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A directive-based parallelization tool called the Scalable Modeling System (SMS) is 
described.  The user inserts directives in the form of comments into existing Fortran code.  
SMS translates the code and directives into a parallel version that runs efficiently on both 
shared and distributed memory high-performance computing platforms.  SMS provides tools 
to support partial parallelization and debugging that significantly decreases code 
parallelization time.  The performance of an SMS parallelized version of the Eta model is 
compared to the operational version running at the National Centers for Environmental 
Prediction (NCEP). 

 

1   Introduction 

Both hardware and software of high-end supercomputers have evolved significantly 
in the last decade.  Computers quickly become obsolete; typically a new generation 
is introduced every two to four years.  New systems utilize the latest advancements 
in computer architecture and hardware technology.   Massively Parallel Processing 
(MPP) computers now comprise a wide range and class of systems including fully 
distributed systems, fully shared memory systems called Symmetric Multi-
Processors (SMPs) containing up to 256 or more CPU's, and a new class of hybrid 
systems that connect multiple SMPs using some form of high speed network.  
Commodity-based systems have emerged as an attractive alternative to proprietary 
systems due to their superior price performance and to the increasing adoption of 
hardware and software standards by the industry.  Programming on these diverse 
systems offer many performance benefits and programming challenges. 
 
The primary mission of the National Oceanic and Atmospheric Administration's 
(NOAA's) Forecast Systems Laboratory (FSL) is to transfer atmospheric science 
technologies to operational agencies within NOAA, such as the National Weather 
Service, and to others outside the agency.   Recognizing the importance of MPP 
technologies, FSL has been using these systems to run weather and climate models 
since 1990.  In 1992 FSL used a 208 node Intel Paragon to produce weather 
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forecasts in real-time using a 60km version of the Rapid Update Cycle (RUC) 
model.  This was the first time anyone had produced operational forecasts in real 
time using a MPP class system.  Since then, FSL has parallelized several weather 
and ocean models including the Global Forecast System (GFS) and the Typhoon 
Forecast System (TFS) for the Central Weather Bureau in Taiwan [15], the Rutgers 
University Regional Ocean Modeling System (ROMS)  [8], the National Centers for 
Environmental Prediction (NCEP) 32 km Eta model [17], the high resolution 
limited area Quasi Non-hydrostatic (QNH) model [16], and FSL’s 40 km Rapid 
Update Cycle (RUC) model currently running operationally at NCEP [2]. 
  
Central to FSL’s success with MPPs has been the development of the Scalable 
Modeling System (SMS).  SMS is directive-based parallelization tool that translates 
Fortran code into a parallel version that runs efficiently on both shared and 
distributed memory systems.   SMS was designed to reduce the effort and time 
required to parallelize models targeted for MPPs, provide good performance, and 
allow models to be ported between systems without code change.  Further, 
directive-based SMS parallelization requires no changes to the original serial code.    
 
The rest of this paper describes SMS in more detail.  Section 2 introduces several 
approaches to code parallelization, followed by an overview of SMS in Section 3.  
Section 4 describes the flexibility and simplicity of code parallelization using SMS 
and explains how this tool has significantly decreased code parallelization time.  
Section 5 describes several performance optimizations available in SMS and 
compares the performance of NCEP’s operational Eta code with the SMS 
parallelized Eta.  Finally, Section 6 concludes and highlights some additional work 
that is planned. 

2   Approaches to Parallelization 

In the past decade, several distinct approaches have been used to parallelize serial 
codes. 
 
Directive-based Micro-tasking – This approach was used by companies such as 
Cray and SGI to support loop level shared memory parallelization.  A standard for 
such a set of directives called OpenMP, has recently become accepted in the 
community.  OpenMP can be used to quickly produce parallel code, with minimal 
impact on the serial version.  However, OpenMP does not work for distributed 
memory architectures. 
 
Message Passing Libraries - Message-passing libraries such as Message Passing 
Interface (MPI), represents an approach suitable for shared or distributed memory 
architectures.  Although the scalability of parallel codes using these libraries can be 
quite good, the MPI libraries are relatively low-level and can require the modeler to 
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expend a significant amount of effort to parallelize their code.  Further, the resulting 
code may differ substantially from the original serial version; code restructuring is 
often desirable or necessary.  One notable example of this strategy is the Weather 
Research and Forecast (WRF) model which was designed to limit the impact of 
parallelization and parallel code maintenance by confining MPI-based 
communications calls into a minimal set of model routines called the mediation 
layer [20]. 
 
Parallelizing Compilers – These solutions offer the ability to automatically produce 
a parallel code that is portable to shared and distributed memory machines.  The 
compiler does the dependence analysis and offers the user directives and/or 
language extensions that reduce the development time and the impact on the serial 
code.  The most notable example of a parallelizing compiler is High Performance 
Fortran (HPF).  In some cases the resulting parallel code is quite efficient [23], but 
there are also deficiencies in this approach.  Compilers are often forced to make 
conservative assumptions about data dependence relationships, which impact 
performance [13].  In addition, weak compiler implementations by some vendors 
result in widely varying performance across systems [4, 21]. 
 
Interactive Parallelization Tools - One interactive parallelization tool, called the 
Parallelization Agent, automates the tedious and time-consuming tasks while 
requiring the user to provide the high-level algorithmic details [14].  Another tool, 
called the Computer-Aided Parallelization Tool (CAPTools), attempts a 
comprehensive dependence analysis [13].  This tool is highly interactive, querying 
the user for both high level information (decomposition strategy) and lower level 
details such as loop dependencies and ranges that variables can take.  While these 
tools offers the possibility of a quality parallel solution in a fraction of the time 
required to analyze dependencies and generate code by hand, limitations exist in 
their ability to offer efficient code parallelization of NWP codes that contain more 
advanced features (e.g. nesting, spectral transformations, and Fortran 90 constructs). 
 
Library-Based Tools – Library-based tools, such as the Runtime System Library 
(RSL) [18] and FSL’s Nearest Neighbor Tool (NNT) [22], are built on top of the 
lower level libraries and serve to relieve the programmer of handling many of the 
details of message passing programming. Performance optimizations can be added 
to these libraries that target specific machine architectures. Unlike computer-aided 
parallelization tools such as CAPTools, however, the user is still required to do all 
dependence analysis by hand. 
 
In simplifying the parallel code, these high level libraries also reduce the impact to 
the original serial version.  Parallelization is still time consuming and invasive, 
since code must be inserted by hand and multiple versions must be maintained.  
Source translation tools have been developed to help modify these codes 
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automatically.  One such tool, the Fortran Loop and Index Converter (FLIC), 
generates calls to the RSL library based on command line arguments that identify 
decomposed arrays and loops needing transformations [19].  While useful, this tool 
has limited capabilities. For example, it was not designed to handle multiple data 
decompositions, interprocessor communications, or nested models. 
 
Another tool of this type, and the topic of this paper, is a directive-based source 
translation tool that is a new addition to SMS called the Parallel Pre-Processor 
(PPP).  The programmer inserts the directives (as comments) directly into the 
Fortran serial code.  PPP then translates the directives and serial code into a parallel 
version that runs on shared and distributed memory machines.  Since the 
programmer adds only comments to the code, there is no impact to the serial 
version.  Further, SMS hides enough of the details of parallelism to significantly 
reduce the coding and testing time compared to an MPI-based solution.  

3   Overview of SMS 

SMS consists of two layers built on top of the Message Passing Interface (MPI) 
software.  The highest layer is a component called the PPP, which is a Fortran code 
analysis and translation tool built using the Eli compiler construction software [7].   
PPP analysis ensures consistency between the serial code and the user-inserted SMS 
parallelization directives.  After analysis, PPP translates the directives and serial 
code into a parallel version of the code. 
 
In addition to loop translations, array re-declarations, and other code modifications, 
the parallel version contains PPP generated calls to SMS library-based routines in 
the Nearest Neighbor Tool (NNT), Scalable Spectral Tool (SST) and Scalable 
Runtime System (SRS) shown in the Figure 1.  NNT is a set of high-level library 
routines that address parallel coding issues such as data decomposition, halo region 
updates and loop translations [22]. SRS provides support for input and output of 
decomposed data [9].  SST is a set of library routines that support parallelization of 
spectral atmospheric models. These libraries rely on MPI routines to implement the 
lowest layered functionality required.  
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Figure 1.  Functional diagram of the layers of SMS that are built on top of MPI 

 
Early versions of SMS did not contain the highest level PPP layer.  Instead, model 
parallelization was accomplished by inserting NNT, SST and SRS library calls 
directly into the parallel code.  While a number of models were successfully 
parallelized using this method, the serial and parallel versions of the code were 
distinctly different and had to be maintained separately [3,1,10].   Conversely, 
directive-based parallelization permits the modeler to maintain a single source code 
capable of running on a serial or parallel system.   Modelers are able to test new 
ideas on their desktop, yet can easily generate parallel code using PPP when faster 
runs on an MPP are desired.  Figure 2 illustrates code parallelization using SMS 
directives and PPP to generate the parallel code. 
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Figure 2.  SMS directives are added to the original serial code during code parallelization.  The 
SMS serial code can then be run serially as before, or parallelized using PPP to generate an MPP-
ready parallel code. 

 
To simplify the user's interface to parallelization, the number of directives available 
in the SMS toolkit is minimized.  Currently 20 SMS directives are available to 
handle parallel operations including data decomposition, communication, local and 
global address translation, I/O, spectral transformations and nesting [5].  Further, 
when PPP translates the code into its parallel form, it changes only those lines of 
code that must be modified; the rest of the serial code including comments and 
white space remain untouched. 
 
Another advantage of this approach is that directives serve to abstract the lower 
level details of parallelization that are required to accomplish complicated 
operations including interprocess communication, process synchronization, and 
parallel I/O.   An illustration of an SMS abstraction is the use of a high-level data 
structure, called a decomposition handle, which defines a template that describes 
how data will be distributed among the processors.  Two SMS directives are 
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required to declare and initialize the user-specified data decomposition structure 
(csms$declare_decomp and csms$create_decomp). A layout directive 
(csms$distribute) is then used to associate arrays with this data decomposition. 
 
Once data layout has been defined, the user does not need to be concerned with how 
data are distributed to the processors or how data will be communicated - SMS 
handles these low-level details automatically.  SMS retains all information 
necessary to access, communicate, input and output decomposed and non-
decomposed arrays through the use of the user-specified decomposition handle.  
 
For example, to update the halo (ghost) region of arrays x and y between 
neighboring processors, the user is only required to insert 
 
 csms$exchange( x, y )  
 
into the serial code at the appropriate place.  SMS automatically generates code to 
store information about each variable to be exchanged (global sizes, halo thickness, 
decomposition type, data type), and then perform the communications necessary to 
update the halo points of each process.  Using the information contained in the 
decomposition handle, SMS determines how much of the halo region each process 
must be exchanged, where the information must go, and where it should be stored.  
Process synchronization is also handled by SMS for these communication 
operations.   
 
Using this encapsulation strategy other communication operations, including 
reductions (csms$reduce), transferring data between decompositions 
(csms$transfer), and the gather and scatter of decomposed data (csms$serial) 
between global and decomposed arrays are easily handled at the directive level.  
Further, input and output of data to or from disk require no SMS directives or any 
special treatment by the user. 
  
Figure 3 shows an example of an SMS program in which the decomposition handle 
my_dh is declared (line 3) and then referenced by directive (csms$distribute: lines 5, 
9) to associate the first array dimension with the first dimension of the 
decomposition for the arrays x and y.  Once the data layout has been specified via 
directive, SMS handles all the details required for halo updates (csms$exchange: 
line 19), reductions (csms$reduce: line 27), and I/O operations (no directives 
required).  
 
Once SMS understands how arrays are decomposed, parallelization becomes 
primarily an issue of where in the code the user wishes to perform communications 
and not how data will be moved to accomplish these operations.   The user is still 
required to determine by dependence analysis where communication is required in 
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their code, but a single directive is generally all that is required once this 
information is known.  Further information about the use of SMS directives is 
available in the SMS User’s Guide [11]. 
 
 

Code with SMS Directives
1: program DYNAMIC_MEMORY_EXAMPLE
2: parameter(IM = 15)
3: CSMS$DECLARE_DECOMP(my_dh)
4:
5: CSMS$DISTRIBUTE(my_dh, 1) BEGIN
6: real, allocatable :: x(:)
7: real, allocatable :: y(:)
8: real xsum
9: CSMS$DISTRIBUTE END

10: CSMS$CREATE_DECOMP (my_dh, <IM>, <2>)

11: allocate(x(im))
12: allocate(y(im))
13: open (10, file = 'x_in.dat', form='unformatted')
14: read (10) x

15: CSMS$PARALLEL(my_dh, <i>) BEGIN
16: do 100 i = 3, 13
17: y(i) = x(i) - x(i-1) - x(i+1) - x(i-2) - x(i+2)
18: 100 continue
19: CSMS$EXCHANGE(y)
20: do 200 i = 3, 13
21: x(i) = y(i) + y(i-1) + y(i+1) + y(i-2) + y(i+2)
22: 200 continue
23: xsum = 0.0
24: do 300 i = 1, 15
25: xsum = xsum + x(i)
26: 300 continue
27: CSMS$REDUCE(xsum, SUM)
28: CSMS$PARALLEL END
29: print *,'xsum = ',xsum
30: end

 

 
Figure 3.  SMS directives are used to map sub-sections of the arrays x and y to the decomposition given 
by “my_dh”.  Each process executes on its portion of these decomposed arrays in the parallel region 
given by csms$parallel.  

 
Alternatively, when an operation such as a halo update is done with MPI, either 
each variable is exchanged separately, or in some cases, multiple arrays can be 
exchanged at the same time using an MPI-derived type or common block.  In 
addition, the programmer must determine its neighbors and decide if 
communication is required.  While not a difficult operation, it can be a tedious and 
time-consuming endeavor.  One example of this complexity can be found in the Eta 
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code where a key communications routine containing over 100 lines of code was 
replaced with a single exchange directive during SMS parallelization. 

4   Code Parallelization using SMS  

The parallelization of codes targeted for MPPs can be a difficult and time-
consuming process.  The objective in developing SMS was to design a tool that is 
easy to learn and use, and to provide support for operations that simplify and speed-
up code parallelization.  This section highlights some of the features of SMS that 
have been developed to achieve these goals. 

4.1    Code Generation and Run-Time Options 

SMS control over the generation and execution of code can be divided into three 
areas: parallelization directives, command line options, and run-time environment 
variables.   SMS directives, discussed in Section 3, are the most obvious way to 
control when, where and how code parallelization should be done.   
 
SMS also provides the user with command line options to modify code translation.  
User access to parallel code generation using PPP is provided through a script that 
runs a series of executables to transform the serial code.   Several command line 
options are available in this script that affect parallel code generation including type 
promotion (eg. --r8), retain translated code as comments, and a verbose level to 
warn of inconsistencies encountered during translation. 
 
Users can also control the run-time behavior of SMS parallel code using 
environment variables.  Environment variables are used to control when sections of 
PPP- translated user code will be executed.  For example, conditional execution of 
generated code is used to verify the correctness of a parallelization where global 
sums are required, and for debugging purposes.  This allows users to debug and 
verify parallelization without requiring that code be re-generated after correctness of 
results is established (discussed below). 
 
Environment variables are also used to control the run-time behavior of SMS to: 
configure the layout of processors to the problem domain, designate the number of 
processors used to output decomposed arrays to disk, determine the type of 
input/output files that will be read/written (MPI-I/O, Native I/O, parallel file output, 
etc.), and tune model performance. 
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4.2    Advanced Parallelization Support 

There are three phases to any code parallelization effort:  code analysis, code 
parallelization, and debugging.  Code analysis generally involves finding data 
dependencies that exist in the code, and based on this information, determining a 
data decomposition and parallelization strategy.   SMS does not currently offer user 
support for code analysis; however, plans to provide this capability will be 
discussed in Section 6. 
 
Code Parallelization - SMS provides support for simplifying code parallelization.  
Recognizing that code parallelization becomes simpler to test and debug when it can 
be done in a step-wise fashion, the user can insert directives to control when 
sections of code will be executed serially (csms$serial).  Serial regions are 
implemented by gathering all decomposed arrays, executing the code segment on a 
single node, then scattering the results back to each processors sub-region as 
illustrated in Figure 4.  In this example, the routine not_parallel executes on a 
single node referencing global arrays that have been gathered by the appropriate 
SMS routines. 
 
While the extra communications required to implement gather or scatter operations 
will slow performance, this directive permits users to test the correctness of 
parallelization during intermediate steps.  Once assured of correct results, the user 
can remove these serial regions and further parallelize their code.   This directive 
has also been useful in handling sections of code where no SMS support for 
parallelization is currently available such as NetCDF I/O.  Further, if adequate 
performance is attained, some sections of code can be left unparallelized. 
 
Debugging - Once SMS directives have been added to the serial source, the parallel 
code must be run to verify the correctness of parallelization.  To ensure correctness, 
output files should be examined to verify that the results are exactly the same for 
serial and parallel runs of the code.  Since summation is not associative, reductions 
may not lead to exactly the same results on different numbers of processors.  To 
alleviate this inconsistency, SMS provides a bit-wise exact reduction capability 
which performs exactly the same arithmetic operations that would be executed in 
the serial program.  This capability is particularly useful when the reduction 
variables feed back into model fields that are output or compared.  Bit-wise exact 
results also permit the user to verify results exactly against the serial version and 
ensure the accuracy and correctness of the parallelization effort. 
 
Building on the bit-wise exact reduction capability, two SMS directives have been 
developed to support debugging that have significantly streamlined model 
parallelization, reduced debugging time, and simplified code maintenance.  The first 
directive, csms$check_halo, permits the user to verify that halo region values are up 
to date.  Using this directive, the halo region values of each user-specified array is 
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compared with their corresponding interior points on the neighboring process.  If 
these values differ, SMS will output the differences and exit.   This information 
helps determine where an exchange or halo update may be required to ensure 
correctness.  
 

Incremental Parallelization

“global” “local”

“local” “global”

CALL NOT_PARALLEL(...)

SMS Directive: CSMS$SERIAL

Figure 4.  An illustration of SMS support for incremental parallelization.  Prior to execution of the serial 
region of code, decomposed arrays are gathered into global arrays, referenced by the serial section of 
code, and then results are scattered back out to the processors at the end of the serial region. 

 
The second debug directive, csms$compare_var, provides the ability to compare 
array values for model runs using different numbers of processors.   For example, 
the programmer can specify a comparison of the array “x”, for a single processor 
run and for multiple processors by inserting the directive: 
 
csms$compare_var ( x )  
 
in the code and then entering appropriate command line arguments to request 
concurrent execution of the code.   The command: 
 
 smsRun 1 mycode 2 mycode



ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM  12/18  

 
will run concurrent images of the executable mycode for 1 and 2 processors.  
Wherever csms$compare_var directives appear in the code, user-specified arrays 
will be compared.  If differences are found SMS will display the name of the 
variable (x for example), the array location (e.g. the i, j, k index) and the 
corresponding values from each run, and then terminate execution.   
 
The ability to compare intermediate model values anywhere in the code has proven 
to be a powerful debugging tool during code parallelization.  The effort required to 
debug and test a recent code parallelization was reduced from an estimated eight 
weeks down to two simply because the programmer did not have to spend 
inordinate amounts of time determining where the parallelization mistakes were 
made. 
 
Additionally, this directive has proven to be a useful way to ensure that model 
upgrades continue to produce the correct results.  For example, after making 
changes to serial code the modeler executes the debug sections of code (generated 
by csms$compare_var), controlled through a command line option, in order to 
verify that the intermediate results are still correct.  By allowing the programmer to 
test parallelization in this way, code maintenance becomes much simpler for 
everyone. 

5   Performance and Portability 

As stated in the introduction, SMS has been used to successfully parallelize a 
number of mesoscale and global forecast models. These models have demonstrated 
good performance and scaling on a variety of computing platforms including IBM 
SP, Intel Paragon, Cray T3E, SGI Origin, and Alpha-Linux clusters.  This section 
details some of the portability and performance optimizations available with SMS 
and then highlights some results of a recent comparison for the operational Eta 
model. 

5.1   SMS Optimizations 

Model performance can vary significantly depending on the hardware and 
architecture of the target system and the run-time characteristics of the code.   
Architectural differences affecting performance include processor speed, the access 
times and size of each type of memory (register, cache, main memory), bandwidth 
of the communication pathways, and speed of peripherals such as disks [12].   
Issues that affect model performance include the compiler implementation, size and 
frequency of I/O operations, frequency and type of interprocessor communications, 
and data locality.  SMS has been designed so that models can be ported between 
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systems without code change, to both run efficiently across  shared and distributed 
memory systems and to provide options that tune the model for the best 
performance. 
 
Portability has become increasingly important both because high-end computer 
system hardware changes frequently and because codes are often shared between 
researchers who run their models on different systems.  To ensure portability across 
shared and distributed memory systems, SMS assumes that memory is distributed; 
no processor can address memory belonging to another processor.  Despite the 
assumption that memory is distributed, the performance on shared memory 
architectures is good due to efficient implementations of MPI on these systems.  
Also, when an SMS parallelized model runs successfully on one system, it can 
easily be ported and run on another computing platform.  For example, it took only 
two hours to port the ROMS model, parallelized for Alpha-Linux, to an SGI Origin 
system. 
 
SMS provides several techniques to optimize models for high performance.  One is 
to make architecture-specific optimizations in the lower layer of SMS.  During a 
recent FSL procurement, one vendor replaced the MPI implementation of key SMS 
routines with the vendor’s native communications package to improve performance.  
Since these changes were made at a lower layer of SMS, no changes to the model 
codes were necessary. 
 
SMS also supports other performance optimizations of interprocessor 
communications including array aggregation and halo region computations.  Array 
aggregation permits multiple model variables to be combined into a single 
communications call to reduce message-passing latency.  SMS also allows the user, 
via directive, to perform computations in the halo region in order to reduce 
communication.  Further details regarding these communication optimizations are 
discussed in the SMS Users Guide [11] and overview paper [6].  
 
Performance optimizations have also been built into SMS I/O operations.  By 
default, all I/O is handled by a single processor.  Input data are read by this node 
and then scattered to the other processors.  Similarly, decomposed output data are 
gathered by a single process and then written asynchronously. Since atmospheric 
models typically output forecasts several times during a model run, these operations 
can significantly affect the overall performance and should be done efficiently. 
 
To improve performance, several options can be specified at run-time via 
environment variable.  One option, illustrated in Figure 5, allows the user to 
dedicate multiple output processors to gather and output these data asynchronously. 
This allows compute operations to continue at the same time data are written to 
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disk.   The use of multiple output processors has been shown to improve model 
performance by up to 25% [10].    
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Figure 5.  An illustration of SMS output when cache processes and a server process are used.  SMS 
output operations pass data from the computational domain to the cache processes.  Data are re-ordered 
on the cache processes before being passed through the server process to disk. 

 
Another output option allows the user to specify that no gathering of decomposed 
arrays be done; instead each processor writes out its section of the arrays to disk in 
separate files.  This option allows users to take advantage of high-performance 
parallel I/O available on some systems including the IBM SP2.   After output cycles 
are complete, post-processing routines can be run as a separate operation to 
reassemble the array fragments.  

5.2   Eta Model Parallelization 

As a high-level software tool, SMS requires extra computations to maintain data 
structures that encapsulate low-level MPI functionality that could lead to potential 
performance degradation.  While a number of performance studies have been done 
using SMS in recent years, no study has been done to measure the cost of the SMS 
overhead.  To measure this impact, a performance comparison was done between 
the hand-coded MPI based version of the Eta model running operationally at NCEP, 
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and the same Eta model parallelized using SMS.  The MPI Eta model was 
considered a good candidate for fair comparison since it is an operational model and 
has been optimized for high performance on the IBM SP2.  Performance 
optimizations of NCEP’s Eta model include the use of IBM’s parallel I/O capability 
which offers fast asynchronous output of intermediate results during the course of a 
model run. 
 
To accomplish parallelization, the MPI Eta code was reverse engineered to return 
the code to its original serial form.  This code was then parallelized using SMS.  
Code changes included restoring the original global loop bounds found in the serial 
code, removing MPI-based communications routines, and restoring array 
declarations.  Fewer than 200 directives were added to the 19,000 line Eta model 
during SMS parallelization.  To ensure correctness of parallelization, generated 
output files were bit-wise exact compared for both serial and parallel runs. 
 
Table 1: Eta model performance for MPI-Eta and SMS-Eta run on NCEP’s IBM SP-2.  Times are for a 
two-hour model run.  

 
Processors Time Speedup Efficiency 

24 78 1.00 1.00 
32 59 1.32 0.99 
48 45 1.73 0.87 
88 27 2.88 0.79 

 
After parallelization was complete, performance studies were done to compare SMS 
Eta to the handed-coded MPI Eta.  In these tests, identical run-times were measured 
on 88 processors of NCEP’s IBM SP2 for a two hour model run.  Further tests on 
FSL’s Alpha Linux cluster, shown in Table 1, illustrate good performance and 
scaling.  Further analysis of these performance results is planned.  However, these 
results demonstrate that SMS can be used to speed and simplify parallelization, 
improve code readability, and allow the user to maintain a single source, without 
incurring significant performance overhead. 

6   Conclusion and Future Work 

A directive-based approach to parallelization (SMS) has been developed that can be 
used for both shared and distributed memory platforms.  This method provides 
general, high level, comment-based directives that allow complete retention of the 
serial code.  The code is portable to a variety of hardware platforms.  This 
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parallelization approach can be used to develop portable parallel code on multiple 
platforms and achieve good performance. 
 
As we continue to parallelize more atmospheric and ocean models additional 
features are being added to SMS to enhance its usefulness.   Parallelization of these 
models for MPPs has driven the development of SMS for the last ten years.  Based 
on this experience, we have developed a tool that significantly decreases the time 
required to parallelize models. Further, we offer a simple, flexible user interface, 
provide tools that permit partial parallelization, simplify debugging and can verify 
the correctness of the model results exactly.   In addition, our experience in working 
with a variety of computing platforms has allowed us to develop a tool that provides 
flexible high-performance portable solutions that are competitive with hand-coded 
vendor specific solutions.  We have also demonstrated in the parallelization of 
NCEP’s Eta model that the SMS solution performs as well as the MPI based 
operational version of the code. 

6.1   Future Work 

SMS currently supports the analysis and translation of Fortran 77 with added 
support for some commonly used Fortran 90 constructs such as allocatable arrays, 
limited module support, and array syntax.  However, full support is planned for all 
of the Fortran 90 language including array sections, derived types, and modules.  
Another upgrade will enable the PPP translator to generate OpenMP code.  Further, 
for state-the-of-art machines that consist of clusters of SMPs, a parallel code that 
implements tasking "within the box" using OpenMP and message passing "between 
the boxes" using MPI may be optimal. The PPP translator could be designed to 
generate both message passing and micro tasking parallel code. 
 
We would also like to reduce the dependence analysis and code modification time 
(insertion of directives) required to parallelize a model.   Development has begun on 
a tool, called autogen, to analyze the user code and automatically insert SMS 
directives into the serial code.   A typical model (20-30K source lines) parallelized 
using SMS requires the insertion of about 200 directives into the code.  Autogen 
could automatically generate the two most common SMS directives (csms$parallel 
and csms$distribute) that account for roughly half of the directives users must add 
to the serial code.   
 
As the analysis capabilities of this tool grow, we expect to further reduce the 
number of directives that must be inserted by the user.  However, one limitation of 
autogen is that it does not provide interprocedural analysis of the code.  Therefore, 
we would like to combine SMS code translation capabilities with a semi-automatic 
dependence analysis tool.  This tool would automatically insert SMS directives into 
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the serial code, from which a parallel version could be generated using PPP in order 
to further simplify parallelization. 
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