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The basic details on the forecast modeling systems are provided below, as well as
some pertinent information on the analyzed weather conditions for this event.

1. Model system descriptions

Some of the models have only basic on-line documentation of their characteristics,
with few or no peer-reviewed references.

a. ECMWEF ensemble prediction system.

At the time of the event, the ECMWF ensemble prediction system (EPS) used
version 38r1 of the ECMWEF IFS, the Integrated Forecast System
(http://www.ecmwf.int/research/ifsdocs/CY38r1/ and ECMWF, 2012). 51
ensemble forecast members were generated twice a day from 00 and 12 UTC initial
conditions, with the forecast resolution at T639 to day +10 and T319 from day +10
to day +15. The T639 indicated a “triangular” truncation of the spherical harmonic
basis functions to total wavenumber 639. This corresponded to a grid spacing of
approximately 0.28 degrees, using ECMWF’s transform to a linear grid with 2ZM+1
grid points per latitude circle, where M=639 was the total wavenumber. The
forecast model had 62 levels, and the model top was at ~5 hPa. One ensemble
member was the control forecast, the other 50 were perturbed forecasts, consisting
of the control initial condition plus a perturbation. Note that in the associated
figures, only the first 20 members were displayed, however. The perturbations
were generated through a combination of “ensembles of data assimilations” or
“EDA” and linear combinations of singular vectors. The EDA consists of 10
perturbed-observation simulations of a reduced-resolution (outer loop = T399) 4D-
Var; see Isaksen et al. (2010) for more details. The total-energy norm singular
vectors used the leading 50 extra-tropical singular vectors for each extra-tropical
hemisphere, and the leading 5 singular vectors are used in up to 6 tropical areas; see
Buizza and Palmer (1995) and Barkmeijer et al. (2001). Model uncertainty in the
EPS was simulated by the Stochastically Perturbed Parameterization Tendency
(SPPT) approach and the Stochastic Kinetic Energy Backscatter (SKEB)
approach. The SPPT scheme perturbed the parameterized tendencies by noise with
arandom pattern that varied in time; see Buizza et al. (1999) and Palmer et al.
(2009) for more information. The SKEB scheme perturbed vorticity tendencies with
stochastic noise that had a 3-dimensional pattern and temporal correlations. This
was multiplied by a term that was proportional to the square root of an estimate of
the kinetic energy dissipation rate. See Berner et al. (2009) and Palmer et al. (2009)
for more detail.

b. NCEP Global Forecast System.

The NCEP Global Forecast System (GFS; Global Climate and Weather
Modeling Branch 2003) was at version 9.0.1a during Sep 2013; see see



http://www.emc.ncep.noaa.gov/GFS/impl.php. The model’s resolution was T574
(approximately 0.21 degrees grid spacing using the transform to a Gaussian grid,
with 3M+1 grid points around a latitude circle for a global wavenumber of M).
Forecasts extended to +192 h lead time, and the model used 64 vertical levels, with
a model top at ~0.7 hPa. The GFS (as opposed to the ensemble system) incorporated
a correction to the land-surface tables implemented on 5 September 2012. More
details on the forecast model were described in the appendix of Hamill et al.
(2011a). The data assimilation system for the GFS was a hybrid ensemble Kalman
filter/3D-variational method known as the Global Statistical Interpolation, or GSI
(Hamill et al. 2011b, Kleist et al. 2009ab), which used a T254, 64-level EnKF to
provide flow-dependent background-error covariances that were blended together
with the stationary, flow-independent covariances of the GSI.

c. NCEP Global Ensemble Forecast System.

The operational NCEP Global Ensemble Forecast System (GEFS) in
September 2013 utilized the GFS forecast model, version 9.0.1. Unlike the
deterministic GFS, the GEFS retained the bug of incorrect land-surface tables, which
bias near-surface temperatures. During the first 8 days of the forecast the model
resolution was T254 with 42 levels, with a grid spacing of ~ 0.46 degrees, and a
model top at ~5 hPa. After 8 days, the model output is at T190 with 42 levels, a grid
spacing of 0.625 degrees. The control initial condition was produced by the
truncated T574 hybrid GSI analysis, which included a procedure for the relocation
of vortices (Liu et al. 2000). Perturbed initial conditions were generated with the
ensemble transform with rescaling (ETR) technique of Wei et al. (2008). For the
operational real-time forecasts, 80 members were cycled every 6 hours for purposes
of generating the initial condition perturbations. However, only the leading 20
perturbations plus the control initial condition were used to initialize the
operational medium-range forecasts. Model uncertainty in the GEFS is estimated
with the stochastic tendencies following Hou et al. (2008) for both operations and
reforecasts.

d. UK Met Office

The United Kingdom Meteorological Office (UK Met Office) produced global
ensemble forecasts with their MOGREPS (Met Office Global and Regional Ensemble
Prediction System, Bowler et al. 2008). The ensemble prediction system used a ~
0.83 degree grid (N216), has 70 vertical levels, a model top at ~ 70 km, and
produces 24 member forecasts. However, only the first 20 were displayed
here. Perturbations were generated using an ensemble transform Kalman filter
(Flowerdew and Bowler 2013). The central analysis was produced with a hybrid
ensemble/4D-Var methodology (Clayton et al. 2013). Model uncertainty was
treated with perturbed parameters and thresholds in the parameterization schemes
(Bowler et al. 2008) as well as Stochastic Kinetic Energy Backscatter (SKEB;
Tennantetal. 2011).



e. Canadian Meteorological Centre

Ensemble forecast data from version 3.0.0 of the Canadian Meteorological
Centre’s (CMC'’s) Global ensemble prediction system (GEPS) were used here
(Gagnon et al. 2013). Version 4.4.1 of the GEM model, with improved physics, was
used. The model has 74 levels, a model top at 2 hPa, and uses a 0.6-degree
grid. Initial conditions were generated with an ensemble Kalman filter. Model
uncertainty was addressed with through the use of multiple parameterizations,
perturbed physical tendencies, and SKEB.

f- NCEP North American Mesoscale Forecast System

The NCEP North American Mesoscale Forecast System (NAM) is a regional
forecast and assimilation system, with forecasts run to 84 hours 4 times daily, from
00, 06, 12, and 18 UTC initial conditions, though only the forecasts from 00 and 12
UTC initial conditions were examined here. For the date of this case, the model used
the NOAA Environmental Modeling System (NEMS;
http://www.emc.ncep.noaa.gov/NEMS/presentations/NEMS-AMS.ppt) version of
the non-hydrostatic multi-scale model using the Arakawa B-grid (NMMB) with a 12-
km grid spacing. Data assimilation was performed using the NCEP regional grid-
point statistical interpolation (GSI) analysis system. The NAM was initialized with a
12-h run of the NAM Data Assimilation System, which runs a sequence of four GSI
analyses and 3-h NEMS-NMMB forecasts using all available observations to provide
a first guess to the NAM "on-time" analysis. The model top is at ~ 2 hPa, and there
are 60 model levels.

g. NCEP Short-Range Ensemble Forecast system.

The NCEP Short-Range Ensemble Forecast (SREF;
http://www.emc.ncep.noaa.gov/mmb/SREF/SREF.html ) system produced a 21-
member ensemble of forecasts run to +87 h, generated 4 times daily, from 03, 09,
15, and 21 UTC initial conditions. The SREF model grid spacing was approximately
16 km. The model used three dynamical cores, WRF/ARW, WRF/NMM, and
WRF/NMMB. The models all have 35 vertical levels and a 50 hPa model top. A
range of initial conditions were used, with control initial conditions for the
WRF/NMMB members using the regional NAM analyses (see above) and the global
hybrid EnKF-variational analyses from the global GSI for the remaining
members. The perturbations were generated with a blend of regional bred vectors
(Toth and Kalnay 1997) and downscaled ensemble transform with rescaling
(ETR). There was also a diversity in land-surface initial states, provided by the
regional NAM, the GFS, and the WRF Rapid Refresh, described below.
Documentation of earlier versions of the SREF are provided in Du et al. (2009) and
Brown et al. (2012). Table A2 provides further information on SREF configuration
and how it differs for each member.

h. NOAA/ESRL and NCEP WRF Rapid Refresh



The WRF Rapid Refresh (RAP) is a deterministic forecast model that makes
forecasts every hour to +18h lead time. RAP uses the WRF/ARW core, version
3.2.1+. The model grid spacing is 13 km, the model has 50 vertical levels a top at 10
hPa. RAP used a sigma vertical coordinate. For data assimilation, the RAP used a
configuration of the GSI data assimilation scheme. The method included a digital
filter initialization based on radar data. Every 12 h, at 03 and 15 UTC, the
background forecast of the RAP was refreshed with short-range forecast
information from the NCEP GFS. More details on the RAP system configuration are
available in Zhu et al. (2013) and at http://rapidrefresh.noaa.gov/ and at
http://www.mmm.ucar.edu/wrf/users/ for details on the WRF/ARW model.




Table A1: Configuration of the NCEP SREF system. IC denotes the modeling system that
provided the control initial condition; “NDAS” is the regional GSI-based North-American
Data Assimilation System, “GFS” refers to the global hybrid GSI. “IC perturb” indicates the
method for generating perturbations to add to the control initial condition; “BV” indicates
bred vectors, “ETR” indicates ensemble transform with rescaling, and “blend” is a
combination of the two”. “conv” refers to the type of convective parameterization used,
where “BM]” is Betts-Miller-Janjic, “SAS” is Simplified Arakawa-Schubert, and “KF” is Kain-
Fritsch. “mp” refers to the microphysical parameterization, where “FER” is the Ferrier
scheme, “WSM6” is the WRF single-moment six-class approach, and “GFS” is the Zhao-
Moorthi microphysics method used in the NCEP GFS. “lw” and “sw” denotes the longwave
and shortwave radiation schemes, respectively, where the Geophysical Fluid Dynamics Lab
(GFDL) approach is used for all members. “pbl” denotes the planetary boundary layer
method used, where MY] is the Mellor-Yamada-Janjic scheme surface and boundary layer
method, and “GFS” denotes the 2011 Hong and Pan method used in the NCEP GFS. “Sfc layer”
denotes the surface-layer parameterization. Here, “M-Obukhov” denotes a Monin-Obukhov
approach developed by Janjic. “stochastic” indicates whether stochastic paramerizations
are used for that member. “model” under “Land surface” indicates the land-surface model
used; the NOAH land surface model is used for all members. “initial” indicates the source of
the land-surface state, with NAM, GFS, and RAP indicating the model/assimilation systems
providing the initial state. “perturb” indicates whether the land-surface initial conditions
are perturbed.

Member
(Model)

initial perturb.
conv mp Iw sw pbl Sfc layer stochastic model

[ nmmb_ctl  EYY.XJN:Y BMJ FER GFDL  GFDL  MY) (Y\7] no NOAH NAM no
[nmmb_n2 | SAS GFS GFDL  GFDL  GFS MYJ no NOAH
[nmmb_n3 | BMJ WSM6 GFDL  GFDL  MYJ MYJ NOAH
GFS Blend  BMJ FER GFDL  GFDL  MYJ M_Obuhov (Janjic Eta) no NOAH GFS no
(new
Eta)
[nmm_n1 |
[nmm_p1 |
m SAS FER GFDL  GFDL  MYJ M_Ouhov no NOAH
(new Eta) (janjic Eta)
KF FER GFDL  GFDL  MYJ M_obuhov no NOAH
w (new (new (janjic Eta)
Eta) Eta)
nmm_p3
ETR KF FER GFDL  GFDL  MYJ M_obuhov no NOAH Grs ™
GFS (new (new (Janjic Eta)
Eta) Eta)
arw n1 |
BMJ FER GFDL  GFDL  MYJ M_obuhov no NOAH
(new (Janjic Eta)
Eta)
arw p2 |
m BMJ FER GFDL  GFDL  MY) M_Obuhov no NOAH
(new eta) (Janjic Eta) 15



2. Abriefreview of analyzed synoptic conditions.

Synoptically, during this period there was a weak, quasi-stationary upper-level
trough in the intermountain west, with sustained southerly flow at 500 hPa from the
eastern Pacific, where previously tropical storm Lorena had been active. During the
period of heaviest precipitation on 11-12 Sep 2013, the 700 hPa geopotential height
pattern indicated light southeasterly flow over the northern Front Range. The surface
pattern indicated a high-pressure system to the north that was moving slowly to the
southeast. A weak front was draped to the south and east of the northern Colorado
Front Range. Rawinsonde soundings at Denver, CO showed a sustained period of
saturated, nearly neutral-stability atmospheric conditions. Global Positioning System
(GPS; Gutman et al. 2004) total-column precipitable water measurements from Boulder
indicated a sustained, multi-day period of record precipitable water compared to the
September climatology. Figures provided below document these characteristics.
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Figure A1: 500 hPa analyzed geopotential height pattern for 12 UTC 11 Sep 2013, as
determined from the NCEP-NCAR reanalysis. Geopotential height is contoured every 20 m.
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Figure A2: As in Fig. A1, but for 00 UTC 12 Sep 2013.
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Figure A3: Asin Fig. A1, but for 12 UTC 12 Sep 2013.
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Figure A4: Asin Fig A1, but for 00 UTC 13 Sep 2013.

11



\\/\" NOAA/ESRL Physical Sciences Division
3100
3120

k 3140,
3040 316(

3180

N FiN <

700mb Geopotential Heights (m) Composite Mean
8/11/13 12z to 9/11/13 122

NCEP/NCAR Reanalysis
Figure A5: Asin Fig. A1, but for 700 hPa geopotential height for 12 UTC 11 Sep 2013.
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Figure A6: As in Fig. A5, but for 00 UTC 12 Sep 2013.
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Figure A7: As in Fig. A5, but for 12 UTC 12 Sep 2013.
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Figure A8: As in Fig. A5, but for 00 UTC 13 Sep 2013.
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Figure A9: Surface analysis from the NCEP Hydrometeorological Prediction Center for 12
UTC 11 Sep 2013.
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Figure A10: Asin Fig. A9, but for 00 UTC 12 Sep 2013.
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Figure A11: Asin Fig. A9, but for 12 UTC 12 Sep 2013.
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Figure A12: Asin Fig. A10, but for 00 UTC 13 Sep 2013.
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Figure A14: Skew-T thermodynamic diagram for Denver, Colorado on 00 UTC 11 Sep 2013.
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Figure A15: Asin Fig. A14, butfor 12 UTC 11 Sep 2013.
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Figure A16: Asin Fig. A14, but for 00 UTC 12 Sep 2013.
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Figure A17: Asin Fig. A14, butfor 12 UTC 12 Sep 2013.
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Figure A18: Asin Fig. A14, but for 00 UTC 13 Sep 2013.
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Figure A19: Asin Fig. A14, butfor 12 UTC 13 Sep 2013.
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