Bias Correction of NEXRAD Rainfall Product

$T(s, t)$: gauge measurement (precipitation "truth") at site s and time t.

$R(s, t)$: radar rainfall estimate at site s and time t; ideally, the bias corrected radar estimate should be close to $T(s, t)$.

The conditional probability of T given that radar estimate R is available can be expressed as follows:

$$P(T|R) \propto P(R|T) P(T)$$

where $P(T|R)$ is the posterior probability of T occurring given that R is true; $P(R|T)$ is the likelihood of R occurring given that T is true; $P(T)$ is the prior probability of T. In applications, it is reformulated in a continuous form:

$$f(T|R) \propto f(R|T)f(T)$$

where D stands for the conditional distribution of $R|T$ derived from various distribution families, and $\theta = (\theta_1, \theta_2, \ldots, \theta_n)$ indicates the associated collection of n distribution parameters.

Each conditional distribution D can be expressed to incorporate the spatial and temporal covariates: $\theta \rightarrow g(\theta; T, \gamma)$, where g is the linked function; β represents the parameter set of the linked function; γ is the collection of covariates (i.e., radar rainfall estimates, and/or terrain and wind information).

The q-quantiles of the posterior predictive distribution of T^* is used to correct R^*, the radar estimates at the new site and/or time. The posterior distribution of T^* given R^* occurring is:

$$f(T^*|R^*, T, R) = \int f(T^*|Y^*, T, R) d\beta$$

Summary

- A downscaling procedure is applied to the NEXRAD rainfall product in order to match the high-resolution AQPI radar observations.
- A Bayesian model is developed for bias correction of NEXRAD rainfall product using surface rain gauge measurements.
- An integrated QPE system is designed based on multi-scale data over the Bay Area.
- The integrated QPE is being implemented into the real-time AQPI system.

Real-time, Integrated QPE Product

Bias Corrected QPE

Training Data
- Radar Rainfall Estimates \mathcal{R}
- Rain Gauge Measurements \mathcal{T}

Model Application
- $f(T^*|R^*, T, R) = \int f(T^*|Y^*, T, R) d\beta$

Testing/New Data
- Radar Rainfall Estimates $\mathcal{R'}$

Fig. 4. Demonstration study domain (Russian River basin in Northern California). The basin boundaries are highlighted in white. The black and white dots denote training and test gauge sites.

Fig. 5. Evaluation results of hourly rainfall estimates during the 7 February 2017 precipitation event.

Fig. 6. Radar-derived hourly rainfall over the Russian River watershed on 02 February 2017, at 13UTC.

Fig. 7. Hourly rainfall at 2019-02-14 21UTC: (a) AQPI radar only; (b) combined AQPI radar with NEXRAD product without bias correction; (c) combined AQPI radar with bias corrected NEXRAD product.

Fig. 8. Rainfall total for the 2019 Valentine’s event (96 hrs from 2019-02-13 00UTC): (a) AQPI radar only; (b) combined AQPI radar with NEXRAD product without bias correction; (c) combined AQPI radar with bias corrected NEXRAD product.

Real-time, Integrated QPE Product

- Radar Rainfall Estimates \mathcal{R}
- Rain Gauge Measurements \mathcal{T}

Model Application
- $f(T^*|R^*, T, R) = \int f(T^*|Y^*, T, R) d\beta$

Testing/New Data
- Radar Rainfall Estimates $\mathcal{R'}$