 212	
  

projection on drought severity directly, rather than relying on inferences of land moisture drawn 213	
  

indirectly from precipitation alone or from a Palmer Drought Severity Index (PDSI). In this 214	
  

sense, the soil moisture studied herein is physically consistent with precipitation and temperature 215	
  

variations through the model coupled interactions, leading to consistent drought indications. 216	
  

Furthermore, the availability of long climate simulations permits a statistically robust estimate of 217	
  

changes in tail events, such as extreme drought intensity, which is otherwise difficult from the 218	
  

short instrumental record. Despite these strengths, we note that the generality of our results needs 219	
  

to be assessed for their consistency across different climate models. There are limitations in the 220	
  

global land model, including uncertainties in representing physical processes of moisture 221	
  

exchange through soil depth which may result in biases in the sensitivities to meteorological 222	
  

forcing. The lack of adequate soil moisture observations creates additional difficulties in 223	
  

evaluating the realism of the simulated soil moisture and thus also the drought sensitivity.  224	
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Finally, we note that the presented results are for a particular response to the human-induced 225	
  

warming (+1.6 °C) and wetting (+55 mm; +7%). This may differ from the climate change 226	
  

occurring in other models, and also will differ from the trajectory of future temperature and 227	
  

precipitation.  228	
  

Projected average temperatures in California are expected to rise dramatically in future decades, 229	
  

greatly exceeding the warming that has occurred to date since the late 19th Century (23). By 230	
  

comparison, annual precipitation is not projected to increase at a commensurate rate, and winter 231	
  

increases may become compensated by spring declines (24). While recognizing the considerable 232	
  

uncertainty in projections of annual California precipitation (5), it is plausible that thermal 233	
  

impacts on drought frequency are likely to dominate precipitation changes, increasing drought 234	
  

frequency across a range of drought metrics by the late 21st Century (25).    235	
  

 236	
  

Materials and Methods 237	
  

a. Observational data 238	
  

Contiguous U.S. precipitation for 1895-2014 is derived from National Oceanic and Atmospheric 239	
  

Administration (NOAA) monthly U.S. Climate Division data (26). Analyses of California 240	
  

averaged conditions are constructed by averaging the 7 individual climate divisions available for 241	
  

the state. Water year (October-September, hereafter WY) precipitation departures for the state 242	
  

averages are calculated relative to the 1895-2014 reference. 243	
  

 244	
  

b. Model data 245	
  

Climate simulations are based on the fourth version of NCAR’s Community Climate System 246	
  

Model (CCSM4) (27). Two 2133-year long runs of CCSM4 were conducted, one using year-247	
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1850 (Y1850) external radiative forcing, and a second using year-2000 (Y2000) external 248	
  

radiative forcing. The specified external forcings consist of greenhouse gases (e.g. CO2, CH4, 249	
  

NO2, O3, CFCs), natural and human-induced aerosols. Analysis is conducted for the monthly 250	
  

temperature, precipitation, 10-cm soil moisture, and 1-m soil moisture. The model data are 251	
  

interpolated to US Climate Divisions, and California water year averages are calculated. For the 252	
  

Y1850 experiment, the climatological means for California WY temperature, precipitation, 10-253	
  

cm and 1-m soil moisture are 14.6 °C, 762.3 mm, 22.31 mm and 218.87 mm, respectively. For 254	
  

the Y2000 experiment, the corresponding climatological means are 16.2 °C, 817.0 mm, 22.33 255	
  

mm and 220.39 mm, respectively. The simulated California warming (+1.6 °C) and wetting (+55 256	
  

mm; +7%) in the CCSM4 equilibrium experiments is qualitatively consistent with the transient 257	
  

response from the late 19th Century to the early 21st Century occurring in CMIP5 experiments 258	
  

(see IPCC (2013) Figs. AI.16 and AI18). We note that the small magnitude of simulated increase 259	
  

is unlikely detectable in the observed time series, and neither observed nor simulated WY 260	
  

precipitation shows significant increase/decrease trend in the data overall (e.g., at 95% 261	
  

significance level). 262	
  

 263	
  

c. Methods 264	
  

Drought Definition. We define drought duration (𝐝𝐢) as the number of consecutive intervals 265	
  

(j  years) during which anomalies remain below the climatology mean, and we define drought 266	
  

severity (𝐒𝐢) as the total precipitation deficit accumulated during a drought’s duration (i.e., 267	
  

S! = − Anomalies!
!!
!!! ) (16). Fig. 1 illustrates these characteristics of drought using the 119-268	
  

year time series of observed California WY precipitation anomalies. The same definitions can be 269	
  

applied using SPI values (28).  270	
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Return Period Calculation. We calculate the multivariate return period using the concept of 271	
  

copulas (29). Assuming two variables X (e.g., drought duration) and Y (e.g., drought severity) 272	
  

with cumulative distribution functions (hereafter, CDF): F! x = Pr  (X ≤ x) and F! y =273	
  

Pr  (Y ≤ y), the copula (C) is defined as:  274	
  

F x, y = C F! x , F! y                              (1) 275	
  

where F x, y  is the joint distribution function of X and Y (30): 276	
  

F x, y = Pr X ≤ x,Y ≤ y                            (2) 277	
  

Using the survival copula concept, the joint survival distribution F x, y = Pr(X > x,Y > y) is 278	
  

defined as (31):  279	
  

F x, y = C F!(x), F!(y)                               (3)                                                  280	
  

where F! and F! (i.e., F! = 1− F!, F! = 1− F!)  are the marginal survival functions of X and 281	
  

Y, and C is the survival copula.  282	
  

A unique survival critical layer (or isoline) on which the set of realizations of X and Y share the 283	
  

same probability t ∈ 0,1    is derived as (32): ℒ!  ! = {x, y ∈ R!:  F x, y = t}, where ℒ!  ! is the 284	
  

survival critical layer associated with the probability t.  285	
  

The survival return period of concurrent X and Y is defined as:   286	
  

κ!" =   
!

!!!(!)
                                         (4) 287	
  

where κ!" is the survival Kendall’s return period;  µμ > 0 is the average interarrival time of the 288	
  

concurrent X and Y; and K is the Kendall’s survival function associated with F defined as: 289	
  

K t = Pr F X,Y ≥ t = Pr(C F!(x), F!(y) ≥ t)                                                                    (5) 290	
  

By inverting the Kendall’s survival function K(t) at the probability level p = 1− !
!
, the survival 291	
  

critical layer ℒ!  ! can be estimated and corresponds to the return period T: 292	
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q = q p = K!𝟏(p)                                          (6) 293	
  

where q  is the survival Kendall’s quantile of order p.  294	
  

The survival critical layer ℒ!  ! corresponding to the survival Kendall’s quantile q describes that 295	
  

the combined X and Y have a joint return period T (33). Different copulas are available for the 296	
  

joint return period analysis. We use a Gaussian-copula for combined drought duration and 297	
  

severity (see Fig. 2); Frank and Gaussian copulas for concurrent precipitation and 10-cm soil 298	
  

moisture (see Fig. 3A), and precipitation and 1-m soil moisture (see Fig. 3B), respectively. The 299	
  

goodness-of-fit of copula is tested using the log-maximum likelihood, empirical validation, and 300	
  

𝑝-value significance test (34).   301	
  

 302	
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Figures 

 

 
 

Fig. 1 119-year WY precipitation anomalies, in which 𝑑! is the drought duration and 𝑆! is the drought severity.  
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Fig. 2 Joint return period of drought duration (years) and accumulated precipitation deficit (mm)/severity 

using observed precipitation (A); using SPI18 (B); and using modeled SPI18 (C). The red star in (A) and (B) is the 

2011-2014 CA drought; in (C), black contour lines and dots are derived based on Y1850; magenta contours and dots 

are based on Y2000; red circles are droughts analogous to the 2011-2014 CA drought. 
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Fig. 3 Joint return period of accumulated precipitation deficit/severity and averaged soil moisture deficit 

standardized relative to the climatology of Y1850 at 10-cm (A) and at 1-m soil layer (B) simulated in Y1850 

(black) and in Y2000 (magenta); events exceeding joint return periods of 10- to 200-years at 10-cm (C); at 1-m soil 

layer (D) simulated in Y1850 (black) and in Y2000 (magenta); the boxplots showing the median (center mark), and 

the 25th (lower edge) and 75th (upper edge) percentiles; the analyses in (C) and (D) using bootstrap resampling of 

1000 times the population sample of drought events, which informs whether the changes are statistically significant. 

All changes in empirical distributions of drought frequency, for all return periods, is found to be statistically 

significant at 95% based on a K-S test.   
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Supplementary Materials 

 
Fig. S1 Return period of drought duration (years) (left) and accumulated precipitation deficit (mm) (right), 
respectively for 2011-2014 (i.e., 3-year) California drought. The red star is the 2011-2014 CA drought.	
  


