
ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
1/22

PERFORMANCE ANALYSIS OF THE
SCALABLE MODELING SYSTEM

D. SCHAFFER* AND J. MIDDLECOFF*

NOAA Research-Forecast Systems Laboratory
Boulder, Colorado

E-mail: sms-info@fsl.noaa.gov
*[In collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA),

Colorado State University, Fort Collins]

M. GOVETT

NOAA Research-Forecast Systems Laboratory
Boulder, Colorado

T. HENDERSON
National Center for Atmospheric Research, Climate and Global Dynamics Division

Boulder Colorado

The Scalable Modeling System (SMS) is a directive-based parallelization tool. The user
inserts directives in the form of comments into existing Fortran code. SMS translates the
code and directives into a parallel version that runs on shared and distributed memory high-
performance computing platforms. Directives are available to support array re-sizing, inter-
process communications, loop translations, and parallel output. SMS also provides
debugging tools that significantly reduce code parallelization time. SMS is intended for
applications using regular structured grids that are solved using explicit finite difference
approximation (FDA) or spectral methods. It has been used to parallelize ten atmospheric and
oceanic models but the tool is sufficiently general that it can be applied to other structured
grids codes.
 The performance of SMS parallel versions of the Eta atmospheric and Regional Ocean
Modeling System (ROMS) oceanic models is analyzed. The analysis demonstrates that SMS
adds insignificant overhead compared to hand-coded Message Passing Interface (MPI)
solutions in these cases. This research shows that, for the ROMS model, using a distributed
memory parallel approach on a cache-based shared memory machine yields better
performance than an equivalent shared-memory solution due to false sharing. We also find
that the ability of compilers/machines to efficiently handle dynamically allocated arrays is
highly variable. Finally, we show that SMS demonstrates the performance benefit gained by
allowing the user to explicitly place communications. We call for extensions of the High
Performance Fortran (HPF) standard to support this capability.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
2/22

1 INTRODUCTION

In the early days of parallel supercomputers, shared memory vector
processors comprised the dominant architecture. Most large-scale
atmospheric and oceanic models ran on these machines. Although the
hardware was expensive, it was relatively easy to do the programming
required to obtain good performance. Usually, this was simply a
matter of ensuring that the array lengths passed to the vector pipes
were sufficiently large (facilitated by smart compilers) and that the
parallel code scaled to a few processors; this task is easily achievable
with simple multi-tasking directives.

These vector machines are still alive today. The Japanese Earth
Simulator, at $400 million, comprises NEC SX-6 vector platforms,
and as of November 2002 was the top-ranked high performance
computer in the world (36 teraflop/s) as measured by the LINPACK
benchmark suite1. However, since the early 1990s, there has been a
shift toward distributed memory commodity microprocessor-based
solutions. This approach enables high performance computing to be
provided at a relatively lower cost.

A recent example demonstrates why this approach is attractive.
The National Oceanic and Atmospheric Administration Forecast
Systems Laboratory’s supercomputer is a Linux cluster constructed
from 1500 commodity Intel processors. Its LINPACK performance is
3.6 teraflop/s (TF): sufficient enough for eighth in the November 2002
ranking of the world’s fastest supercomputers. While only one-tenth
as powerful as the Earth Simulator, its price/performance is $1.5
million/TF compared to $11 million/TF for the Simulator.

This method of calculation neglects the hidden cost of developing
and maintaining efficient parallel versions of models that are suitable
for distributed memory architectures. The required effort includes
decomposing the data and computations, identifying where
communication is required, and making the appropriate calls to
Message Passing Interface (MPI)2 subroutines to implement this
parallelization. The final product is a code crowded with parallel
programming constructs that often obscure the scientific calculations

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
3/22

expressed by the model. This results in higher maintenance costs as
scientists (often unskilled in writing MPI programs) struggle to keep
the distributed memory parallel coding constructs and MPI subroutine
calls updated with the evolving serial code. Fundamentally, this is a
difficult problem because scientists are forced to do parallel
programming at a low level, akin to writing the serial code in
assembly language.

A variety of approaches have been developed to attempt to
alleviate some of this burden. For example, High Performance
Fortran (HPF) is an attempt to automatically parallelize Fortran codes.
Despite support by parallel computer vendors and scientific
institutions, it has largely failed to live up to the promise of high-
performance and ease of use. One shortcoming of HPF is the
compiler’s inability to determine the optimal locations of inter-
processor communication. Although code restructuring and insertion
of additional HPF directives can help the compiler do a better job,
additional effort is required by the programmer and performance is
often significantly less than hand-coded solutions3. Renewed efforts
to optimize HPF have achieved some success4; however performance
still lags MPI-based hand-coded solutions by at least 15 percent (often
much more), and code restructuring is often required.

Another approach, OpenMP, is a standard for directive-based
parallelization targeted for shared and distributed-shared memory
applications5. A fine grain parallelization can be very quickly
constructed using directives at the loop level. However, scalability
beyond a few processors requires implementation of a coarse grain
parallelization as in the case of ROMS6. OpenMP has become more
widely used recently as part of hybrid MPI/OpenMP parallel
implementations on clusters of Symmetric Multiple Processors
(SMPs) as demonstrated by the presentations at this ECMWF
conference. Cocke and Christidis7 show the utility of this approach
over a straight MPI implementation. OpenMP has been successful
because the use of directives hides detail, simplifying the
parallelization process. Even more significantly, it has now become a
standard supported by most major vendors.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
4/22

SMS, similar to HPF, is a directive-based approach that employs a
distributed-memory programming model. The user adds directives
(comments) to the code that indicate, for example, how data and
computations are distributed among the processors. SMS translates
the directives and serial code into a parallel version that runs correctly
on both shared and distributed memory platforms. Once the parallel
code is working, various performance optimizations can be added as
described in Section 2. SMS provides support for much but not all of
Fortran 90. In contrast to HPF, the user is required to explicitly place
communication directives into the code. In this paper, SMS
performance is analyzed in detail. Section 2 reviews the key features
of SMS. Section 3 examines performance of SMS versions of an
atmospheric and an oceanic model. Section 4 concludes by proposing
that the SMS prototype demonstrates the need to extend HPF to allow
explicitly placed communication.

2 KEY FEATURES OF SMS

Since Govett, et al.8 and Henderson, et al.9 describe SMS in detail,
this section will focus on key features of the tool. In SMS, data are
distributed using the DECLARE_DECOMP, CREATE_DECOMP,
and DISTRIBUTE directives. The first two simply enable the user to
identify the existence of a decomposition, specifying the number of
dimensions and the halo sizes. The third directive, DISTRIBUTE, is
key because it describes how arrays are decomposed among the
processors. For example,

csms$distribute(my_decomp, 1, 2) begin
 real x(im, jm, km)
csms$distribute end

indicates that the first and second dimensions of x are decomposed in
blocks.

In HPF, a distribute directive provides the same functionality.
Based on its distribute directive and adjacent dependencies prescribed

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
5/22

by the code, HPF automatically places the communications needed to
satisfy these dependencies. In contrast, SMS requires the user to
determine where communication is needed and then manually place it
using the HALO_UPDATE directive. Although this imposes
additional burden on the scientist, it underscores the key weakness of
HPF in terms of performance; it is simply too difficult for an HPF
compiler to optimally place communication. To illustrate these
points, suppose a code has three subroutines and a main program:

 subroutine A
 w(1:im) = w(1:im) + (x(0:im-1) + x(2:im+1))/2.0

 subroutine B
 w(1:im) = w(1:im) + (y(0:im-1) + y(2:im+1))/2.0

 subroutine UPDATE
! Updates x and y

 program MAIN
 do i=1,iterations
 call UPDATE
 call A
 call B
 end do

Assume that the arrays w, x, and y are decomposed using the
distribute directive in both the HPF and SMS cases. In both
subroutines there are adjacent dependencies: the computation of w at
any point i depends on values of x (or y) at i-1 and i+1. HPF will do
the halo updates of x and y separately, just prior to the calculation of
w in each case. On the other hand, in the case of SMS, the user can
aggregate the communication of x and y, reducing latency:

 do i = 1, iterations
 call UPDATE

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
6/22

csms$halo_update(x,y)
 call A
 call B
 end do

The downside of the SMS approach is the added burden of
correctly placing communication directives and maintaining them as
the code evolves. SMS provides two debugging directives to mitigate
this additional effort. The CHECK_HALO directive enables the user
to assert that the halo region of a variable is up to date. If the
assertion proves false then an error message is printed and the parallel
run stops. For example, the CHECK_HALO directive could be
inserted prior to the calculation of w in subroutine A above:

csms$check_halo(x, “Checking x before the calculation of w”)

If the assertion fails, the user knows that a HALO_UPDATE
directive is missing or misplaced.

 The second debugging directive, COMPARE_VAR, identifies
cases where any variable, decomposed or non-decomposed, has
different values for two separate runs of the parallel code. In the
example above, suppose the COMPARE_VAR directive is inserted
after the calculation of w in subroutine A:

csms$compare_var(w, “Checking w after it is computed”)

At runtime, the user can, as an option, simultaneously launch two
separate runs of the code (i.e., 1 and 4 processor runs). When the two
runs reach the COMPARE_VAR directive, the values of w are
compared and, if there is a difference, an error message is printed and
the two runs stop. The COMPARE_VAR is more general than
CHECK_HALO in that it also uncovers parallel bugs due to other
causes such as failure to decompose an array or execute a global
summation.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
7/22

In addition to allowing the user to explicitly place communication,
SMS provides other optimizations. One, the ability for output to be
done asynchronously with computations, is implemented by having
the compute processors send their data to a designated server
processor. The compute processors can then continue with the next
set of computations while the server writes to disk. Also, SMS will
automatically use the platform-dependent optimal underlying
communication library (currently MPI or SHMEM). Finally, at
runtime, SMS allows the user to choose a processor layout (a mapping
of grid points to processors). The performance benefits of these
optimizations are discussed in Section 3.

3 PERFORMANCE ANALYSIS

Govett, et al.8 examined some performance aspects of SMS. This
section extends their analysis for two models: the NOAA National
Centers for Environmental Prediction Center (NCEP) Eta model and
the Rutgers University ROMS model. Dedicated machine time was
not available for any of the results presented; instead, the minima of
multiple repetitions are recorded. The results cover a variety of
platforms whose specifications are shown in Table 1.

Eta10 is a mesoscale weather prediction model used to produce
daily weather forecasts for the United States National Weather
Service. Govett, et al.8 compared performance of a hand-coded MPI
version of the model run operationally at NCEP with an equivalent
SMS version. The MPI version was optimized by IBM for the SP3
architecture. The resolution tested was 223x365x45. Table 2 is a
reprint of the results of the comparison.

The SMS version beats the MPI version at all processor counts.
As Govett, et al.8 point out, this is largely due to the smaller amount
of time the SMS code spends doing halo updates. Table 3 shows
these previously unpublished times. The differences arise from the
fact that the MPI version communicates the data using nearly twice as
many MPI calls as the SMS version, resulting in additional latency.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
8/22

Table 1 Hardware specifications for platforms used in SMS performance analysis. The interconnect for
the IA and Alpha machines is Myrinet 2000.

Name Chip Clock
Speed
(GHz)

CPUs
per node

Memory
Bandwidth

per PE
(GB/s)

FLOP
per

Cycle

L2
Cache
(MB)

T3E EV5 0.3 1 1.2 2 0.1
IA-32 i686 2.2 2 1.6 2 0.5
Alpha EV67 0.833 2 1.3 2 4.0
SP3 Power3 0.375 4 0.3 4 8.0
O3K R14000 0.6 64 1.4 2 8.0
IA-64 Itanium 0.8 2 3.2 2 4.0

Table 2 Performance of the MPI and SMS versions of the Eta model run on the NCEP IBM SP3. Run
times are given in seconds for a full 48-hour model run including initialization and the generation of
hourly output files.

Number of
Processors

MPI-Eta
Time

SMS-Eta
Time

SMS
faster

SMS-Eta
Efficiency

4 11197 10781 4 % 1.00
8 5317 5258 1 % 1.03
16 2878 2774 4 % 0.97
32 1471 1446 2 % 0.93
64 872 820 6 % 0.82
88 694 643 7 % 0.76

An additional experiment was performed in which the SMS

version directives were modified so that the number of calls to the
communications layer was the same as for the hand-coded MPI
version. In this case, at 88 processors, the halo-update time was 238
seconds, roughly equivalent to the MPI version (243 seconds).

We extend the Eta analysis further by examining the benefit of
using asynchronous output in SMS. A separate run using the same
resolution was executed on the IA-32 machine using 88 processors.
This time, output was written at model hours 0, 10, 20, 30, and 40.
With asynchronous output turned off, the runtime was 684 seconds, of
which 164 was spent doing output. With asynchronous output
enabled, the output time was reduced to 54 seconds. This remaining

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
9/22

time is that required for the compute processors to send their pieces of
the output to the server processor. The savings of 110 seconds (a 15%
improvement) was due to the fact that the server was writing the data
to disk at the same time the compute processors proceeded with the
next set of computations, hiding the disk write cost.

Table 3 Halo update times for the MPI and SMS versions of the 48-hour Eta model run on the IBM SP3.

Number of
Processors

MPI-Eta
Halo Update

Time

SMS-Eta
Halo Update

Time
4 1013 893
8 771 631
16 614 526
32 388 348
64 294 249
88 243 214

The ROMS version benchmarked here is identical to that studied

by Govett, et al.8. The resolution is 130x130x30. As discussed by the
authors, the SMS parallel version was constructed using the existing
shared memory parallel code. To simplify the SMS parallelization,
the static memory (common block) serial code was converted to
dynamic memory (Fortran 90 allocatable arrays) during the
compilation process. Table 4 shows the runtimes for various
configurations on the different platforms.

To begin, we examine the single processor performance. The
table row labeled “%Peak” shows a large variance in the ratio of
sustained to peak performance for the serial (static memory) code over
the different machines. Overall, this is not surprising since no attempt
was made to optimize the scalar code for each machine. The IA-32
processor results are particularly poor, partly due to the very small L2
cache on these processors, as given in Table 1. It may also be that the
compiler was not able to take advantage of the “vector” 128-bit
registers on the chip in some cases.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
10/22

Table 4 Runtimes of the ROMS main model loop for time steps 2-21 on various platforms. “Static”
refers to the static memory (common block) serial code. “Alloc” refers to the same code except common
blocks are replaced with Fortran 90 allocatable arrays. The other rows refer to SMS parallel times for the
given processor counts. “PG” indicates results when SMS and the ROMS model are compiled with the
Portland Group Fortran 90 compiler. “IFC” indicates results when the code was compiled using the Intel
compiler. The “% Peak” field refers to the percentage of the theoretical peak performance attained by
the serial (static) code. The theoretical peak is clock speed * maximum floating point operations per
cycle. The “Eff” field is the parallel efficiency relative to the serial code for that machine. The attained
performance is the runtime divided by the measured number of floating point operations (23 GFLOP).

Mach/
Config

T3E IA-32
PG

IA-32
IFC

Alpha O3K SP3 IA-64

Static/
%Peak

n/a 83.4
6.6%

72.5
7.6%

81.7
18.5%

103.5
17.6%

106.8
14.4%

159.6
8.6%

Alloc/
Eff

n/a 91.3
0.91

76.7
0.95

84.4
0.97

102.2
1.01

114.7
0.93

160.0
0.99

1x1 PE/
Eff

n/a 91.8
0.91

76.8
0.94

89.7
0.91

106.6
0.97

116.1
0.92

161.8
0.99

1x2 PE/
Eff

n/a 63.0
0.66

59.3
0.61

47.9
0.85

51.4
1.01

59.6
0.90

80.7
0.99

2x2 PE/
Eff

n/a 29.2
0.71

26.7
0.68

27.0
0.76

29.0
0.89

37.5
0.71

40.9
0.98

2x4 PE/
Eff

105.5
n/a

14.0
0.75

12.6
0.72

13.8
0.74

14.7
0.88

18.8
0.71

20.7
0.96

4x4 PE/
Eff

55.0
n/a

7.7
0.68

6.9
0.66

8.2
0.62

8.1
0.80

11.2
060

12.5
0.80

4x8 PE/
Eff

29.2
n/a

4.5
0.58

4.1
0.55

5.1
0.50

4.5
0.72

7.0
0.48

7.7
0.65

The T3E results are not available for fewer than 8 processors because
the code does not fit in memory. However, since the code scales
nearly perfectly between 8 and 16 processors, we can estimate the
single processor run-time as eight times the 8 processor run-time. The
result is 844 seconds or 27.3 megaflop/s (MF) per processor. The
T3E peak performance is 600 MF so the estimated single processor
performance is 4.4% of peak. This poor value is likely due in part to
the very small cache on the T3E. Also, since the resolution is small
and the I dimension is decomposed in each of the reported cases in
Table 4, vector lengths are short and so the effectiveness of the T3E
memory streams hardware is reduced. Overall, comparison of
performance of the static and allocatable array versions shows that
some machines/compilers have difficulty attaining the same

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
11/22

performance as the equivalent static memory version. This
observation is explored in depth later in this section.

Turning to the SMS parallel version, the results for 1 PE indicate a
drop-off for some of the platforms compared to the dynamic memory
version of the serial code. When the SMS version is created, halo
points are added to all decomposed arrays (as would be the case for a
hand-coded MPI version). The additional memory changes the cache
behavior of the model. Further investigation would be needed to
explain why this causes measurably poorer cache re-use on some
platforms but not others.

The remaining rows in Table 4 show how the SMS parallel
version scales. In several cases, there are steep drop-offs when all
processors on a node are used, notably the IA-32 (2 cpus/node) and
the SP3 (4 cpus/node). This likely occurs because the demand for
memory access created by using all CPUs on a node exceeds the
available bandwidth. This memory contention does not occur on the
IA-64 because it has, for example, twice the memory bandwidth and 8
times the amount of L2 cache as compared to the IA-32. The
scalability drops off at 16 and 32 processors for all machines as
communication, loop overhead, etc. begin to dominate. The SP3 is
the worst case since it has the highest ratio of communication time
(Table 5) to computation time.

The impact of SMS halo updates on scalability is now considered.
The first time each halo directive is encountered at runtime, the
communication patterns are stored away to avoid re-computing them.
For the remainder of the model run, halo updates are implemented
using a four-step process:

1. Search through the list of cached communication patterns to
find the correct one.

2. Pack the data to be communicated into buffers.
3. Communicate the contents of the buffers to the appropriate

processors.
4. Unpack the received data into the halo regions of the arrays.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
12/22

Each of these steps was timed within the main model loop.
Barriers were placed prior to turning on the timers in order to
eliminate the effects of process skew. The sums of these steps are the
communication times shown in Table 5. The first step is overhead
that should not occur in a hand-tuned, application-specific MPI
version. This overhead as a fraction of the total communication time
is also listed in the table. Although not shown, further measurements
indicate that between 30% and 60% of the searching process could be
eliminated by directly associating each directive with a cached
communication pattern.
Table 5 Communication times and SMS overhead for various platforms and processor counts. “sms+”
refers to the overhead added by SMS as a percentage of the total communication time.

Mach
Pes
sms+

T3E IA-32
PG

IA-32
IFC

Alpha O3K SP3 IA-64

2
sms+

n/a 1.13
8.8%

1.03
7.1%

1.32
6.5%

0.73
4.0%

0.66
10.8%

0.82
10.8%

4
sms+

n/a 1.64
6.3%

1.54
5.0%

1.77
3.8%

1.29
2.5%

1.05
8.3%

1.54
6.1%

8
sms+

3.92
5.0%

1.71
5.6%

1.61
4.6%

1.85
3.5%

1.34
2.3%

1.93
4.6%

1.82
5.0%

16
sms+

3.99
4.8%

1.59
5.2%

1.52
 4.4%

1.62
3.4%

1.36
2.3%

2.31
3.8%

1.64
5.6%

32
sms+

3.39
5.7%

1.40
5.1%

1.33
4.6%

1.49
3.5%

1.27
2.2%

2.30
3.9%

1.51
6.0%

As mentioned in Section 2, SMS is designed to automatically

choose an underlying communications package depending on the
target platform. On the T3E, this is the SHMEM library. An
experiment was conducted in which SHMEM calls were replaced with
MPI calls. The measured communication times were 20% higher than
those reported in Table 5.

We further examine the scalability of the SMS version of ROMS
by looking at the performance for different processor layouts and by
comparing it to the shared memory parallel results. Table 6 shows
these performance numbers for the Origin 3000. Surprisingly, the
SMS 2x8 layout outperforms the 4x4 layout. Consider first the

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
13/22

computations. For a 2x8 layout, the length in the I dimension is longer
than a 4x4 layout. This provides more opportunity for software
pipelining and pre-fetching of cache lines.
Table 6 Main model loop runtimes and efficiencies of the SMS and shared memory versions of ROMS
on the Origin 3000 for various processor layouts. The efficiencies are relative to the shared memory
time for a 1x1 processor layout.

PE
Layout

Shared
Memory

Time

Shared
Memory

Efficiency

SMS
Time

SMS
Efficiency

1x1 103.5 1.00 106.6 0.97

1x2 51.80 0.99 51.46 1.01

1x4 26.40 0.98 27.43 0.94

2x2 35.29 0.73 29.01 0.89

1x8 13.98 0.93 14.72 0.88

2x4 18.75 0.69 14.65 0.88

1x16 7.72 0.84 8.41 0.77

2x8 9.85 0.66 7.86 0.82

4x4 n/a n/a 8.08 0.80

1x28 5.79 0.64 5.51 0.67

4x7 8.87 0.42 4.99 0.74

1x32 5.36 0.60 5.13 0.63

4x8 7.62 0.42 4.53 0.71

In terms of communication, the standard presumption is that the

communications time would be shorter for the 4x4 layout since the
perimeter is smaller. Although not shown in the table, in this case the
4x4 communication time (1.32 seconds) is longer than the 2x8
communication time (1.19 seconds). Further measurements showed
that all of this difference was due to increased packing and unpacking
times for the 4x4 case. It is possible that software pipelining and
cache-line pre-fetching play a role here as well. Despite the smaller

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
14/22

perimeter for the 4x4 case, the actual MPI communication time (step
3 above) was identical for both two cases. Although this requires
further investigation, we speculate that latency rather than bandwidth
was the dominant factor. The improvement gained by using SMS
configuration files to specify a 2x8 layout rather than the default 4x4
layout demonstrate the added value of this SMS feature.

When considering the shared memory parallel version of the
ROMS model, we see from Table 6 that the 1-D layouts outperform
2-D layouts in every case. This is due to the overhead associated with
false sharing in the shared memory code. Measurement of secondary
cache misses and cache line invalidations by other processors (Table
7) supports this argument. The Barotropic Step function profiled in
the table consumes the largest portion of runtime in the model. The 2-
D shared-memory layout has 4.5 times as many secondary cache
misses as the 1-D layout.
Table 7 Secondary cache misses and invalidations by external processors for the Barotropic Step
function as measured by the SGI Speedshop tool during the ROMS main model time step.

Parallel
Version

PE
Layout

Secondary
Cache
Misses

External
Invalidations

Shared
Memory

1x32 4700 7800

Shared
Memory

4x8 20000 21000

Distributed
Memory

1x32 600 400

Distributed
Memory

4x8 400 500

The external cache invalidations reflect a similar story. Figure 1
illustrates why this is happening. For a 2-D layout, there are far more
opportunities for cache misses than a 1-D layout.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
15/22

P0

P1

P2

P3

P0 P1

P2P3

1-D Layout 2-D Layout

Figure 1 Schematic in which false sharing occurs for 1-D and 2-D processor layouts for shared memory
parallelism. False sharing occurs when two processors shared a cache line but not the actual data. So,
for example, in the 1-D layout, the last two grid points in the last row of the piece of the array “owned”
by P0 map to the same cache line as the first two grid points in the first row of the array piece “owned”
by P1. Thus, when P0 writes to that cache line, it invalidates it for P1 and the converse happens when
P1 writes to the cache line. If this writing occurs simultaneously then a thrashing effect occurs which
degrades performance.

Since the shared-memory parallel version is implemented in a
coarse grain fashion, where the parallel loops cover a significant
number of computations, it should be efficient enough to reasonably
compare it with the SMS (distributed memory parallel) performance.
Table 6 shows that while the codes are fairly equivalent up through
16 processors, subsequently the SMS version beats the shared
memory version. Again, this is due to false sharing in the shared
memory code. Table 7 shows that the secondary cache invalidations
and external invalidations are negligible in the distributed memory
code as compared to shared memory. For a distributed memory
parallel code, the data for each processor are stored in completely
separate memory locations, eliminating the possibility of false
sharing.

We conclude our analysis of the SMS ROMS performance by
looking at how the use of dynamic memory impacts the scalability of
the parallel code. Since a static memory SMS parallel version was not
available, a stand-alone kernel was constructed from the ROMS

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
16/22

Barotropic step routine, at the same resolution. Figure 2 shows four
variations that were created.

Performance of the “allocatable,” “derived-type/pointer,” and “de-
referenced pointer” cases were compared to the original “static” case
for various platforms and processor counts. As mentioned, to
simplify the SMS parallelization, the ROMS code was converted to
use allocatable arrays during the compilation process. Table 8 shows
the effect of this conversion. At 32 processors, the “allocatable array”
version of the kernel executes at only 64% the efficiency of the
original static memory scheme on the IA-32 machine when the
Portland Group Compiler is used. In most other cases, the allocatable
array scheme does not negatively impact performance as significantly.
It is also remarkable that, for 32 processors on the SGI Origin 3000,
despite taking a hit for using dynamic memory, the SMS version out-
performs the shared memory parallel version (Table 6).

In Table 9, we see that the performance drop-off for using Fortran
90 pointers with derived types is quite dramatic for the Portland
Group compiler case. The SGI Origin 3000 results worsen as well.
This could be due to extra precaution the compiler takes when dealing
with pointers since they can point to overlapping locations in memory.

To work around these compiler weaknesses, a common trick is to
de-reference the pointers by passing them as arguments to the
computationally intensive subroutines. Table 10 shows the results for
this scheme. The T3E and IA-32 performances are noticeably better.
For the T3E, the “de-referenced” case is actually better than the
“allocatable” case.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
17/22

ROMS Barotropic Step Kernel

Static:
 common /c1/ U(IM,JM,KM)
 call KERNEL ! references U

Allocatable:
 real, allocatable :: U(:,:,:)
 call KERNEL ! references U

Derived Type/Pointer:
 type t1
 real, pointer :: U(:,:,:)
 end type t1
 type (t1) :: o1
 call KERNEL ! references o1%U

Dereferenced Pointer:
 call KERNEL(o1%U) ! References dummy arg

Figure 2 Illustration of how the ROMS Barotropic Step kernel was constructed with various Fortran
coding constructs. In the original code, main model variables were stored in common blocks. In the
second variation, the common blocks were replaced with Fortran 90 allocatable arrays. The third
variation stores the model variables as Fortran 90 pointers within objects of derived types. The final
variation is the same as the third except the pointers are de-referenced by passing them to the kernel
subroutine. In this case, within the subroutine, the variables are declared as simple array dummy
arguments.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
18/22

Table 8 Efficiency of the allocatable array scheme for managing memory in the ROMS Barotropic step
kernel relative to the common block variation for various platforms and processor counts. The
resolution is 130x130x30.

Mach/
Pes

T3E IA-32
PG

IA-32
IFC

Alpha O3K SP3 IA-64

1 n/a 0.89 1.00 1.02 0.85 0.95 0.98
2 0.96 1.00 1.02 0.99 0.89 0.98 1.03
4 0.88 0.98 0.94 0.97 0.95 0.95 0.99
8 0.88 0.92 0.95 1.01 0.92 0.97 0.99

16 0.92 0.85 0.89 0.92 0.84 0.97 1.00
32 0.89 0.64 0.84 0.97 0.85 0.96 n/a

Table 9 The same as Table 8 except for the derived-type/pointer scheme.

Mach/
Pes

T3E IA-32
PG

IA-32
IFC

Alpha O3K SP3 IA-64

1 n/a 0.55 0.89 0.68 0.80 0.94 0.98
2 0.94 0.81 1.02 0.74 0.84 1.00 1.03
4 0.87 0.69 0.92 0.68 0.92 0.79 0.99
8 0.87 0.56 0.84 0.70 0.90 1.00 0.99

16 0.90 0.45 0.77 0.72 0.82 0.99 1.00
32 0.88 0.27 0.84 0.80 0.82 0.98 n/a

Table 10 The same as tables 8 and 9 except for the de-referenced pointer scheme.

Mach/
Pes

T3E IA-32
PG

IA-32
IFC

Alpha O3K SP3 IA-64

1 n/a 0.93 0.97 0.98 0.86 0.95 0.98
2 1.02 1.02 1.03 0.96 0.89 1.00 1.03
4 0.95 0.98 0.98 0.93 0.96 0.83 0.99
8 0.96 0.92 0.90 0.99 0.92 1.00 0.99

16 1.00 0.86 0.83 0.91 0.85 1.04 1.00
32 0.98 0.67 0.77 0.94 0.86 0.98 n/a

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
19/22

4 SUMMARY AND CONCLUSIONS

Here we have examined the performance of SMS parallel versions of
the Eta atmospheric and ROMS oceanic models. Previously, Govett,
et al.8 showed that SMS Eta beats the performance of a hand-coded
MPI version of the model running operationally at NCEP, largely
because it does a better job of aggregating halo updates. The results
here show that when the difference in aggregation is removed, the
SMS halo update times match those for the MPI version. On the Cray
T3E, using SHMEM to implement halo updates resulted in a 20%
decrease in communication time over MPI.

By definition, a perfectly tuned hand-coded MPI version of Eta or
any other code will beat the performance of an SMS version since the
latter is built on top of MPI. However, the hand-coded MPI version
of the operational NCEP Eta model demonstrates that this can be
difficult in practice. Thus, an advantage of using an approach like
SMS is that the effort to implement optimizations does not have to be
repeated for every model. The disadvantage of the SMS approach is
that the additional software layer adds overhead. However, the SMS
ROMS results show that the overhead for the critical halo update
communications ranges from 2-11%; one-third to two-thirds of which
could be eliminated with an improved SMS design.

To simplify the SMS parallelization, the ROMS code was
converted to use Fortran 90 allocatable arrays during compilation.
This incurred a performance penalty on some machines. When
pointers within derived types are used, the performance is worse than
the allocatable array version for some machines. This result is
significant since oceanic and atmospheric scientists are beginning to
implement object-oriented designs using these constructs. The results
here also show that these penalties can be mitigated by “de-
referencing” the pointers prior to the calls to core computational
routines. However, on some machines, performance penalties remain
even with this optimization. Clearly, some vendors need to put
additional effort into avoiding performance pitfalls for dynamically
allocated memory in Fortran 90.

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
20/22

We also find that, despite the performance hit due to dynamic
memory usage on the SGI O3K, the SMS (distributed-memory
parallel) version of ROMS still beats the shared-memory parallel
version for higher numbers of processors. This is due to the effects of
false sharing. The results also show the value added by the ability of
the user to choose processor layouts at runtime using SMS
configuration files. And, finally, SMS asynchronous output is
demonstrated to yield a 15% improvement in runtime for the Eta
model for 88 processors on an IA-32 machine.

In this paper, we have seen that SMS provides the user with a
clean way to optimally locate communication in a code. Although the
requirement to identify where communication is needed adds extra
burden on the scientist, SMS debugging directives provide substantial
mitigation. The end result is a directive-based tool that simplifies the
parallelization process and generates code that has portable high
performance.

There are, however, two significant obstacles to the long-term
success of SMS. One is the lack of funding available to expand and
support its capabilities. To name a few examples of the additional
work required, SMS needs to be able to fully support Fortran 90,
provide more backend optimizations (such as SHMEM on the Alpha
machines), support dynamic load balancing, and provide a means to
handle non-rectangular grids. The more fundamental obstacle is the
lack of vendor support for the tool. Many meteorological institutions
are unwilling to utilize a tool that is not supported by the significant
hardware vendors because of the risks involved.

The OpenMP standard was born out of recognition of the value of
providing a portable means for hiding the details of parallel
programming on shared memory architectures. The presentations at
the 2002 ECMWF workshop demonstrated the continued
attractiveness of this standard in the meteorological community. The
SMS prototype demonstrates that it is feasible to develop a standard
for distributed memory architectures that exhibits portable high
performance. One reasonable solution might be to improve the
existing HPF standard by providing a means for turning off

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
21/22

automatically generated communication and replacing it with user-
specified directives. Further, by adding directive-based debugging
support, HPF could finally turn the corner toward full success. As a
bonus, since using a distributed memory parallelization method avoids
false sharing on cache-based shared memory machines, this truly high
performance Fortran code may, in some cases, turn out to be a better
solution than OpenMP for these architectures.

Acknowledgements

Access to the Cray T3E was provided by Dr. Sirpa Hakkinen of the
National Aeronautics and Space Administration Goddard Space Flight
Center. Access to the IA-64 platform was provided by Dr. Bruce
Loftis of the National Center for Supercomputing Applications. We
wish to thank Dr. Craig Tierney and Leslie Hart for their helpful
insights.

References

1. The Top 500 Supercomputer Sites as Measured by the
LINPACK Benchmark, November 2002,
http://www.top500.org/lists/linpack.php.

2. Gropp W, Lusk E, Skjellum A. Using MPI, Portable Parallel
Programming with the Message Passing Interface. MIT Press,
1994.

3. Frumkin M, Jin H, Waheed A, Yan J. A Comparison of
Automatic Parallelization Tools/Compilers on the SGI Origin
2000. Proceedings of Super Computing ’98, Orlando, Florida,
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstrac
ts/Hribar1140/.

4. The dHPF Compiler Project.
http://www.cs.rice.edu/~dsystem/dhpf/overview.html

5. OpenMP Specifications http://www.openmp.org/specs
6. Haidvogel D, Arango H, Hedstrom K, Beckman A, Malanotte-

Rizzoli P, Shchepetkin A. Model Evaluation Experiments in

ecmwf02.doc submitted to World Scientific 2/13/03 : 8:21 AM
22/22

the North Atlantic Basin: Simulations in Nonlinear Terrain-
Following Coordinates. Dyn. Atmos. Oceans 2000; 32: 239-
281.

7. Cocke S, Christidis Z. Parallelization of a GCM using a
hybrid approach on the IBM SP2. Proceedings of the Ninth
ECMWF Workshop on the Use of Parallel Processors in
Meteorology, Reading, UK, November 13-18, 2000.

8. Govett M, Hart L, Henderson T, Middlecoff J, Schaffer D.
The Scalable Modeling System: Directive-based code
parallelization for distributed and shared memory computers.
Accepted for publication in J. Parallel Computing, 2003.

9. Henderson T, Schaffer D, Govett M, Hart L. SMS User’s
Guide, http://www-ad.fsl.noaa.gov/SMS_UsersGuide.pdf
(2003)

10. Mesinger F. The Eta Regional Model and its Performance at
the U.S. National Centers for Environmental Prediction.
International Workshop on Limited-area and Variable
Resolution Models. Beijing, China, WMO/TD 1995; 699: 42-
51.

	INTRODUCTION
	KEY FEATURES OF SMS
	PERFORMANCE ANALYSIS
	SUMMARY AND CONCLUSIONS

