From January to March 2015, government and university forecasters, research scientists, and engineers will participate in the CalWater 2015 field campaign, which will deploy state-of-the-art monitoring equipment on a research ship, airplanes, and at ground sites to study two phenomena that play key roles in water supply availability and the incidence of extreme precipitation events along the West Coast of the United States: Atmospheric Rivers and Aerosol Impacts on Precipitation.

Atmospheric Rivers
Atmospheric rivers (ARs) are narrow conveyor belts of water vapor that can extend thousands of miles. They are responsible for delivering much of the water vapor associated with major storms along the U.S. West Coast. Precipitation from ARs can provide beneficial water supply and snowpack as well as create conditions for dangerous floods that threaten lives and property.

Aerosol Impacts on Precipitation
Aerosols (such as dust and pollution) from local sources, as well as those transported from remote continents, can influence western U.S. precipitation. Aerosols interacting with atmospheric water vapor can enhance storm development through the formation of additional cloud droplets and also directly enhance or suppress precipitation.

How will this be accomplished?
Researchers will use a variety of methods and instruments to collect a comprehensive data set in environments where ARs develop, including how aerosols influence precipitation. Aircraft and ship-based measurements in the eastern Pacific and over California will complement observations already being collected at field sites across California through NOAA’s Hydrometeorology Testbed (HMT).
The DOE Atmospheric Radiation Measurement (ARM) program has committed airborne and shipborne facilities for this same period in a study called ACAPEX (ARM Cloud Aerosol and Precipitation Experiment), a complementary study to CalWater 2015.

In the air...
The NOAA P-3 and G-IV, NASA ER-2, and Department of Energy G-1 aircraft are each assigned specific instruments that will measure temperature, relative humidity, wind speed and direction, cloud properties, aerosol chemistry, ozone, and even ocean temperature, among other things.

In the ocean...
Aboard the NOAA Research Vessel Ronald H. Brown, researchers will operate NOAA and DOE instrumentation, and release weather balloons and ozonesondes to study the interaction between the ocean and atmosphere and how it influences ARs.

On the ground...
HMT ground sites will contribute measurements of precipitation, winds, snowpack, soil moisture, snow level, and surface weather. Scripps Institution of Oceanography will also install additional instrumentation at HMT’s Bodega Bay site to study aerosol chemistry.

What happens after the 2015 experiment?
The comprehensive air, ship, and land-based data collected from this experiment will be analyzed and used to help improve short- and long-term predictions of precipitation. The information will also be used to develop decision support tools for extreme precipitation events, hazard response, and water supply for more effective water resources management.

CalWater 2015 Conceptual Framework: Illustrations showing (top) offshore (Credit: J. R. Spackman, NOAA), and (bottom) landfalling science objectives (Credit: D. E. Waliser, NASA)