How Well do we Understand the Causes of Drought?

Attribution Workshop
17-18 August 2010
Broomfield, CO

Siegfried Schubert¹, Hailan Wang¹², Max Suarez¹, and Randal Koster¹
¹NASA/GMAO; ²UMBC/GEST
Some Indication of Our Understanding

- A cold tropical Pacific combined with a warm tropical Atlantic should lead to drought in the Great Plains

- This summer: cold Pacific, warm Atlantic and wet in Great Plains!

°Schubert et al. 2009
Outline

• Decadal drought
 – Importance of transition seasons

• Separating decadal drought from trends
 – Separating decadal SST variability from SST trends

• Sub-seasonal drought/heat waves
 – Important role of stationary Rossby waves
Correlations Between Great Plains precipitation and annual mean SST

Correlations between annual mean observed (left panel, 1901-2004) and simulated (right panel, 1902-2004) Great Plains precipitation and annual mean SST. For the AGCM simulations, the values are the average of 14 correlations produced for each ensemble member.
Decadal drought
Leading EOFs and Time series (annual mean SST - 1901-2004)

Linear Trend Pattern (LT)

Pacific Pattern (Pac)

Atlantic Pattern (Atl)

REOF 1 27.2%

REOF 2 20.5%

REOF 3 5.8%

PC 1

PC 2

PC 3

HadISST
The annual and continental United States mean responses for precipitation for all 8 combinations of the Pacific and Atlantic SST patterns for the 5 AGCMs. PcAw
Seasonality of Sig-to-Noise Ratios of US Precipitation for each of the 5 AGCMs in Response to the Warm and Cold Pacific SST Patterns
Response to Cold Pacific: Precipitation

Model Response (Signal)

Cold Pacific Composites (< -1 STD):
HadCRU Precipitation Data (1901-2004)

mm/day
DJF to MAM Transition:
Response to Cold Pacific: 200mb Height

Robust Multi-Model Response
To Idealized SST

AMIP-NSIPP: Cold Composite (1901-2004)

Reanalysis-GMAO: Cold Composite (1948-2004)

m
Stationary Wave Model Response in Upper Level Stream Function (Zonally-Symmetric Basic State)

Warm Pacific Forcing (from NSIPP Model)

Cold Pacific Forcing (from NSIPP Model)
Key Points- Decadal versus ENSO SST

To the extent that decadal SST persist throughout the annual cycle the transition seasons play a more important role

- Wide spread drought in MAM: a result of the annual cycle of the base state – not a seasonal change in the SST forcing

- Fall also plays an important role: note clear from models why, but likely tied to Walker Circulation response
Separating decadal drought from trends

Observed Seasonality and Regionality in Climate Trends over U.S. HadCRU; 1950-2000

Black: US mean (235°E-285°E; 26°N-50°N)
Gray: central US mean (250°E-275°E; 30°N-48°N)

Distinct cooling and wetting trends during late summer and fall
Model (AMIP) vs Obs

NASA NSIPP AMIP EnsMean(14)

HadCRU

Surface Air Temperature

Precip

Surface Air Temperature

Precip

°C

mm/day

°C

mm/day
Leading SST EOFs: Global Warming (GW) and Pacific Decadal Variability (PDV)

Hadley SST: 1901-2000

Global Warming Mode (GW) 32%

Decadal Variability Mode (DV) 12%

Chen et al. (2007)
Global Warming (GW)

Decadal Variability (DV)

Input for a set of idealized AGCM experiments
Idealized AGCM Experiments

NASA NSIPP-1 AGCM; 3deg

<table>
<thead>
<tr>
<th>Experiments</th>
<th>SST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>SSTClim(monthly SST climatology over 1944-1976)</td>
</tr>
<tr>
<td>Total</td>
<td>SSTClim+SSTA_Total(linear change of SST over Jan1950-Dec2000)</td>
</tr>
<tr>
<td>Global Warming (GW)</td>
<td>SSTClim+SSTA_GW(linear change of SST associated with GW EOF)</td>
</tr>
<tr>
<td>Uniform Warming</td>
<td>SSTClim+0.32K</td>
</tr>
<tr>
<td>Decadal Variability (DV)</td>
<td>SSTClim+SSTA_DV(linear change of SST associated with DV EOF)</td>
</tr>
<tr>
<td>DV in Pacific</td>
<td>SSTClim+SSTA_DV_Pac(linear change of SST associated with DV in Pacific)</td>
</tr>
<tr>
<td>Residual</td>
<td>SSTClim+SSTA_Residual(SSTA_Total - SSTA_GW - SSTA_DV)</td>
</tr>
</tbody>
</table>

- All runs are integrated for 100 years
- Data averaged over the last 60 years taken as climatology
- Climatological difference between control run and an anomaly run represents effect of corresponding SST trend
Precip (P) Response in Idealized AGCM Experiments

DJF

Total

GW

DV

Residual

MAM

Total

GW

DV

Residual

JJA

Total

GW

DV

Residual

SON

Total

GW

DV

Residual

mm/day
Conclusions

• The observed climate trends over the US during 1950-2000 can be mostly explained by changes in SST.

• Among the leading SST patterns:

 – Global Warming (GW):
 • mainly leads to a general uniform warming trend

 – Pacific Decadal Variability (PDV):
 • Main contributor to central US cooling and wetting trends in summer/fall

 – Residual (cool Atlantic):
 • mainly contributes in late summer and fall (warming and wetting)
Sub-seasonal drought/heat waves

Siegfried Schubert¹, Hailan Wang¹² and Max Suarez¹

¹NASA/GMAO; ²UMBC/GEST
One-point lead/lag Correlation (V250mb)
(30-90 day filter, MERRA - JJA 1979-2008)
One-point lead/lag Correlation (V250mb)
(30-90 day filter, MERRA - JJA 1979-2008)
Leading Rotated EOFs of Intraseasonal (Monthly JJA) V250mb

MERRA: 1979-2008
Fraction of Variance Explained by first 10 REOFs of 250 v-wind

Based on Monthly MERRA data JJA (1979-2008)
Fraction of Variance Explained by first 10 REOFs of 250 v-wind

Intraseasonal

Includes Interannual and Intraseasonal

Based on Monthly MERRA data JJA (1979-2008)
Leading Normalized Rotated PCs (Intraseasonal Monthly JJA)

Normalized RPCs of JJA mean removed monthly mean v250

- **RPCs1 (9.4%)**
 - June, July 2003 European Heat Wave

- **RPCs2 (8.4%)**
 - June, 1988 - US drought

- **RPCs3 (7.6%)**

- **RPCs4 (7.2%)**

- **RPCs5 (5.4%)**
2003 European Heat Wave
2003 Monthly Anomalies (V250mb)

Interannual

Intraseasonal

June

July

Aug

REOF 1 – Regression with V250mb

REOF 1
2003 European Heat Wave Monthly Anomalies (MERRA)

Correlation of REOF 1 (V250mb) with Precip
Corr(pr_merra vs rpcs_of_v250_eof_NH); Jul

Correlation of REOF 1 (V250mb) with Tsfc
Corr(ts_merra vs rpcs_of_v250_eof_NH); Jul
1988 US Drought/Heat Wave
1988 Monthly Anomalies (V250mb)

See also: Chen and Newman, 1997
1988 Monthly Anomalies (Tsfc)
1988 Monthly Anomalies (Precipitation)

Correlation between V250 REOF 3 and Precipitation (MERRA)

Interannual

Intraseasonal

May

Jun

Jul

Aug
Preliminary Work With Stationary Wave Model* (SWM)

Evolution of Eddy V-wind $\sigma=.257$
(Heating at 210E, 45N)

*Ting and Yu 1998
SWM - Examples of responses to idealized forcing in N. Atlantic and Europe

Eddy V-wind $\sigma = .257$

SWM Response to Idealized Heat Source at 330E, 40N

SWM Response to Idealized Heat Source at 20E, 50N

Resembles REOF 1
SWM - Example of optimal forcing patterns for REOF3

“Optimal” Heat Source Pattern

“Optimal” Vorticity Source Pattern

Optimal pattern is computed by calculating the responses to forcings located at every 5° lat and 10° lon and taking the inner product between the response and REOF3 and plotting that at each location.
Conclusions

• Stationary Rossby Waves appear to play a significant role in modulating summer precipitation and Tsfc in northern middle latitudes on monthly time scales.

• At times, they appear to play a dominant role in the development of regional extremes (e.g., 2003 European heat wave, 1988 US drought).

• What about 2010? During July a Rossby wave seems to play a key role in the extremes in Russia (drought), Pakistan (floods), US Great Plains (very wet) and east coast (very hot) – see next figure.
July 2010 Anomalies

Drought signature: zonally symmetric positive height anomalies in both hemispheres—forced by cold Pacific and warm Atlantic, but appears to have little impact on the July rainfall except regionally in concert with the Rossby Wave.
Overall Conclusions

• **We have made major strides in the last decade or so**
 – Key role of SST (especially tropical Pacific) at interannual/longer time scales
 – Importance of seasonality in the response to SST
 • Changes in planetary waves/storm tracks in winter and spring
 • Changes in Walker circulation in summer and fall
 • Importance of transition seasons on decadal time scales

• **Key Uncertainties**
 – Role of Atlantic (and Indian Ocean) SST less clear
 – Model uncertainties (land impacts, Walker circulation response, resolution issues
 – regional phenomena, weather, basic seasonal cycle, ocean variability in coupled
 models)
 – Impact of climate change versus decadal variability, aerosols, vegetation, etc

• **Issues limiting our ability to predict/monitor**
 – SST provide only a relatively weak “background forcing” with a substantial level
 of noise (stochastic component is large – but presumably depends on time scale)
 – Especially need to address the fact that there is a substantial subseasonal
 component associated with Rossby waves likely not directly forced by SST that is
 responsible for short-term modulation of drought/heat waves and other
 extremes