SMS USER'S GUIDE

Dan Schaffer
Mark Govett
Jacques Middlecoff
Advanced Computing Branch
Aviation Division
NOAA/Forecast Systems Laboratory
325 Broadway
Boulder, Colorado 80305

May 2005
SMS Software Version: 2.9

http://www-ad.fsl.noaa.gov/ac/sms.html.

http://www-ad.fsl.noaa.gov/ac/sms.html

TABLE OF CONTENTS

1 INTRODUCGTION ...uiiiii et e e et e e e e e 6
1.1 Organization of this DOCUMENT............cccccveiiiiiiicie e 6
1.2 Terms and CONVENTIONS.ccoiiiiiiieie ittt 7
2 GETTING STARTED ... eees 8
2.1 Basic Parallelization STEPSccooeiiiiiiiiiiisieee e 8
2.2 AVery SIMpPIe Programcccccoiioieiiieiecie sttt 8
2.3 Simple Computation on a Regular Grid..........cccoooeiiiiiniinnienieseecee e 10

231 Parallelization by Domain DeCOMPOSITIONc.cccveriiririieiieie e 11

2.3.2 Parallel PriNtiNgc.ooveiiieiice et 17

2.3.3 REAUCTION ... 18
24 Boundary INitialization ... 19
2.5 A Simple EXPlCit FDA Programcccccooiiiiioieeiieiieseeeesee e eee e sas e e e ens 22
2.6 Writing OULPUL t0 DiSKooiiiiiiiiiiie e s 28
2.7 Using Multiple DeCOMPOSITIONScceeviiieiieieiieieesie e sie e 28
3 DECOMPOSING ARRAYS AND PARALLELIZING LOOPS..........cccuuunn..e. 31
3.1 ChooSiNg DeCOMPOSITIONS.cciieiiiieiieeiesee et se e e e enes 31
3.2 Two-Dimensional DecOMPOSITIONScceieeiierieiieiieie e 32
3.3 Using Statically Allocated MemOrycccooviiiiieieiie e 33
3.4 More about DISTRIBUTE ..o 37

34.1 Further Detail on DISTRIBUTE SYNtaX.........ccocovverieniininniene e 37

3.4.2 Using DISTRIBUTE to Define Decomposed Boundary Arrays.................. 38
3.5 More ADOUt PARALLEL ..o 39
3.6 Arrays with Non-Unit LOWer BOUNdS..........ccooeriiiiiieiinie e 41
3.7 Aligned DeCOMPOSITIONSccueiieiieeiesiese e see e eae e sre e e e ee e e e eneesree s 42

4 TRANSLATING ARRAY INDICES.......cooiiiiiiiiiiiiii e 46

4.1 Translating Local Indices to Global Indices..........cccooveiiiiiiniiiiiee, 46
4.2 Translating Global Indices to Local Indices Inside LOOPS..........ccccevevveiveennenn. 47
4.3 Using TO_LOCAL to Generate Process-Local Sizes and Loop Bounds....... 48
4.4 Using Global Index to Handle Boundary Conditions..........ccccccevvvevveieseennnn. 50
4.5 Using GLOBAL_INDEX With Aligned Decompositions...........cccccvvveevveniene 52
5 HANDLING ADJACENT DEPENDENCIEScuuuuiiiiiiiiiiiiiiiiiiiiiiineinennnnns 53
5.1 Further Details on HALO_UPDATE ... 53
511 Using HALO_UPDATE in the Case of Two-Dimensional Decompositions53
51.2 Larger STENCIISoiveeieee et s 57
5.1.3 Halo Updates in Static Memory Models..........c.ccooeiiiiiiniiieeee 59
514 MISCEIIANEOUS ...t 60
5.2 Performance OptimizationS..........ccccoeiiiereiiieiieie e seese e 60
521 Limited-Thickness Halo UPatesccccevevivereeienieenreie e 60
5.2.2 Aggregating Halo Updates.........cccooiiiiiiiiiiieseee e 61
523 Updating Halos for Array SECHIONS.........cccccveieeieieeieee e 63
524 Trading Communications for Computations Using HALO_COMP 64
5.25 Using HALO_COMP and TO_LOCAL To Make Subroutines Do Redundant
(O00] 0] oTU | =14 0] 1 ST P USRS PR 68
6 HANDLING COMPLEX DEPENDENCIES USING TRANSFER.................. 70
7 HANDLING GLOBAL DEPENDENCIES USING REDUCEcccvuu..... 72
7.1 More on Standard REUCTIONS..........ccoeiiiiiiieiie e 72
7.2 Bit-wise EXaCt REAUCTIONS.........ccoiiiiiiieiiiiisieseeeie e 74
8 INCREMENTAL PARALLELIZATION USING SERIALccooovviiiiiiiiiieiens 77
8.1 Improving the Performance of SERIAL.........ccccccoooeiveie i 77
8.2 Limitations OFf SERIAL........ccoiiiie e 79
9 PERIODIC BOUNDARY CONDITIONScouuiiiiiiiiiinunninrernnnnnnnennnnnnnnnnnnnn. 81
9.1 Using CREATE_DECOMP to Specify Periodic Boundaries..............cccoc....... 81
9.2 Periodic Boundary Optimization...........ccocooiiiriiiiiiiese e 84

10 NESTING AND COUPLING: TRANSFER-INTERPOLATION................ 85

10.1 Using SET_TRANSFER_INTERPOLATE to Define Interpolations............ 87
10.1.1 Transforming Serial Code to “Stencil-Oriented” FOrm..........ccccocvevveineennen. 87
10.1.2 Defining an INterpolation.........c.cccveveiieiieiecie e 88

10.2 Using TRANSFER to Interpolate Between Grids...........cccocvevvviievveicsiesinenn. 90

10.3 Using SET_NEST_LEVELS to Switch Between Grids.........c.cccccevvvveiieinnenne. 92

11 MITIGATING STATIC LOAD IMBALANCES ... 96

11.1 Controlling ProCess LAYOUL............ccceiieiiiieiieniesie et 96

11.2 INdeX SCrambliNgcccoveiieiiee e 99

12 /O e 101

12,1 UNFOrmatted H/O.....cui ittt 101

12,2 FOrmatted HO.......oi ittt 106
12,21 FOrmatted INPUL.......ccoiiieieiie e e 106
12,22 FOrmatted OULPUL........coveeecieseeie et nne e 106

12.3 1/O Performance TUNINGccoocueiuieieieeseeie e e eeesee e aesee e esssae e enaesneens 109
12.3.1 The SIMS SEIVEI PrOCESS.....ccuiiiueiiieieeieseesieeeesteesteesiesee e eeesseessneneesneesneas 110
12.3.2 SEIVEIIESS /O ..ot 110
12.3.3 The FLUSH_OUTPUT DIreCtIVEcceeiiieiiiinie e 111

13 S I (O R N] Sy N 4 T 113

14 PROGRAM TERMINATION. ..ottt 115

14.1 Automatic Code Generation for Termination.............ccccocevviieiiieneeveseennnn, 115

14.2 EXIT DIFECLIVE c.oieiii ittt ettt e e e e ne e 115

14.3 MESSAGE DIFECLIVEocuiiiiiiiiiieieiee et 116

15 DEBUGGING ..o 117

15.1 Using COMPARE_VAR To Find Parallelization Errors..........c..cccccvevennenn. 117

15.2 Debugging Adjacent Dependencies: CHECK _HALOcccoevivveiieenne, 120

16 BUILDING A PARALLEL PROGRAM........ccovviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 121

ST R O V<1 oY/ 1=, OO POPRRTRRRR 121

16.2 PPP-Generated OULPUL FIIEScuoiiiiiiiiiieiec e 121
16.3 Building SMS Parallel Source Code..........ccovveiiiiiiieeieiiese e 121
16.3.1 PPP Command Line OPLIONSccueveerieeieieeie e seese e sie e sree e sae e 121
16.3.2 EXAMPIES ..o e e 122
16.4 BUildiNg SMS PrOgramS........ccoiieiiiieiiieieesiesieeie et sie s ste s sseenae e 125
16.4.1 Makefile Compiler and Linker Options..........cccccoveiienieniieniinnieie e 126
16.4.2 Include File HANAINGooovviiiiieeccceee e 127
16.4.3 Building the EXECULADIE.........cccooiiiiiiieiee e 127
16.5 PPP Error REPOITING......ccoooiiiiiiiiiiie ettt 127
16.5.1 Parsing EFTOIS.......ooiiiiie ettt 127
16.5.2 PPP DiagnoStiC IMESSA0ESveveiveerieeiesiiesieesieaseessaesteseesseessesseesseessesnsessens 128
T I @fo] o] o1 F-Ud o] o I =1 o] 129
17 RUNNING AN SMS PROGRAM......coittiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 130
171 INTFOAUCTION ...t bbbttt 130
17.2 Optional Command Line ArguUMENTSccccceiieiieiiniesie e 130
17.3 Run-time Environment Variables ... 131
17.4 RUN-TIME Error MESSAQEScoiveeiiiie ittt sttt st nne e 131

1 Introduction

This document describes the Scalable Modeling System (SMS) and shows how SMS
directives can be used to parallelize a serial Fortran program for distributed or shared
memory machines. SMS is intended for use with programs that perform computations on
regular gridded data sets. The primary application area thus far has been weather, ocean,
and climate models. SMS has been used to parallelize models that use explicit finite
difference approximation (FDA) or spectral transform methods. SMS is general enough
to be useful for parallelizing similar programs in other application areas.

Before reading this document, the reader should first read the companion overview
paper, "The Scalable Modeling System: A Directive-Based Parallelization Tool for
Distributed and Shared Memory Computers”, published in Parallel Computing and
available on the SMS website. It is assumed that the reader of this User’s Guide is
familiar with the concepts and terms introduced in the overview document. The reader
should also be familiar with basic parallel processing concepts such as distributed and
shared memory, message latency and bandwidth, the Single Program Multiple Data
(SPMD) programming model, and dependence analysis. The overview document
describes these concepts briefly and contains references for further reading. After
reading this User’s Guide, the reader should have a good understanding of the steps that
need to be taken to parallelize a serial program using SMS directives. If more detailed
information about any directive is needed, the reader should refer to the companion
reference document, "SMS Reference Manual”.

1.1 Organization of this Document

The SMS User’s Guide begins by introducing the SMS directives in their simplest form.
Section 2 introduces the most fundamental SMS directives with simple example
programs that use the method of explicit finite difference approximation. This section
also introduces other SMS directives that are useful in transform-based programs such as
spectral numerical weather prediction (NWP) models. The remaining sections describe
in detail how the SMS directives are used in more complex situations. Section 3 explains
how to divide work among multiple processes by the method of data decomposition and
how to parallelize loops. Additional loop index translations needed during parallelization
are described in Section 4. Sections 5, 6 and 7 cover further details about the inter-
process communication directives introduced in Section 2. Section 8 describes a method
by which parallelization can be done incrementally. Section 9 addresses periodic
boundary conditions. Section 11 describes SMS support for mesh refinement (nesting)
and coupling between different grids. Section 12 discusses parallel 1/0. Directives that
control program termination are dealt with in Section 14. Section 15 discusses debugging
tools. Sections 16 and 17 explain how to build and run parallel SMS programs.

1.2 Terms and Conventions

Throughout most of this document, the term "process™ is used instead of "processor” or
"CPU". "Process" is slightly more general because it is possible to run more than one
process on a single "processor” (and this may actually make sense on some types of
CPU's that provide direct hardware support for multi-threaded applications). However,
on most machines there will be a one-to-one mapping of processes to processors.

Fortran source code will appear in courier font. When program source code appears
inside the main body of text, it will also be italicized. Large blocks of code will
include line numbers to simplify discussions. Commands will also appear in courier
font and will be preceded by a generic command line prompt, ">>". The results of
commands will appear in courier font as well. Warning messages output by SMS will
be courier bold. File names will appear in italics when not in code examples or
command lines. SMS directives will appear in bold in code examples. When directive
arguments appear in the text they will be courier font, bold and
italicized. Sometimes example code will be a slightly modified version of a
previous example. In that case, the changed lines will be highlighted.

2 Getting Started
2.1 Basic Parallelization Steps

The first step in any parallelization effort is to understand the performance characteristics
of the serial program. Program components that take little time to run may not need to be
parallelized at all. The second step is to perform dependence analysis to identify the
places in the code where inter-process communication may be required. Dependencies
will be discussed as relevant SMS directives are introduced. A strategy for dividing the
work among the processes must then be chosen. SMS uses the method of domain
decomposition in which portions of large arrays, and their associated computations, are
assigned to each process. The dependence analysis is used to help pick optimal
decompositions that will minimize inter-process communication. The final step is to add
SMS directives to parallelize the code.

To build the parallel program, the Parallelizing Pre-Processor (PPP, a component of
SMS) is first run to translate the source code with directives into new parallel source
code. The translated source code is then compiled and linked with the SMS library to
produce an executable program that can be run on multiple processes. The smsRun
command is used to run the parallel program. The debugging features of SMS can then
be used to test the parallel program.

SMS supports ANSI standard Fortran77 and Fortran90 language features such as full
array assignment, allocatable arrays, namelist, pointer, include, do-enddo, automatic
arrays, and while statements. Partial support of modules is also offered (modules may
contain variable declarations but not subroutines). Both fixed and free format source
code is accepted. If free format is used, SMS directives must be placed in column 1. By
convention, all SMS directives mentioned in the document text are preceded by “ISMS$”
or “CSMS$ for fixed formatted codes. For free format, only the “!SMS$” is permitted.
The code examples will contain the full directive names. A more detailed description of
supported language features can be found at the following SMS web site:

http://www-ad.fsl.noaa.qgov/ac/Fortran90 Language Support.html

2.2 A Very Simple Program

Below is a simple Fortran program that prints a message on the screen:

program basic exl
print *, 'HELLO'
end

If this program were stored in a file named basic_ex1.f, it could be built using the
following command:

http://www-ad.fsl.noaa.gov/ac/Fortran90_Language_Support.html

>> £90 -o basic exl basic exl.f

The above command assumes that the Fortran compiler is named “f90”. When run, the
program produces the expected output on the screen:

>> basic _exl

HELLO

This program is simple enough that a parallel version can be built directly without adding
any SMS directives. To build with SMS, first run the Parallel Pre-Processor (PPP) to
convert the print statements into parallel print statements:

>> ppp basic exl.f

The above command assumes that the SMS environment variable has been correctly set
and that $SMS/bin is in the current path. For example, if SMS is located in the directory
lusr/local/sms/ then (assuming a c-shell environment) the SMS environment variable
should be set as follows:

>> setenv SMS /usr/local/sms

The path could be modified using a command like this:

>> set path= ($SMS/bin $path)

See Section 17.3 for details about setting other environment variables used by SMS.
SMS translates the serial code in basic_ex1.f into parallel code and places the result in
file basic_ex1 sms.f. Depending on the configuration of SMS, other temporary files may
also be created. The next step is to compile basic_ex1 sms.f and link it to the SMS
library.

>> £90 -c -I$SMS/include basic _exl sms.f
>> £90 -o basic _exl sms -I $SMS/include basic _exl sms.o -L$SMS/lib \
-lsms -1lmpi

The above example assumes common behavior for f90 options "-1" (specify path for
include files) and "-L" (specify path for libraries). Some Fortran compilers handle these
options in slightly different ways. Note that link argument "-Impi" links to the Message
Passing Interface (MPI) library. SMS uses MPI to perform underlying low-level inter-
process communication on most supported machines. Some machines may require
different linkers or linker arguments to link to their MPI libraries.

The next step is to run the parallel program:

>> smsRun -np 1 basic _exl sms

The smsRun command shown above runs program basic_ex1_sms on 1 process. The
output written to the screen will look something like this:

SMS:: Program started: 1999:12:02::15:55:22

SMS: BITWISE EXACT reductions will NOT be used.

HELLO

SMS:: Program complete, exiting: 1999:12:02::15:55:22 Elapsed Time = 0
sec.

All output lines beginning with "SMS::" are diagnostic messages from the SMS run-time
system. The first and last output lines are time-stamps printed by SMS when a program
begins and when it ends. These time-stamps are a useful guide for measuring wall-clock
run times. The second text line is another message from SMS that indicates default
behavior of reduction operations to be discussed in Section 7.2. Henceforth, diagnostic
messages from SMS will usually be omitted for brevity. The remaining line contains the
text that was output when this program was run as a serial Fortran code.

The program can be run on 3 processes using the smsRun command like this:

>> smsRun -np 3 basic exl sms

The following text appears on the screen:

HELLO

This looks just like the run made on one process. Why? By default, SMS prints only one
message per Fortran print (or write) statement to mimic the behavior of the original serial
code as closely as possible. SMS also provides other "parallel print”™ modes, as described
in Section 2.3.2 and in detail in Section 12.2.

By default, the smsRun command creates some files in the /tmp directory. On some
machines, this directory is not visible to all nodes participating in the parallel run. In
these cases, the location of the temporary directory must be overridden by specifying the
SMS_TEMPDIR environment variable. For example:

setenv SMS TEMPDIR $SHOME / tmp
2.3 Simple Computation on a Regular Grid

Example 2-1 illustrates a very simple code that initializes an array, performs a simple
computation, and prints results on the screen. It consists of two parts: include file
basic.inc and source file basic_ex2.f.

[Include file: basic.inc]
integer im, jm
common /sizes com/ im, jm
[Source file: Dbasic ex2.f]
program basic ex2

include 'basic.inc'
im = 10

10

jm = 10
call compute
end

subroutine compute
include 'basic.inc'
integer i, j, xsum
integer x(im, jm)
do 100 j=1,jm
do 100 i=1,im
x(i,j) =1
100 continue
xsum = 0
do 200 j=1,jm
do 200 i=1,im
xsum = xsum + x(i,7)
200 continue
print *,'xsum = ',xsum
return
end

Example 2-1: A simple serial code to initialize an array and print a global sum.

This program initializes array X, sums the elements of X, and prints the result on the
screen as shown below:

>> basic_ex2
xsum = 100

Notice that this program uses automatic (dynamically allocated) arrays instead of
traditional Fortran77 static array declarations. The SMS directives support both dynamic
and static memory allocation schemes. Examples with dynamic memory allocation are
shown first because they are slightly simpler. Static allocation examples appear in
Section 3.3.

2.3.1 Parallelization by Domain Decomposition

Programs such as this one that involve computations on regular grids are often best
parallelized using the method of domain decomposition. Arrays and the computations
performed on them are “"decomposed” (divided up) among the processes as evenly as
possible. For example, Figure 2-1, Figure 2-2, and Figure 2-3 show how array x might
be decomposed in the 1 dimension over one, two and three processes.

Note that the sub-domains of array x become smaller as the number of processes
increases. These sub-domains are referred to as "local" arrays because they cannot be
accessed by other processes on a distributed memory machine. In SMS terms, the
original array x in the serial code is sometimes referred to as a “global array". Indices
used to access a global array are called "global indices™ while indices used to access a
local array are called "local indices". Similarly, sizes of the dimensions of a global array
are called "global sizes" and sizes of the dimensions of a local array are called "local
sizes". For dynamic memory code, the local and global indices are identical. We will
see in Section 3.3 that the global and local indices differ from each other for static
memory codes.

11

integer x(10,10)

1,

[EY
o

R NN W b 01O N 00 ©

1 2 3 45 6 7 8 9 10

Figure 2-1: A graphical representation of a non-decomposed 10 by 10 integer array.

integer x(1:5,10) integer x(6:10,10)

=
o

R N W bk 01O N 0 ©

1 2 3 4 5 6 7 8 9 10

PROCESS: P1 P2

Figure 2-2: Anillustration of a 10 by 10 array decomposed over two processes. These integer arrays
are now local arrays declared by each process. When dynamic memory is used, global addressing is
used to access local array elements. Thus, on process P2, the first dimension ranges from 6 to 10.

12

integer x(1:3,10) integer x(8:10,10)

+

integer x(4:7,10)

[EY
o

P N W s OO N 0 O

1 2 3 4 5 6 7 8 9 10
PROCESS: P1 P2 P3

Figure 2-3: A 10 by 10 array decomposed over three processes. In this example, the locally declared
size of process P2 is larger than the sizes of P1 or P3.

In this program, domain decomposition of array X requires three basic steps. First, the
way in which x will be decomposed must be described. For this simple example, we
choose to decompose only in the i1 dimension (decompositions of two dimensions are
discussed in Section 3.2). Second, the declarations of array x should be modified to
reflect smaller local sizes. Finally, the start and stop indices of each relevant loop must
be changed to reflect the smaller range of local indices. These three steps are
accomplished using four SMS directives. The DECLARE_DECOMP and
CREATE_DECOMP directives are used to describe a single decomposition. Array
declarations are modified using the DISTRIBUTE directive while loop start and stop
indices are changed using the PARALLEL directive. These directives have been inserted
into the serial program as shown in Example 2-2:

[Include file: Dbasic.inc]

1 integer im, jm

2 common /sizes com/ im, jm
3 CSMS$DECLARE_DECOMP(DECOMP_I, 1)

[Source file: Dbasic_ex2.f]

program basic_ ex2
include 'basic.inc'
im = 10

jm = 10

CSMS$CREATE DECOMP (DECOMP_I, <im>, <0>)
call compute
end

oJourdkd W

13

9 subroutine compute

10 include 'basic.inc'

11 integer i, j, xsum

12 CSMS$DISTRIBUTE(DECOMP_I, 1l) BEGIN
13 integer x(im, jm)

14 CSMS$DISTRIBUTE END
15 CSMS$PARALLEL (DECOMP_I,<i>) BEGIN

16 do 100 j=1,3m

17 do 100 i=1,im

18 x(i,j) = 1

19 100 continue

20 xsum = 0

21 do 200 j=1,3jm

22 do 200 i=1,im

23 xsum = xsum + x(i,J)
24 200 continue

25 CSMS$PARALLEL END

26 print *,'xsum = ', xsum
27 return

28 end

Example 2-2: A simple serial code with comment-based SMS directives added.

Notice that each of the SMS directives begins with five characters "CSMS$" which
makes it a Fortran comment. This is true for all SMS directives. Also, note that both the
DISTRIBUTE and PARALLEL directives come as BEGIN-END pairs. When an SMS
directive appears in this form, its scope consists of all lines of code between the "BEGIN"
and "END" directives. Some SMS directives, such as TRANSFER (Section 6) and
REDUCE (Section 7) may be used either alone or as a BEGIN-END pair. The text
translation effects of a BEGIN-END directive pair do not extend into called subroutines.

The first directive, DECLARE_DECOMP, is used to give a name to the SMS
decomposition that will be used to divide among the processes the work done in loops
100 and 200. Its first argument, DECOMP_1, is the user-chosen name for the
decomposition. Any valid Fortran variable name (up to 20 characters long) may be used
to name a decomposition provided it does not conflict with any variable in the serial
code. The second argument, 1, is an integer that indicates how many dimensions are
decomposed. This argument is omitted if static memory allocation is used (see Section
3.3) or if the decomposed arrays have non-unit lower bounds (see Section 3.6).

Next, the CREATE_DECOMP directive is used to describe what kind of decomposition
DECOMP__I will be. The first argument is the decomposition name DECOMP__1 specified
in the DECLARE_DECOMP directive. The second argument, <im>, describes the
decomposition as a 1-dimensional decomposition where the number of data points is the
global size of the original serial dimension. The last argument, <O>, indicates that this
decomposition will have no halo regions (halo thickness = 0). Halo regions are
introduced later in this section and are described in detail in Section 5.1.

The third directive, DISTRIBUTE, associates array X with the decomposition
DECOMP_1I. The second argument is used to indicate how array dimension(s)
correspond to the dimensions of the decomposition named DECOMP__I. In this simple
one-dimensional decomposition, 1 indicates that the first dimension of the array x will be

14

decomposed as described by the single dimension of the SMS decomposition named
DECOMP_1. The distinction between "dimension of an array” and "dimension of an
SMS decomposition” will become more clear in the two-dimensional decomposition
examples shown later in Section 3.2.

The DISTRIBUTE directive does two things. First, it identifies array declarations that
will be translated to use local sizes. In the above example program, the DISTRIBUTE
directive will cause the declaration of x to be translated to a local declarations such as
one of those shown in Figure 2-1, Figure 2-2, or Figure 2-3 (depending on the number of
processes). The second task of DISTRIBUTE is to provide information about how each
array is decomposed to other SMS directives and to support automatic parallelization of
some operations (such as unformatted 1/0). These features are described in detail in later
sections.

Finally, the PARALLEL directive identifies loops that must be modified to span the
smaller local arrays during translation. The second argument, <i>, indicates that loops
with loop index 1 should be translated to span the decomposed dimension of array x. For
example, if the program in Example 2-2 is run on two processes then i loops 100 and
200 will span local indices 1 through 5 on each process.

Building the SMS parallel code is a bit more complicated than the previous example due
to the presence of the include file that contains a directive. Two commands are now
needed. The first translates the include file:

>> ppp --header basic.inc

The "--header"” option to the PPP command indicates that the file is an include file and
must be translated differently than a standard Fortran source file. In the command above,
include file basic.inc will be translated into new SMS include file
basic.inc.SMS. The second command requires PPP option "--Finclude™ to translate
the Fortran source file:

>> ppp --Finclude=basic.inc basic ex2.f

The "--Finclude™ option to the PPP command indicates that file basic.inc is an
include file that has been translated by PPP. During translation of source file
basic_ex2.T, inclusions of this file will be translated from

include 'basic.inc'

to
include 'basic.inc.SMS'

to ensure that the translated include file is used.

Running this program on one process produces the expected result.

>> smsRun -np 1 basic ex2 sms

15

xsum = 100

However, when this program is run on two and three processes, the values of xsum
differ from the serial run.

>> smsRun -np 2 basic ex2 sms
Xsum = 50

>> smsRun -np 3 basic ex2 sms
Xsum = 30

Why did the parallel program produce incorrect results? The answer lies in the
computations made in loop 200. In this loop, all of the elements of array x are summed
and the result is placed in variable xsum. However, when the program is run on two or
three processes, each process sums only its own local sub-domain of x as illustrated in
Figure 2-4, and Figure 2-5. To reproduce the result of the original serial code, we will
need the REDUCE (see Section 2.3.3) directive.

PROCESS:

L

U

=
.
N

[EY
o

SRS ISY ISR PN N N P e
TS TSN SN PSP P S e
SIS ISR PN N P A e
RlRr(RrR|R|R|R|R|R|R
S TSN ISN IS N S S P
I I I Y R e S e
N R
I I I Y R e A
N R
Y IS S R Y R S A=Y

P NN W bk 01O N 0 ©

(o3}
~
oo
©
S

1 2 3 45

Xsum = iszx(i,j)

Pl: xsum = 50 P2; xsum = 50

Figure 2-4: Each process sums its local portion of the array x.

16

PROCESS: P1 P2 P3
. NEEE 1111 111
3 SEEE R 1|1
| > . g| 111 1111 111
1 AEEE 1111 111
SEEE 1111 111
sl 1|11 1111 111
R 1111 111
SEIEE 1111 111
AEEIE 1111 111
EEEE R 111
1 2 3 4 5 6 7 8 9 10
xsum = ZX(i:j)
Pl: xsum = 30 P2: xsum = 40 P3: xsum = 30

Figure 2-5: In this example, local sums are produced on each of the three processes.

2.3.2 Parallel Printing

In SMS, by default, only one process will print a message when a print statement is
encountered. Therefore, the value of xsum printed is the value of xsum computed
locally only on the printing process. We can see the value of Xxsum on every process by
changing the default print behavior with the PRINT_MODE directive. The print
statement on line 26 of the program in Example 2-2 would be modified as shown below:

CSMS$PRINT_MODE(ASYNC) BEGIN
print *,'xsum = ', xsum
CSMS$PRINT_MODE END

This PRINT_MODE directive changes the print mode from the default mode to
"asynchronous” mode. When a print statement is encountered in asynchronous print
mode, each process will print a message to the screen. When run on two processes, the
following results are printed:

>> smsRun -np 2 basic _ex2 sms
xsum = 50
xsum = 50

Clearly, each process has computed the correct sum for its local half of array x. When
run on three processes we may see any of the following results:

17

>> smsRun -np 3 basic _ex2 sms

xXsum = 40
xsum = 30
xsum = 30

>> smsRun -np 3 basic ex2 sms

xsum = 30
xXsum = 40
xsum = 30

>> smsRun -np 3 basic ex2 sms

xsum = 30
xsum = 30
xXxsum = 40

In the asynchronous print mode, the messages printed by each process may come out in
any order. Another parallel print mode supported by SMS is the "ORDERED" print
mode which preserves process order. Section 12.2 describes the SMS print modes in
more detail.

2.3.3 Reduction

We have seen that each process has computed the correct sum for its local sub-domain of
array X. To reproduce the same result as the original serial code, the local sums must be
added together as shown in Figure 2-6. In more general terms, the computed value of
xsum depends on all of the values of array x. This is known as a "global dependence”
because the result of the computation depends on every element of global array x.

P1 P2 P3

xsum = 30 xsum = 40 xsum = 30

~U1

xsum = 100 xsum = 100 xsum = 100
P1 P2 P3

Figure 2-6: In this example, the reduction gathers the local sums, computes a global sum and then
broadcasts the result out to the processes.

18

The REDUCE directive is used to resolve this dependence. To compute a global sum,
insert the following line immediately before the print statement on line 26 of Example
2-2:

CSMS$REDUCE (xsum, SUM)

The REDUCE directive performs communications necessary to reduce the local values of
a variable on each process to a single value that is identical on all processes. A specified
operator is used to combine the values from each process. The first argument indicates
that xsum is the name of the variable to be reduced. The second argument, SUM,
specifies that the local values of xsum will be summed during reduction. Reductions are
described in more detail in Section 7. The parallel program now produces the expected
results when run on various numbers of processes (assuming the PRINT_MODE
directives used in Section 2.3.2 are removed):

>> smsRun -np 2 basic ex2 sms

xsum = 100
>> smsRun -np 3 basic ex2 sms
xsum = 100

2.4 Boundary Initialization

In Example 2-2, all elements of array x were initialized to the same value. Usually, it is
desirable to initialize array elements differently depending on their location. This occurs
often in models where elements near the model boundaries may be treated differently
than other array elements. Example 2-3 below shows a variant of subroutine compute
from Example 2-2 (changes are highlighted) that sets elements on the array boundaries
where 1=1 or i=1mto 2 and all other elements to 1. This is illustrated in Figure 2-7.

19

o
[HEN
o

R N W A 01O N O ©

ST I TSI IS IS TSR TSR TR (N TN
N N e G G e
N R L N A N
N L L N N N
S N o G e
N L R (= (e (e T T T 1=
N L R (= (e (e T T T 1=
e N L e L N o
N L e L N o
SR TSR IS T R [SR TSR [T TR | SR TN

[EEN

2 3 4 5 6 7 8 9
Xxsum = ZZX(i,j)
i j

xsum = 120

[HEN
o

Figure 2-7: An illustration of a boundary initialization where edge point values are different than
interior points.

1 subroutine compute
2 include 'basic.inc'
3 integer i, j, xsum
4 CSMS$DISTRIBUTE(DECOMP_I, 1) BEGIN
5 integer x(im, jm)
6 CSMSS$DISTRIBUTE END
7 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
8 do 100 j=1,3jm
9 do 100 i=1,im
10 x(i,3) =1
11 100 continue
12 do 110 j=1,3m
13 x(1,j) =2
14 X(im,j) = 2
15 110 continue
16 xsum = 0
17 do 200 j=1,jm
18 do 200 i=1,im
19 xsum = xsum + x(i,3j)
20 200 continue

21 CSMS$PARALLEL END

20

22 CSMSS$REDUCE (xsum, SUM)

23 print *,'xsum = ', xsum
24 return
25 end

Example 2-3: Boundary initialization requires special handling.

When the serial version of Example 2-3 is run, the following results are printed on the
screen:

>> basic_ex3
xsum = 120

However, when the parallel code is run on more than one process, results are
unpredictable:

>> smsRun -np 2 basic ex3 sms
<core dump>

The reason for these erroneous results can be seen by examining new loop 110 in detail.
Line 14 in loop 110 contains the following statement:

X(im,j) = 2

This statement will perform the following assignments:

x(10, 1) = 2
x(10, 2) = 2
x(10,10) = 2

On process 1 of a 2 process run, array X is dimensioned x(1:5,1:10) (see Figure 2-2)
so x(10,10) is out of bounds. The behavior of any program that performs such
assignments is unpredictable. Similarly, line 13 causes an out-of-bounds assignment on
process 2.

To address this problem, the assignment statements must be modified so they are only
executed on the processes that contain the specified global indices in their local sub-
domains. The GLOBAL_INDEX directive solves these problems as shown below:

do 110 j=1,jm
CSMS$GLOBAL_INDEX(1) BEGIN
x(1,3) =2
X(im,j) = 2
CSMS$GLOBAL_INDEX END
110 continue

The GLOBAL_INDEX directive ensures the enclosed statements are only executed on
the appropriate processes. Now only process 1 will execute line 13 and only process 2
will execute line 14. The argument in the GLOBAL_INDEX directive, 1, indicates that
these translations will be applied to array indices that correspond to the first (and in this
case only) decomposed dimension. In this case, the decomposed dimension corresponds

21

to the 1 dimension of array X. (The concept of "decomposed dimension” is explained in
detail in Section 3.) The effects of the GLOBAL_INDEX directives on the assignments
of x(1,J) and x(im, j) are shown for the two process case in Figure 2-8.

=
o

NEESHEESEECEESE NN ENE NSNS NN
RlrlRr|lRr|IRPr|IRr|R,|Rr|[R|R
RlrlRr|Rr|IRPr|R,r|R,|R|[R|R
FlrlRr|lRr|IRr|IRr|Rr|Rr|[R|R
FlrlRr|lRr|IRr|IRr|Rr|R|[R|R
RlrlRr|lRr|IRPr|IRr|R,r|R|[R|R
RlrlRr|Rr|IRPr|R|R,r|R|[R|R
RlrlRr|Rr|IRPr|R,r|R,|R|[R|R
RFlrlRr|lRr|IRr|IRr|Rr|R|[R|R
NE ESEESE RS B NN NS ECH E S NN

P N W bk 01O N 0o ©

“Local” indices: 3 4 5 6 7 8 9 10
PROCESS: P1 P2

=
N

Figure 2-8: GLOBAL_INDEX is used to initialize the boundaries of the array X

Now when the parallel code is run, results match the serial code:

>> smsRun -np 2 basic ex3 sms

xsum = 120
>> smsRun -np 3 basic ex3 sms
xsum = 120

2.5 A Simple Explicit FDA Program

The following example is an explicit FDA program that solves Laplace's equation on a
two-dimensional surface with fixed boundaries using Jacobi relaxation. On a two-
dimensional surface, Laplace's equation takes the form:

o’f of
+
o’x 0%y

|
o

A simple approach is to discretize the two-dimensional space and use and explicit finite
difference approximation to the derivatives to seek a numerical solution. The discrete
equation is:

22

4*%1(1,j) - £(i-1,)) - f(i+1,j) - £(i,J-1) - f(i,j+1) =0

The initial state is f on the boundaries. The boundaries are constant and non-periodic.
The above equation is solved for f(i,j) iteratively until it converges. The solution is said
to converge when the difference between successive solutions is less than a specified
threshold. The difference between values of f(i,j) in two successive iterations is the
following:

df(i.j) = (1/4) * (f(i-1,j) + f(i+1j) + (i,j-1) + £(i.j+1)) - f(i.j)

Using the method of Jacobi relaxation, the value of f(i,j) during an iteration is calculated
from the value of f(i,j) computed in the previous iteration as follows:

fnew(i,j) = fold(i,j) + df(i,j)
In Example 2-4 below, boundary elements of array f are initially set to 2.0 (lines 25-31).

Laplace's equation is then solved and diagnostic messages are printed on the screen.
Previously described SMS directives have already been inserted.

[Source file: laplace.f]

1 program laplace

2 include 'basic.inc'

3 im = 10

4 jm = 10

5 CSMS$CREATE DECOMP (DECOMP_ I, <im>, <0>)
6 call laplace

7 end

8

9 subroutine laplace
10 include 'basic.inc'
11 integer i, j, iter
12 real max_error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE (DECOMP I, 1) BEGIN
16 real f(im,jm), df(im, jm)

17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL (DECOMP_I,<i>) BEGIN

19 do 100 j=1,3jm

20 do 100 i=1,im

21 £(i,3) = 0.0

22 100 continue

23 do 110 j=1,3jm

24 CSMS$GLOBAL INDEX (1) BEGIN

25 £(1,5) = 2.0

26 f(im,j) = 2.0

27 CSMS$GLOBAL_ INDEX END

28 110 continue

29 do 120 i=1,im

30 f(i, 1) = 2.0

31 f(i,jm) = 2.0

32 120 continue

33 iter = 0

34 max_error = 2.0 * tolerance
35 C main iteration loop...

36 do while ((max _error .gt. tolerance) .and. (iter .1lt. 1000))
37 iter = iter + 1

23

38 max error = 0.0

39 do 200 j=2,jm-1

40 do 200 i=2,im-1

41 df(i,j) = 0.25*(f(i-1,3) + £(i+1,3) + £(i,3-1) + £(i,7+1))
42 & - f£(i,73)

43 200 continue

44 do 300 j=2,jm-1

45 do 300 i=2,im-1

46 if (max error .lt. abs(df(i,j))) then
47 max_error = abs(df(i,]))

48 endif

49 300 continue

50 CSMS$REDUCE (max_ error, MAX)

51 do 400 j=2,jm-1

52 do 400 i=2,im-1

53 £(i,3) = £(1i,3) + df(i,3)

54 400 continue

55 enddo

56 CSMSS$PARALLEL END

57 print *, 'Solution required ',iter,' iterations'
58 print *, 'Final error = ', max_error

59

60 return

61 end

Example 2-4: Serial code plus directives illustrate a parallel solution to Laplace’s equation. This
solution, using a one-dimensional decomposition, produces incorrect results.

Notice that the REDUCE directive generates the global maximum error from the local
maxima on each process.

When the serial program is run, the following messages are printed on the screen:

>> laplace
Solution required 85 iterations
Final error = 9.9968910E-4

When the parallel program is run on more than one process, results are incorrect:

>> smsRun -np 2 laplace_ sms
Solution required 45 iterations
Final error = 9.9253654E-4

>> smsRun -np 3 laplace_ sms
Solution required 131 iterations
Final error = 9.9420547E-4

Why do results change for different numbers of processes? The answer lies in the
computations made on lines 41 and 42:

df(i,j) = 0.25*(£(i-1,3) + £(i+1,3) + £(i,3-1) + £(i,3+1)) - £(i,3)

Here, each df(i,j) is computed from F(i-1,j), F(i+l,3), f(1,j-1),
f(n,jJ+1), and F(i,j). This type of dependence is called an "adjacent dependence™
because the computation at point (i,J) depends on data at adjacent (or "nearby")
points. Adjacent dependencies are often represented graphically using a “stencil” as
shown in Figure 2-9.

24

x(1,3) = yv(i,3) + y(i+1,3) + yv(i-1,3) + y(i,3-1) + y(i,j+1)

“Stencil”: x(i,7) depends on y(i+1,3)

Figure 2-9: This five-point stencil illustrates the dependencies of the array y on the computation of
X.

In Figure 2-10 stencils have been overlaid on graphical representations of the sub-
domains assigned to each process during a run made on three processes. The stencil
centered at point (2,2) on process P1 illustrates that computations at this grid point
require values from points (2,2), (2,1), (1,2), (2,3), and (3,2). These array
elements are all inside the local sub-domain of process P1. Similarly, computations at
point (5,8) depend only on array elements inside the local sub-domain of process P2.
However, computations on sub-domain boundaries cannot be performed so easily. For
example, the stencil centered at point (7,5) on process P2 depends on the element at
point (8,5) which is located in the local sub-domain of process P3. Similarly, the
stencil centered at point (8,2) on process P3 requires an element from process P2. The
results of the parallel program above are incorrect because no data is sent between
processes to resolve the adjacent dependence in loop 200.

It is possible to solve this problem by sending single data points between processes.
However, on high-latency machines, sending messages that contain only one array
element is very inefficient compared to sending messages that contain many array
elements. The most common approach to handle adjacent dependencies is to create
"halo™ or “ghost” regions to store these data as shown in Figure 2-11. Each halo point
corresponds to an interior point of a neighboring process. For example, in Figure 2-11,
halo point (8,5) in process P2 corresponds to interior point (8,5) in process P3. When data
in these regions are needed, the halo regions are updated by swapping columns (or larger
blocks) of data between processes as shown in Figure 2-12. This form of inter-process
communication is called "halo update” and is supported by the HALO_ UPDATE
directive.

25

P2

P3

Out-of-bounds
access

A

PROCESS: P1
A 10
9
—»> 3
1
;
6
5
4
3| |®
2 | OH9®
1

®
2

1

4 5 6

7

9

10

Figure 2-10: Illustration of how an adjacent dependence causes out-of-bounds data references on

processes P2 and P3.

PROCESS: P1 P2 P3
. 10
t, - ?
A 90

7 ®

6 ®

5 90

4 ®

3 ® ®

2 | | oot 90

1 ® ®
“Local”indicess 0 1 2 3 3456 78 7 891011

A

“HALO” REGIONS

117

Figure 2-11: Halo regions eliminate the out-of-bounds array references. Notice the distinction
between interior points (in white) and halo points (in gray). The local indices of the halo points on
the domain edges actually lie outside the serial domain range (1 to 10). These edge halo points are
only used for problems that have periodic boundary conditions as described in Section 9.

26

.
>
[EEN
o

P N W s OO N 00O

S RS

PROCESS: P1 P2 P3

Figure 2-12: Halo regions are updated by exchanging data between adjacent processes.

The laplace program in Example 2-4 can be corrected by modifying line 5 to specify one
halo point

CSMS$CREATE DECOMP (DECOMP_I, <im>, <1>)

and by adding the following directive before line 39:

CSMS$HALO UPDATE (£f)

The third argument of the CREATE_DECOMP directive has been changed to <1>. This
indicates that all arrays decomposed using DECOMP__1 will have a halo region one point
thick added in the first decomposed dimension (the 1 dimension in this case). The only
argument of the HALO_UPDATE directive is the name of the variable (F) to be
updated. The directive is placed immediately before loop 200 to ensure that halo regions
of F are updated prior to the computations that need them. The HALO_UPDATE
directive is described in more detail in section 5.1.

Now the parallel program produces the correct results on more than one process:

>> smsRun -np 2 laplace_sms
Solution required 85 iterations
Final error = 9.9968910E-4

>> smsRun -np 3 laplace_sms

Solution required 85 iterations
Final error = 9.9968910E-4

27

2.6 Writing Output to Disk

The Laplace solver in Example 2-4 would be more useful if the final state of array T
could be written to disk. This is easily done by adding the following code fragment
immediately before the return statement (line 60) in subroutine laplace:

open (10, file='f.out', form='unformatted')
write(10) £
close (10)

When the serial program is run, file ¥.out is written. For the SMS parallel program, no
additional directives are required to handle this output. By default, SMS automatically
generates F.out in exactly the same format as the serial program, for any number of
processes. However, SMS can also produce other file formats as discussed in Section
12.1.

2.7 Using Multiple Decompositions

So far, we have seen how to parallelize a program that only requires a single domain
decomposition. However, many programs require the use of different decompositions at
different times to run efficiently in parallel. The TRANSFER directive provides the
means to transform arrays between decompositions. Spectral models are prime
candidates for application of TRANSFER (see Section Error! Reference source not
found.).

In this section, we present a simple case where two different decompositions are needed.
In Example 2-5, the statement at line 42 contains a dependence called a "recurrence
relation”. In this statement, an update to x(i,j) depends on x(i,j-1) which was
updated in the previous loop iteration. SMS does not provide directives that directly
support parallelization of a recurrence relation if the array dimension is decomposed.
Since the second (§) dimension of x is decomposed, SMS cannot handle this statement.
Similarly, the statement at line 63 prevents decomposition in 1. One solution, shown in
Example 2-5, is to decompose x in 1 and y in j.

[transfer.inc]
integer im, jm
common /sizes com/ im, jm

CSMS$DECLARE DECOMP (DECOMP I, 1)
CSMS$DECLARE DECOMP (DECOMP_J, 1)

AUTdd WN R

[transfer.f]
program TRANSFER1
implicit none

include 'transfer.inc'

integer i
integer j

oJoOurd W

28

im = 60
jm = 90

CSMS$CREATE DECOMP (DECOMP_I, <im>, <0>)
CSMS$CREATE DECOMP (DECOMP_J, <jm>, <0>)

call DO_IT

end

subroutine DO _IT
include 'transfer.inc'

CSMS$DISTRIBUTE (DECOMP_I, 1) BEGIN
real x(im, jm)

CSMS$DISTRIBUTE END

CSMS$DISTRIBUTE (DECOMP_J, 2) BEGIN
real y(im, jm)

CSMS$DISTRIBUTE END

C BEGIN
x =1.0

CSMS$PARALLEL (DECOMP_I, <i>) BEGIN

C dependence in the j dimension that

C SMS does not provide directives to parallelize
do j =2, jm

do i =1, im
x(1i,3) = x(i,J) + x(1,3-1)
end do
end do

CSMSS$PARALLEL END

CSMSS$TRANSFER (<X, Y>) BEGIN
do j =1, jm
do i =1,im
y(i,j) = x(i,3)
end do
end do
CSMS$TRANSFER END

CSMS$PARALLEL (DECOMP_J, <j>) BEGIN

C dependence in the i dimension that
C SMS does not provide directives to parallelize
do j =1, jm

do i =2, im
y(i,3) = y(i,J) + y(i-1,3)
end do
end do

CSMS$PARALLEL END

open(10,file="£f1"', form="'unformatted')

29

69 write(10) y

70 close (10)
71

72 return
73 end

Example 2-5: A simple SMS parallel program that requires two data decompositions due to
recurrence relations in i for array x and j for array y.

Example 2-5 contains two DECLARE_DECOMP and CREATE_DECOMP directives.
The DISTRIBUTE directive at line 24 uses DECOMP_1 to decompose X in 1. The
DISTRIBUTE directive at line 28 uses DECOMP_J to decompose y in j. The
TRANSFER directive at line 47 causes SMS to replace the serial code between the
BEGIN and END TRANSFER directives (a simple copy) with communication that re-
distributes (transposes) the data among the processes as illustrated in Figure 2-13. X is
referred to as the source array of the TRANSFER directive and y is referred to as the
destination array.

Process
Transpose

>

1 [P2

Figure 2-13: An illustration of the data movement required between processes P1 and P2 for a
transposition operation.

30

3 Decomposing Arrays and Parallelizing Loops
3.1 Choosing Decompositions

In order to choose domain decompositions that will yield optimal performance, the
dependencies of arrays on one another must be analyzed. Usually, several decomposition
options are possible. Decompositions of 3D arrays supported by SMS are shown in
Figure 3-1. Dependence analysis is used to help pick optimal decompositions that will
minimize inter-process communication. Typical explicit FDA models will be optimally
decomposed in one or both of the horizontal dimensions as illustrated by "a", "b", or "d"
of Figure 3-1. All of these decompositions may be used by spectral models which are
described in Section Error! Reference source not found..

.

(@) (b) (c)

(d) e) (f)

Figure 3-1: Decompositions of three-dimensional arrays supported by SMS.

Other issues to consider when selecting decompositions are the architecture of the
machine on which the program will most likely be run and how many processes will be
available. For vector machines, it is best to leave the inner dimension non-decomposed
when possible to maximize vector lengths. On cache-based machines, it may be best to
decompose the inner dimension instead. For example, in Figure 3-1, decomposition "a"
would preserve long vector lengths while decomposition "b"™ would not. In addition,

31

when the number of processes available is larger than the number of grid points in the
single decomposed dimension, two dimensions should be decomposed.

3.2 Two-Dimensional Decompositions

The full power of the DECLARE_DECOMP, CREATE_DECOMP, DISTRIBUTE, and
PARALLEL directives becomes more apparent when two dimensions are decomposed.
Consider the following example:

[Include file: decomp exl.inc]
integer im, jm, km

1
2 common /sizes com/ im, jm, km
3 CSMS$DECLARE_DECOMP(DECOMP_IJ, 2)

[Source file: decomp exl.f]

1 program decomp exl

2 include 'decomp exl.inc'

3 im = 15

4 jm = 10

5 km = 2

6 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
7 call compute

8 end

9

10 subroutine compute

11 include 'decomp exl.inc'

12 integer i, j, k

13 CSMS$DISTRIBUTE(DECOMP_IJ, 1, 2) BEGIN
14 integer z(im, jm, km)

15 CSMS$DISTRIBUTE END

16 integer zsum

17 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
18 do 100 k=1,km

19 do 100 j=1,3jm
20 do 100 i=1,im
21 z(i,j,k) =1
22 100 continue
23 zsum = 0
24 do 200 k=1,km
25 do 200 j=1,jm
26 do 200 i=1,im
27 zsum = zsum + z(i,j,k)
28 200 continue

29 CSMSS$PARALLEL END
30 CSMS$REDUCE (zsum, SUM)

31 print *,'zsum = ',zsum
32 return
33 end

Example 3-1: An SMS program that uses a two dimensional decomposition.

When run, the serial version of this program prints the following:

>> decomp ex1
zsum = 300

32

Directives CREATE_DECOMP, DISTRIBUTE, and PARALLEL now have more
complex arguments than in the simple examples from Section 2.3. The second argument
to CREATE DECOMP, <im, jm>, indicates that the decomposition named
DECOMP_1J has two decomposed dimensions and that the global size of the first
decomposed dimension is #1m and the global size of the second decomposed dimension is
Jm. The third argument, <0, 0>, indicates that DECOMP_1J has no halo regions in
either decomposed dimension.

The second argument to DISTRIBUTE, 1, indicates that the first dimension of array z is
decomposed as described by the first decomposed dimension of DECOMP__1J. The third
argument, 2, indicates the second dimension of array z is decomposed as described by
the second decomposed dimension of DECOMP__1J. The third dimension of array z will
not be decomposed. This is decomposition "d" in Figure 3-1. More details about
DISTRIBUTE can be found in Section 3.4.1.

The second argument to PARALLEL, <i>, is used to identify loop indices for loops
spanning the first decomposed dimension of DECOMP__1J. Similarly, the third argument,
<jJ>, is used to identify loop indices for loops spanning the second decomposed
dimension of DECOMP_1J. The PARALLEL directive will translate both 1 and j
dimensions of loops 100 and 200 to local loop bounds.

When this code is run on 2 or 3 processes, we see the expected results:

>> smsRun -np 2 decomp exl sms

SMS: Using default process layout (2 x 1) for decomposition decomp ij
zsum = 300

>> smsRun -np 3 decomp exl sms

SMS: Using default process layout (3 x 1) for decomposition decomp ij
zsum = 300

Note that SMS prints an additional diagnostic message for two-dimensional
decompositions. This message describes how many processes are assigned to each
decomposed dimension, which can be useful for debugging or performance analysis. For
brevity, this message will not be shown again.

3.3 Using Statically Allocated Memory

When dynamic memory allocation is used, SMS automatically sets local array sizes at
run-time. However, static memory codes require the local array sizes to be declared by
the programmer. In addition, the local and global indices differ (Figure 3-3 below), often
necessitating conversions between the two (see Section 4).

Example 3-2 illustrates a program using static memory allocation. In this example, the
DECLARE_DECOMP directive requires a new second argument, <(im/2)+1,
Jm/2>_ This informs SMS that the decomposition named DECOMP_1J has two
decomposed dimensions and specifies declared local sizes for each. The declared sizes
will be used to translate declarations of static arrays enclosed by DISTRIBUTE

33

directives. For instance, z will have a size of (im/2 +1, jm/2, km) in the
translated version of the code in Example 3-2.

[Include file: decomp ex4.inc]

1 integer im, jm, km
2 parameter (im = 15, jm = 10, km = 2)
3 CSMS$DECLARE_DECOMP(DECOMP_IJ, <(im/2) +1, jm/2>)

[Source file: decomp ex4.f]

4 program decomp_ex4

5 include 'decomp_ ex4.inc'

6 CSMS$DISTRIBUTE(DECOMP_IJ, 1, 2) BEGIN

7 integer z(im, jm, km)

8 CSMSS$DISTRIBUTE END

integer zsum, i, j, k

10 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
11 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN

o]

12 do 100 k=1,km

13 do 100 j=1,3m

14 do 100 i=1,im

15 z(i,j,k) =1

16 100 continue

17 zsum = 0

18 do 200 k=1,km

19 do 200 j=1,3jm

20 do 200 i=1,im

21 zsum = zsum + z(i,j,k)

22 200 continue

23 CSMSS$SPARALLEL END

24 CSMSS$SREDUCE (zsum, SUM)

25 print *,'zsum = ',zsum
26 end

Example 3-2: An SMS program that uses static memory allocation requires the local sizes be
declared in the DECLARE_DECOMP directive. In this example, these local sizes are: (im/2)+1
and jm/2.

In static memory cases, where the number of processes assigned to a decomposed
dimension does not evenly divide the global size of that dimension, the declared local
sizes specified in the DECLARE_DECOMP directive must be set for the process(es) that
use(s) the most memory. For a 4-process run, the term (im/2)+1 (Example 3-2, line 3)
ensures there will be sufficient local memory for all processes even though two require
local arrays of size (8,5,2) while the other two require arrays of size (7,5,2).
Figure 3-3 illustrates this point.

34

PROCESS: P1, P3 P2, P4

3
. real z(8,5) real z(8,5)
i

10

o N 00 ©
R N w b~ O

= N w b~ o
P N W bk~ Ol

|

_

“Local”’indices:1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 X

“Global” indices:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X

UNUSED ARRAY

ELEMENTS

Figure 3-2: For static memory allocation, the size of the decomposed arrays is set in the
DECLARE_DECOMP directive based on the number of processes that will be used to run the
program. Sometimes all the memory declared will not be used as illustrated for processes P2 and P4.
Processes P2, P3, and P4 have local indices that are different from the corresponding global indices
of array Z. (Non-decomposed dimension “k” is not shown.)

A run on 4 processes yields the correct results. A run made on 8 processes also works.
Why? In this case, SMS assigns processes as shown in Figure 3-4. The largest local
array sizes required on any process for the eight-process run are(4,5,2). So the declared
local array sizes are big enough to hold the translated arrays and the program runs as
expected. However, it wastes memory because only half of each declared array is ever
used (1:4,*,*).

In addition to wasting memory, performance of the 8-process run might not be optimal on
a cache-based machine because the data used in each array are scattered over a block of

35

memory twice the needed size. This will likely result in more cache misses and may
significantly degrade performance. Further, this effect becomes more severe as the
number of processes increases. For example, if the program were run on 32 processes,
the largest local array sizes required on any process would be only (2,3,2). Therefore,
it is especially important to declare arrays using the smallest possible sizes for large
numbers of processes.

real z(4,5) real z(3,5)

t 10
]

i

o N o ©
P N W B~ Ol

R NN W B~ o
R N W A~ O

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
»1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“Local” indices
“Global” indices

Figure 3-3: Memory layout for 8-process run.

Running Example 3-2 on 2 processes produces the following:

>> smsRun -np 2 decomp_ ex4 sms

Process: 1l Error at: ./decomp ex4 sms.f:10.1

Process: 1 Error status= -2202 : USER DECLARED STATIC ARRAY IS TOO
SMALL.

Process: 1 Aborting...

What happened? By default, the two processes are distributed along the § dimension so
the largest local array sizes required on any process for the two-process run is
(8,10,2). However, the DECLARE_DECOMP directive set local array sizes to

36

((im/2)+1,jm/2,km) = (8,5,2) which is too small for the two process run (see
Figure 3-3). SMS detects this error at run time, prints the error messages, and aborts the
program.

To provide sufficient memory for the local arrays in a two-process run, we can modify
the sizes in the DECLARE_DECOMP directive as follows:

CSMS$DECLARE DECOMP (DECOMP_IJ, <(im/2)+1, jm>)

If the following DECLARE_DECOMP directive were used

CSMS$DECLARE DECOMP (DECOMP IJ, <im, jm>)

all translated arrays would be declared full-size. This code could then be run on any
number of processes (provided each process has enough memory). This is very useful
during debugging because it allows comparison of results for runs made on different
numbers of processes. Once debugging is complete, the DECLARE_DECOMP
directives should be changed to minimize memory use.

Determining the proper local sizes for static memory models that need HALO _UPDATE
directives will be discussed in Section 5.1.3.

3.4 More about DISTRIBUTE
3.4.1 Further Detail on DISTRIBUTE Syntax

This section explains the distinction between “dimension of an array” and “dimension of
an SMS decomposition”. The DISTRIBUTE directive can decompose several types of
arrays as shown the in the following code fragments:

CSMS$DISTRIBUTE(DECOMP_IJ, 1, 2) BEGIN
integer x(im, jm, km)
CSMS$DISTRIBUTE END

Here, the first dimension of array x is decomposed as described by the first decomposed
dimension of DECOMP_1J and the second dimension of array x is decomposed as
described by the second decomposed dimension of DECOMP__1J. The third dimension of
array X is not decomposed.

CSMS$DISTRIBUTE(DECOMP_IJ, 1, 3) BEGIN
real a(im,km,jm)
CSMSSDISTRIBUTE END

The numbers 1 and 3 refer to array dimensions. The order in which they appear
determines the dimensions of the decomposition to which they refer. Here, the first
dimension of array a is decomposed as described by the first decomposed dimension of
DECOMP_1J and the third dimension of array a is decomposed as described by the

37

second decomposed dimension of DECOMP__1J. The second dimension of array a is not
decomposed.

CSMS$DISTRIBUTE(DECOMP_IJ, 3, 2) BEGIN
real b(km,jm,im), avg
CSMSS$DISTRIBUTE END

Here, the third dimension of array b is decomposed as described by the first decomposed
dimension of DECOMP_1J and the second dimension of array b is decomposed as
described by the second decomposed dimension of DECOMP__1J. The first dimension of
array b is not decomposed. avg is not decomposed at all because it is a scalar variable.

The user can also specify how variables are distributed by using variable name tags
instead of dimension numbers. For example,

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
real x(im, jm, km)
CSMSS$SDISTRIBUTE END

again indicates the first dimension of array X is decomposed as described by the first
decomposed dimension of DECOMP_1J and the second dimension of array X is
decomposed as described by the second decomposed dimension of DECOMP__1J.

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
real b(km, jm, im)
CSMSS$DISTRIBUTE END

indicates that the third dimension of b is distributed based on the first decomposed
dimension and the second dimension of b is distributed based on the second
decomposed dimension.

Using this syntax, it is possible to enclose the last two arrays inside the same distribute
directive:

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
real x(im, jm, km)
real b(km, jm, im)

CSMSS$DISTRIBUTE END

3.4.2 Using DISTRIBUTE to Define Decomposed Boundary Arrays

Regional weather forecast and ocean models often require boundary condition data. A
code segment handling western boundary conditions might look as shown in Example
3-3.

1 subroutine UPDATE BOUNDARIES (u)
2 integer, parameter :: im = 10
3 integer, parameter :: jm = 20
4 integer, parameter :: km = 30
5

6

csms$declare decomp (dh, 2)

38

7 csms$distribute(dh, 1, 2) begin

8 real u(im, jm, km)

9 csms$distribute end
10
11 csms$distribute(dh, , 1) begin
12 real ubw(jm, km)
13 csms$distribute end

14

15 open (10, file='west bdy', form='unformatted')
16 read (10) ubw

17 close (10)

18

19 csms$parallel(dh, , <j>) begin
20 csms$global index(1l) begin

21 do k = 1, km

22 do j =1, jm

23 u(l, j, k) = (u(1, j, k) + ubw(j,k))/2.0
24 end do

25 end do

26 csms$global index end
27 csms$parallel end

28
29 return
30 end

Example 3-3: Subroutine showing how boundary condition arrays can be handled in SMS.

The DISTRIBUTE statement on line 11 defines an unusual kind of decomposed array.
Its first dimension is decomposed according to the second dimension of decomposition
dh but none of the array dimensions are decomposed based on the first decomposed
dimension. When distribution of an array does not involve all decomposed dimensions,
the distribution is called a “slice” and the array is referred to as a “sliced array”. Since
the exact manner in which sliced arrays are distributed is somewhat poorly defined, care
must be taken when using them. Limitations of sliced arrays are described in detail in
Section 13. The PARALLEL directive syntax on line 19 will be discussed in Section 3.5.

3.5 More About PARALLEL

The PARALLEL directive will translate serial loops correctly provided the upper and
lower loop bounds are valid global indices. For example, the i and j loops below would
all be correctly translated:

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
do 100 k=1,km
do 200 j=3,jm-2
do 200 1i=3,im-2
Z(iljlk) :X(i,j,k) +y(lljlk)
200 continue

do 210 i=1,
z(i,3,k)
210 continue

m

do 210 j=1,2
i
=0

do 220 j=jm-1,jm
do 220 i=1,im
Z(iljlk) =0
220 continue

39

do 230 j=1,7m

do 230 i=1,
z(i,7,k)

230 continue

[N RS

0

do 240 j=1,jm
do 240 i=im-1,im
z(i,j,k) =0
240 continue

100 continue
CSMSS$SPARALLEL END

In this code fragment, notice that the translated version of loop 210 would only be
executed on processes that contain global indices j=1 or j=2. The PARALLEL
directive ensures that other processes will skip loop 210. Similar translations will occur
for the other loops.

Recall the syntax seen on lines 19-22 of Example 3-3.

CSMS$PARALLEL(dh, , <j>) BEGIN
do k = 1, km
do j =1, jm

It indicates that no enclosed loops correspond to the first decomposed dimension but any
loops that use index j correspond to the second decomposed dimension and should be
translated.

There is no run-time performance penalty for using a PARALLEL directive because
processes are not synchronized. Also, PARALLEL directives may enclose any valid
Fortran executable statements. Therefore, a program that uses only one decomposition
will usually require no more than one BEGIN-END pair of PARALLEL directives for
each program unit (subroutine, function, or main program).

In tagging loop indices to be translated, some care is required. First, indices can
sometimes be used for non-decomposed loops as well as for loops that span decomposed
dimensions. This is the case in the following fragment:

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
do 200 k=1,km
do 200 j=1,jm
do 200 i=1,im
Z(j—/j/k) = X(lljlk) + Y(l:],k)
200 continue
do 500 i=1,3
call smooth (z)
500 continue
CSMS$PARALLEL END

In this case, loop 500 is used to repeatedly call subroutine smooth which performs some
computations on decomposed array z. This loop should NOT be translated because 1 is
being used as an iteration count, not as an index into a decomposed dimension. This is

40

easily fixed either by using a loop index other than & or j in loop 500 or by moving the
PARALLEL END directive to exclude loop 500.

Second, make sure that all loops manipulating decomposed arrays are enclosed inside
PARALLEL directives. During translation, PPP will issue a warning message whenever
it finds a loop that is not enclosed by PARALLEL directives if that loop contains a
decomposed array:

This variable, decomposed by CSMS$DISTRIBUTE, is being used outside of a
parallel region.

3.6 Arrays with Non-Unit Lower Bounds

When arrays in the serial code are declared with non-unit lower bounds, the SMS
decomposition must reflect this fact. Consider the following variant of Example 3-1:

[Include file: decomp_ exé6.inc]
integer im, jm, km
common /sizes com/ im, jm, km
CSMS$DECLARE DECOMP (DECOMP_IJ : <0,0>)

[Source file: decomp ex6.f]

program decomp ex6
include 'decomp_ ex6.inc'

im = 15
jm = 10
km = 2

CSMS$CREATE DECOMP (DECOMP_IJ, <im, jm>, <0,0>)
call compute
end

subroutine compute
include 'decomp_ exé6.inc'
integer i, j, k
CSMS$DISTRIBUTE (DECOMP IJ, <im>, <jm>) BEGIN
integer z(0:im-1,0:jm-1,0:km-1), zsum
CSMSS$SDISTRIBUTE END
CSMS$PARALLEL (DECOMP IJ,<i>,<j>) BEGIN
do 100 k=0,km-1
do 100 j=0,jm-1
do 100 i=0,im-1
z(i,j,k) =1
100 continue
zsum = 0

do 200 k=0,km-1
do 200 j=0,jm-1
do 200 i=0,im-1
zsum = zsum + z(i,3j,k)
200 continue

CSMSS$PARALLEL END
CSMSS$REDUCE (zsum, SUM)
print *,'zsum = ',zsum
return
end

41

In this program, array z is declared so the first index (lower bound) is zero in each
dimension instead of the Fortran default of one. The bounds of loops 100 and 200 now
start at zero. The only difference between the directives in this example and those in
Example 3-1 is DECLARE_DECOMP. The new final argument, <O, 0> indicates that
array declarations have a lower bound of zero in both decomposed dimensions.

3.7 Aligned Decompositions

Sometimes, arrays with different global sizes are aligned so a given coordinate
corresponds to the same physical grid point in all of them. This may occur in
atmospheric models based on staggered grids where the wind arrays are slightly different
than the mass (temperature, pressure) arrays. Sometimes, sizes of aligned arrays can be
very different. One example of this case is a coupled ocean-ice model where the ice
model arrays are only defined in the northern latitudes. Aligned arrays are illustrated in
Figure 3-5.

LT TP PP]] =ealtas

1 2 3 456 7 8 9 101112131415

LT [] zeal wuz:15

2 3 45 6 7 8 9 101112 13 1415

| | | | | | | real ice(6)

1 2 3 45 6

Figure 3-4: Aligned arrays t, u and ice in serial code. Arrays u and ice are aligned with “parent”
array t. Arrays t and ice have significantly different sizes.

SMS supports aligned arrays by allowing decompositions to be aligned. A
decomposition is said to be “aligned” with another decomposition if all of the global
indices in each dimension of the aligned decomposition correspond to identical global
indices in a second “parent” decomposition. In particular, identical global indices in both
decompositions will always be assigned to the same process. Example 3-4 shows how
the DECLARE_DECOMP and CREATE_DECOMP directives can be used to create
aligned decompositions. These decompositions are illustrated in Figure 3-6.

program decomp ex8

integer im, im ice

parameter (im= 15, im ice = 6)
CSMSS$DECLARE DECOMP (dh parent, <im/3 + 2>)
CSMS$DECLARE_DECOMP(dh_aligned_u : <2>, ALIGNED = dh parent)
CSMS$DECLARE DECOMP (dh aligned ice: ALIGNED = dh parent)

integer i

Nourdkd W R

42

CSMS$DISTRIBUTE (dh parent, 1) BEGIN
integer t(im)
CSMS$DISTRIBUTE END
CSMS$DISTRIBUTE (dh aligned u, 1) BEGIN
integer u(2:im)
CSMS$DISTRIBUTE END
CSMS$DISTRIBUTE (dh aligned ice, 1) BEGIN
integer ice(im ice)
CSMS$DISTRIBUTE END
integer isum

CSMS$CREATE DECOMP (dh parent, <im>, <1>)
CSMS$CREATE DECOMP (dh aligned u, <im-1>)
CSMS$CREATE DECOMP (dh aligned ice, <im ice>)
CSMS$PARALLEL (dh parent, <i>) BEGIN
do 100 i=1,im
t(i) =1
100 continue
do 200 i=2,im
u(i) = 2
200 continue
CSMS$HALO_UPDATE(u)
do 300 i=1,im ice
ice(i) = t(i) + u(i+1)
300 continue
isum = 0
do 400 i=1,im ice
isum = isum + ice (i)
400 continue
CSMSSPARALLEL END
CSMSS$REDUCE (isum, SUM)
print *,'isum = ',isum
end

Example 3-4: An SMS program that uses aligned decompositions.

43

LI TP TP T L] | |n pazent

1 2 3 45 1 2 3 45 1 2 3 45
1 2 3 45 6 7 8 9 10 11 12 13 14 15

P1 P2 P3

dh aligned u

1 2 3 45 1 2 3 45
6 7 8 9 10 11 12 13 14 15

| | | | | | | | dh aligned ice

1 2 3 45 1 *“Local” indices
1 2 3 4 5 6 “Global indices

Figure 3-5: Memory layout for parent decomposition dh_parent and aligned decompositions
dh_aligned_u and dh_al igned_ice when three processes are used. Halo regions are not
shown.

The optional “ALIGNED” keyword is used in the DECLARE_DECOMP directive to
indicate that the declared decomposition is aligned with another “parent” decomposition.
Any number of decompositions may be aligned with the same parent. A parent
decomposition must not be aligned. Also, every global index of any aligned
decomposition must be also be a valid global index in its parent. In the
DECLARE_DECOMP directive, declared local size is not specified for an aligned
decomposition that uses statically allocated memory. SMS automatically uses the
parent’s declared local size in this case. (The above conditions ensure that an aligned
decomposition will never require more local storage than its parent.) Also, aligned arrays
can have different lower bounds than their parent as shown on line 5 of Example 3-4.
Note that the “ALIGNED” option always comes last when it is used with the lower
bounds option. Lower bounds can be omitted for an aligned decomposition if they are
identical to the parent’s lower bounds as shown in line 6.

The syntax of the CREATE_DECOMP directive is also slightly different for aligned
decompositions. The halo thickness is left out because SMS automatically uses the
parent’s halo thickness. Index scrambling is not currently supported for aligned
decompositions or for the parent of an aligned decomposition.

Note that the parent decomposition is used in the PARALLEL directive in Example 3-4.
It is always correct to use the parent decomposition in the PARALLEL directive. In fact,

44

aligned decompositions should only appear in DECLARE_DECOMP,
CREATE_DECOMP, and DISTRIBUTE directives.

Finally, it is possible to create invalid decompositions when using aligned arrays. This
will occur whenever any process has an interior region that ends up being smaller than
the halo region. (SMS does not support this because halo update communication is
inefficient.) For example, if line 19 of Example 3-4 were modified to increase the halo
sizes of all three decompositions to two then the interior of process P2 would be smaller
than the halo thickness for decomposition dh_aligned_ice (see Figure 3-6). SMS
will detect this error at run time and print the following message:

Aligned decomposition causes an interior to be smaller than the halo.

The simplest solution to this problem is to use a process configuration file to adjust the
parent decomposition so the interior size in the aligned decomposition is increased (see
Section 11.1).

45

4 Translating Array Indices

We have seen that, in static memory models, local and global indices are different
whenever more than one process is used so conversions between them are required.
TO_GLOBAL (Section 4.1) and TO_LOCAL (Section 4.2) provide support for these
conversions. In addition, it is sometimes desirable to generate process-local loop start
and end indices and array sizes to simplify parallelization of subroutines in both dynamic
and static memory codes. The TO_LOCAL (Section 4.3) directive does this as well.
Finally, boundary condition calculations must be restricted to processes containing
boundary points. GLOBAL_INDEX (Section 4.4) handles these cases.

4.1 Translating Local Indices to Global Indices

For a static memory code, when a loop has been translated using the PARALLEL
directive, the value of the index is now process-local as illustrated in Figure 3-3. If the
intent of the program is to access the global value, this index will need to be translated
back to a global value. This point is illustrated in Example 4-1.

program tran indexl

implicit none

integer i, j

integer, parameter :: im = 5
integer, parameter :: jm = 3

CSMS$DECLARE DECOMP (DECOMP IJ, <im, jm>)

VoJoaurdkd W

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
integer x(im,jm)
10 CSMSS$DISTRIBUTE END

11

12 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
13

14 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
15

16 do 100 j=1,3jm

17 do 100 i=1,im

18 x(i,j) = (100 * i) + jJ

19 100 continue

20

21 CSMS$SERIAL BEGIN

22 do j =1, jm

23 write(*,'(16i5)') (x(i,3),1=1,4im)
24 end do

25 CSMS$SERIAL END
26 CSMS$PARALLEL END

28 end

Example 4-1: An SMS parallel program that incorrectly initializes array x in loop 100.

This program initializes array x in loop 100 (lines 16-19). Each element of array X is
then printed on the screen. When the serial code is run, the following is printed on the
screen:

>> tran indexl

46

101 201 301 401 501
102 202 302 402 502
103 203 303 403 503

The same result is seen when the SMS version is run on one process. However, the
results are incorrect when two processes are used:

>> smsRun -np 2 tran indexl sms
101 201 301 101 201
102 202 302 102 202
103 203 303 103 203

Why are the results incorrect? The PARALLEL directive has translated the 1 and j
indices used to compute X in loop 100 using local indices. However, correct operation
requires that x be initialized using global indices as in the original serial code. The
solution is to use the TO_GLOBAL directive to translate the local indices to global
indices. In this case, line 18 would be replaced with the following code:

CSMS$TO_GLOBAL(<l,i>, <2,j>) BEGIN
x(i,3) = (100 * i) + 3
CSMS$TO_GLOBAL END

The first argument in the TO_GLOBAL directive, <1, 1>, indicates that array index i
is an index in the first decomposed dimension. The second argument, <2, j>, indicates
that array index j is an index in the second decomposed dimension. All occurrences of
indices 1 and j inside the TO_GLOBAL directives that are not array references will be
converted to their global equivalents in the first and second decomposed dimensions,
respectively. Running the new parallel code on various numbers of processes will now
yield the same result as the serial run.

Note that the TO_GLOBAL directive must appear within a PARALLEL directive.
Directives TO_LOCAL and GLOBAL_INDEX, introduced later in this section, also have
this restriction. Also note that since X is decomposed, the SERIAL directive is required
to handle the write statement on line 24 as will be explained in Section 8.

4.2 Translating Global Indices to Local Indices Inside Loops

Sometimes, indices that have been translated to global values need to be translated back
to local values to be used as indices into decomposed arrays in a static memory code.
The TO_LOCAL directive is used for this translation. Consider the following code
fragment that uses computed indices to avoid out-of-bounds references:

CSMS$PARALLEL(DECOMP_IJ, <i>, <j>) BEGIN
do j=1,jm
do i=1,im

CSMS$TO_GLOBAL(<1,i>) BEGIN
CSMS$TO_LOCAL(<l,iml,ipl>) BEGIN

iml = max(1,1i-1)

ipl = min(im,i+1)
CSMS$TO_LOCAL END
CSMS$TO_GLOBAL END

47

x(i,3) = y(i,3) - y(iml,j) - y(ipl,3J)
end do
end do
CSMSS$SPARALLEL END

The max and min functions compare index ¥ with global index values 1 and im.
Therefore, the TO_GLOBAL directive must be used. The TO_GLOBAL directive will
convert 1-1 and 1+1 to global values so 1pl and im1 will be computed as global
indices. However, Ipl and im1 are then used as indices into decomposed array X, so
they must be converted back from global to local values to avoid out-of-bounds array
references for multi-process runs. The TO_LOCAL directive shown accomplishes this.
The first argument in the TO_LOCAL directive, <1, 1ml, 1pl>, indicates that array
indices im1 and 1p1 are both used in loops that span the first decomposed dimension.
In this example, occurrences of either index in code enclosed by the TO LOCAL
directives that are not array references will be converted to their local equivalents in the
first decomposed dimension.

4.3 Using TO_LOCAL to Generate Process-Local Sizes and Loop
Bounds

In many models, large sections of code contain no dependencies that require
communications (typically weather model physics routines). SMS provides a means to
parallelize them without inserting directives into the code. Example 4-2 shows such a
case.

1 program AVOID DIRECTIVES
2 implicit none
3 integer i
4 integer, parameter :: im = 8
5
6 CSMS$DECLARE DECOMP (dh, 1)
7
8
9
10 CSMS$DISTRIBUTE (dh, 1) BEGIN
11 integer, allocatable :: x(:), y(:)
12 CSMSS$DISTRIBUTE END
13
14 CSMS$CREATE DECOMP (dh, <im>, <2>)
15
16 allocate (x(im))
17 allocate (y (im))
18 x = 0.0
19
20 CSMS$PARALLEL (dh,<i>) BEGIN
21
22 do i=1,im
23 CSMS$TO GLOBAL(<1l,i>) BEGIN
24 x(1) = 1
25 CSMS$TO GLOBAL END
26 end do
27
28 y = 0.0
29
30

48

31 CSMS$TO LOCAL(<l, IM : INTERIOR>) BEGIN

32

33 call physics(x,im,y)

34

35

36 CSMS$TO LOCAL END

37

38 CSMS$SERIAL BEGIN

39 write(*,'(815) ") (y(i),i=1,1im)
40 CSMS$SERIAL END

41

42 CSMS$PARALLEL END

43 end

44

45 subroutine physics(arr in, im,
46 & arr out)
47

48 implicit none

49 integer im

50 integer arr in(im)

51

52 integer arr out (im)

53

54 integer i

55 doi=1,im

56 arr out (i) = 2.0*arr in(i)
57 end do

58 return

59 end

Example 4-2: Sample code that shows how TO_LOCAL can be used to pass the interior (excluding
halo points) of arrays and the process local size to a subroutine so that no directives need be added to
it.

Program AVOID_DIRECTIVES calls subroutine physics (line 33), passing the arrays
X and y, and their size. The TO_LOCAL directive at lines 31-36 modifies the call to
physics so that array sections of x and y consisting of just the interior (no halo) points
are passed. The variable 1m is converted to the process local value (again for just the
interior) . The result is that, inside subroutine physics, arr_in, arr_outand im
all have the correct process-local dimensions. Consequently, subroutine physics
produces the right answer for any process decomposition, even though it contains no
SMS directives.

49

P1 P2

-1 01 2 3 4 5 6 3 45 6 7 8 9 10
Process i_mem start i mem end diml_start diml_end
P1 -1 6 1 4
P2 3 10 5 8

Figure 4-1: Process layout and memory bounds of arrays arr_in and arr_out and loop bounds
for a 2-process run of Example 4-2.

4.4 Using Global Index to Handle Boundary Conditions

Consider the following code fragment that is enclosed in a PARALLEL directive but is
not inside a loop:

d
jd
(1

U1

Ry
[oFuN ||

,jd) = 10

(-

The following use of TO_LOCAL would be incorrect:

CSMS$TO LOCAL(<1,id>,<2,jd>) BEGIN
id = 5
jd = 4

CSMS$TO LOCAL END
x(id,jd) = 10

The translation of 1d and jd from global values to process-local values will work fine on
the process that "owns" global point (5,4). However, the translation will be erroneous
on processes that do not own global point (5,4) because there is no valid local
equivalent of these global coordinates on those processes. In order to restrict the
execution of these statements to the process that owns the data, the GLOBAL_INDEX
directive must be used as shown below:

id = 5
jd = 4

CSMS$GLOBAL INDEX(1,2) BEGIN
x(id,jd) = 10

CSMS$GLOBAL INDEX END

50

The GLOBAL_INDEX directive ensures that the execution of the enclosed assignment
statement will only be permitted on the process that owns the global point (id, jd). In
addition, if index translation is needed, 1d and jd will be translated to process-local
equivalents. The first argument in the directive, 1, indicates that all array indices
corresponding to the first decomposed dimension are affected. The second argument, 2,
indicates that all array indices corresponding to the second decomposed dimension are
affected.

Consider the following example that initializes the boundaries of an array that is
decomposed in two dimensions:

1 subroutine compute (im, jm)
2 integer im,jm
3 CSMSS$DISTRIBUTE (DECOMP_IJ, <im>, <jm>) BEGIN
4 integer x(im, jm)
5 CSMS$DISTRIBUTE END
6 integer i, j
7 CSMSS$PARALLEL (DECOMP_IJ,<i>,<j>) BEGIN
8 do 100 j=1,3jm
9 do 100 i=1,im
10 x(i,j) = (100 * i) + J
11 100 continue
12 do 110 j=2,jm-1
13 CSMS$GLOBAL_ INDEX (1) BEGIN
14 x(1,j) =0
15 x(im,j) = 0
16 CSMS$GLOBAL INDEX END
17 110 continue
18 do 120 i=2,im-1
19 CSMS$GLOBAL INDEX(2) BEGIN
20 x(i, 1) =0
21 x(i,jm) = 0

22 CSMS$GLOBAL_INDEX END
23 120 continue
24 CSMS$GLOBAL_INDEX(1,2) BEGIN

25 x(1, 1) =0

26 x(im, 1) = 0

27 x(1,jm) = 0

28 X (im,jm) = 0

29 CSMS$GLOBAL_INDEX END
30

31 CSMSS$SPARALLEL END

32

33 CSMSS$SERIAL BEGIN

34 print *, 'ARRAY x:'
35 print *, x

36 CSMSS$SERIAL END

37 return

38 end

Example 4-3: An SMS subroutine that illustrates the use of the GLOBAL _INDEX directive to
initialize array boundaries.

This subroutine initializes array x as in previous examples (lines 8-11). It is assumed this
is a dynamic memory code so TO_GLOBAL is not required. It then proceeds to set the
boundary values of x to zero in lines 12 through 28. Three pairs of GLOBAL_INDEX
directives handle the necessary translations. The first pair deals with global indices 1 and

51

im in loop 110 while the second pair deals with global indices 1 and jym in loop 120.
The third pair handles global indices in the four assignment statements on lines 25
through 28. In each case, the enclosed statements are only executed on the appropriate
processes. The SERIAL directive on line 33 will be discussed in Section 8.

When the serial and parallel codes are run, the following is printed on the screen
(assuming values of 1m and gm as in previous examples):

ARRAY x:
0 0 0 0 0
0 202 302 402 0
0 0 0 0 0

4.5 Using GLOBAL_INDEX With Aligned Decompositions

Care must be taken when using aligned decompositions in cases where the size of an
aligned dimension is significantly smaller than the size of the corresponding dimension in
the parent. Problems can occur when handling boundaries of aligned arrays using
GLOBAL_INDEX. For example, consider the following code inserted after loop 300 in
Example 3-4:

CSMS$GLOBAL_INDEX(<dh_aligned_ice: 1>) BEGIN
ice(5) = ice(6)
CSMS$GLOBAL_INDEX END

This code will fail at run time because it assumes that global indices 5 and 6 reside on
the same process. However, when three processes are used, these global indices reside
on different processes as illustrated in Figure 3-6. The simplest solution to this problem
IS to use a process configuration file to adjust the parent decomposition so the global
indices reside on the same process in the aligned decomposition (see Section 11.1).

Finally, notice that the optional syntax that allows a decomposition to be explicitly
specified is wused in the GLOBAL_INDEX directive above. Whenever
GLOBAL_INDEX is used with an aligned array inside a PARALLEL directive that
specifies the parent decomposition, (as on line 22 of Example 3-4), the aligned
decomposition must be explicitly specified. This requirement will be relaxed in a future
release of SMS.

52

5 Handling Adjacent Dependencies
5.1 Further Details on HALO UPDATE

In Section 2.5, we saw how the HALO_UPDATE directive was used to implement
communications needed to resolve adjacent dependencies for a simple one-dimensional
decomposition. In this sub-section, we expand on that discussion by examining the
treatment of two-dimensional decompositions and larger stencils, and by discussing other
miscellaneous details about HALO_UPDATE.

5.1.1 Using HALO_UPDATE in the Case of Two-Dimensional
Decompositions

We begin by modifying the Laplace program (Example 2-4) introduced in Section 2.5 so
that a two dimensional decomposition is used. Two-dimensional data decompositions
allow parallel programs to scale to a large number of processes.

1 program basic ex 2d_decomp

2 include 'basic.inc'

3 im = 10

4 jm = 10

5 CSMS$CREATE DECOMP (DECOMP I, <im,jm>, <1,1>)
6 call laplace

7 end

8

9 subroutine laplace
10 include 'basic.inc'
11 integer i, j, iter
12 real max error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE (DECOMP I, 1, 2) BEGIN
16 real f(im,jm), df(im, jm)

17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL (DECOMP I,<i>, <j>) BEGIN

19 do 100 j=1,3jm

20 do 100 i=1,im

21 £(i,3) = 0.0

22 100 continue

23 do 110 j=1,3jm

24 CSMSS$GLOBAL INDEX(1l) BEGIN
25 £(1,5) = 2.0

26 f(im,j) = 2.0

27 CSMS$GLOBAL INDEX END

28 110 continue

29 do 120 i=1,im

30 CSMSS$GLOBAL INDEX(2) BEGIN
31 £(1, 1) = 2.0

32 £(i,jm) = 2.0

33 CSMSS$GLOBAL INDEX END

34 120 continue

35 iter = 0

36 max_error = 2.0 * tolerance
37 C main iteration loop...
38 do while ((max_error .gt. tolerance) .and. (iter .1lt. 1000))
39 iter = iter + 1

53

40 max error = 0.0
41 CSMSS$HALO UPDATE (f)

42 do 200 j=2,3jm-1

43 do 200 i=2,im-1

44 df(i,j) = 0.25*(£(i-1,7) + £(i+1,3) + £(i,7-1) +
45 & £(i,3+41)) - £(i,3)

46 200 continue

47 do 300 j=2,jm-1

48 do 300 i=2,im-1

49 if (max error .lt. abs(df(i,j))) then
50 max_error = abs(df(i,j))

51 endif

52 300 continue

53 CSMS$REDUCE (max error, MAX)

54 do 400 j=2,jm-1

55 do 400 i=2,im-1

57 400 continue

58 enddo

59

60 CSMSS$SPARALLEL END

61 print *, 'Solution required ',iter,' iterations'
62 print *, 'Final error = ', max error

63

64 return

65 end

Example 5-1: Two-dimensional decomposition version of Example 2-4

The CREATE_DECOMP directive now lists two decomposed dimensions (with global
sizes im and ym). The halo width for each dimension is 1 in this case. As discussed in
Section 3.2, the DISTRIBUTE, PARALLEL, and GLOBAL_INDEX directives are
modified to handle the 2-D decompositions. Although the communication patterns
required to support 2-dimensional decompositions are more complex than the 1-
dimensional case, SMS hides all of these details. Thus, the HALO_UPDATE directive is
unchanged. Figure 5-1 shows some sample stencils overlaid on a 3x3 process
decomposition of the problem. The stencil centered at global coordinate (3,2) only
requires P1 communicate with P2. However, the stencil centered at global coordinate
(4,4) requires P5 communicate with both P2 and P4. Figure 5-2 and Figure 5-3 show
the full communications pattern for a 2-D HALO_UPDATE. Notice that the corner halo
points of the center process are filled with data from the corresponding corner processes
in the drawings.

54

p7 P8 P9

P4 P5 P6

Figure 5-1: Sample stencils overlaid on a 3x3 process decomposition for the Laplace problem. The
halo regions are the shaded areas. The white boxes are referred to as the "interior” of each
process's sub-domain.

55

BEFORE EXCHANGE

almls]

Figure 5-2: Schematic of how data are distributed among 9 processes just prior to an
HALO_UPDATE operation. The big boxes contain the interior data. The boxes on the edges are the
halo regions.

AFTER EXCHANGE

P9

| |

P6

|

Figure 5-3: Illustration of the data distribution just after a 2-dimensional HALO_UPDATE for a
problem with non-periodic boundaries.

5.1.2 Larger Stencils

In Figure 2-10, the widths of the stencil for the calculation of d¥ in the laplace program
are one point in each direction. Since this is the only computation in Laplace requiring
"HALO_UPDATE?", it is clear that the halo widths specified by CREATE_DECOMP
must be 1 in the 1 dimension (line 5). However, suppose we modify Example 2-4 by

57

adding additional calculations of x that step 2 points into the halo region (lines 60-64 in
Example 5-2 below).

1 program basic ex halo2

2 include 'basic.inc'

3 im = 10

4 jm = 10

5 CSMS$CREATE DECOMP (DECOMP I, <im>, <2>)
6 call laplace

7 end

8

9 subroutine laplace
10 include 'basic.inc'
11 integer i, j, iter
12 real max error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE (DECOMP I, <im>) BEGIN
16 real f(im,jm), df(im, jm)

17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL (DECOMP_I,<i>) BEGIN

19 do 100 j=1,3m

20 do 100 i=1,im

21 £f (i,3) = 0.0

22 df(i,j) = 0.0

23 100 continue

24 do 110 j=1,jm

25 CSMS$GLOBAL_INDEX(1) BEGIN

26 £(1,3) = 2.0

27 f(im,j) = 2.0

28 CSMS$GLOBAL_ INDEX END

29 110 continue

30 do 120 i=1,im

31 f(i, 1) = 2.0

32 f(i,jm) = 2.0

33 120 continue

34 iter = 0

35 max_error = 2.0 * tolerance
36 C main iteration loop...

37 do while ((max_error .gt. tolerance) .and. (iter .1lt. 1000))
38 iter = iter + 1

39 max _error = 0.0

40 CSMSS$SHALO UPDATE (f)

41 do 200 j=2,jm-1

42 do 200 i=2,im-1

43 df(i,j) = 0.25*(£(1i-1,3) + £(i+1,3) + £(1i,3-1) + £(1i,7+1))
44 & - £(i,3)

45 200 continue

46 do 300 j=2,jm-1

47 do 300 i=2,im-1

48 if (max error .lt. abs(df(i,j))) then
49 max _error = abs(df(i,]))
50 endif

51 300 continue

52 CSMS$REDUCE (max_ error, MAX)

53 do 400 j=2,jm-1

54 do 400 i=2,im-1

55 £(i,3) = £(i,3) + df(i,3)
56 400 continue

57 enddo

58

59 CSMSS$SHALO UPDATE (df)

60 do j =1, jm

58

61 do i = 3, im-2

62 f(i,j) = £(i,J) + 2.0*df(i,j) - df(i-2,37) - df(i+2,3)
63 end do

64 end do

65

66 CSMSS$SPARALLEL END

67 print *, 'Solution required ',iter,' iterations'

68 print *, 'Final error = ', max_error

69

70 end

Example 5-2: Modified version of Example 2-4 with additional code that has a stencil width of 2 in
the 1 direction.

For the calculations starting at line 60, the width of the stencil is 2 in the 1 direction as
shown in Figure 5-4.

df2(i,j) = 2.0%df(i,j) - df(i-2,3) - Af(i+2,7)

New Stencil New Stencil
Point df (i,7) Point

v } v

df (i-2,7) @—@—@—@—@ drf(i+2,7)

Figure 5-4: Modified stencil for additional calculations in Example 5-2. This time the stencil width is
2 in the 1 direction.

This program now has two calculations involving the same dimension of the same
decomposition with different stencil widths. SMS handles this by requiring the
programmer to make the halo width of the decomposition equal to the larger of the two
widths. It is up to the programmer to determine the width of the largest stencil required
in each dimension for every decomposition. The CREATE_DECOMP directive (line 5)
shows the correct halo width specification (<2>).

5.1.3 Halo Updates in Static Memory Models

For static memory models that require halo updates, the process-local array sizes
specified in the DECLARE_DECOMP directive must be large enough to include the halo
regions. In the program fragment below, the halo size is one. Since halo regions are on
each side, the declared local array size is the global size (im) divided by the number of
processes (4) plus 2 to accommodate the halo regions and plus 1 since 4 does not divide
30 evenly.

program STATIC MEMORY HALO UPDATE
implicit none

59

integer im
parameter (im = 30)
integer jm
parameter (jm = 5)
CSMS$DECLARE DECOMP (my dh, <im/4 + 2 + 1>)

5.1.4 Miscellaneous

Another point about HALO_UPDATE is that, for both static and dynamic memory
models, the number of processes used must be small enough to ensure the size of the
smallest interior region is greater than the halo width in each decomposed dimension.
SMS will issue the following run-time error message if this condition is violated:

Process: 0 Error status= -2100 MSG IS: NNT DECOMP_ERR

Also, we point out that HALO_UPDATE automatically implements the process
synchronization required for the parallel code to produce correct results. A process
scheduled to receive data from a neighbor will wait until the data have fully arrived
before proceeding with the next set of calculations. A side effect of this synchronization
is that the HALO_UPDATE directive cannot be used inside a decomposed loop because
the number of iterations may not be the same on every process, causing deadlock.

5.2 Performance Optimizations

In this section, some optimizations are described that can be employed to reduce the
number of halo updates and the amount of data communicated in a parallel SMS
program.

5.2.1 Limited-Thickness Halo Updates

Choosing a single halo width could mean some data are communicated unnecessarily.
The HALO_UPDATE at line 40 in Example 5-2 is an example of such inefficiency. The
stencil of the computations in loop 200 is still one point wide in the & direction.
However, since the halo width of ¥ is now 2 in this dimension, one extra halo point on
each side for each j index will be communicated unnecessarily. This extra
communication can be eliminated by using a variant of the HALO_UPDATE directive
that only updates part of the halo region:

CSMS$HALO UPDATE (f <1,1>)

This option to HALO_UPDATE tells SMS to update only the first halo point in the lower
and upper halo regions.

If we were to modify Example 5-2 to use a two dimensional decomposition, the
CREATE_DECOMP directive would look as follows:

CSMS$CREATE DECOMP (DECOMP_IJ, <im,jm>, <2,1>)

60

Now, the maximum stencil width is 2 in the first decomposed dimension (for the
HALO_UPDATE at line 59) and 1 in the second decomposed dimension (for the
HALO_UPDATE at line 40). If the HALO_UPDATE at line 40 only requires 1 point in
each direction, it could be optimally written as:

CSMSS$HALO UPDATE(f <1,1> <1,1>)

Since the HALO_UPDATE at line 59 is only needed to update points in the § dimension,
it would optimally be written as:

CSMS$HALO UPDATE (df <2,2> <0,0>)

5.2.2 Aggregating Halo Updates

The program SLOW in Example 5-3, uses a statically declared one-dimensional
decomposition (line 10) to distribute the arrays a, b and c. In this example, a halo
thickness of one is defined by CREATE_DECOMP (line 24). After a series of iterations
(line 39) a global sum is produced with the REDUCE directive (line 63).

1 program SLOW

2 implicit none

3 integer im

4 parameter (im = 30)

5 integer jm

6 parameter (jm = 5)

7 integer iterations

8 parameter (iterations = 3)

9

10 CSMS$DECLARE DECOMP (my dh, <im/3 + 2>)
11

12 CSMS$DISTRIBUTE (my dh, <im>) BEGIN
13 real a(im)

14 real b(im, jm)

15 real c(im, jm)

16 CSMSS$SDISTRIBUTE END

17

18 real ysum

19
20 integer i
21 integer j
22 integer iter
23
24 CSMS$CREATE DECOMP (my dh, <im>, <1>)
25
26 ysum = 0.0
27 b=20.0
28 c =0.0
29

30 do j =1, jm

31

32 CSMS$PARALLEL (my dh, <i>) BEGIN
33 doi=1, im

34 CSMS$TO GLOBAL(<1l, i>) BEGIN

35 a(i) = real(3*1i + 2 + J)
36 CSMS$TO GLOBAL END

37 end do

38

39 do iter = 1, iterations

61

41 CSMS$HALO UPDATE (a)

42

43 do i = 2, im-1

44 b(i,j) = a(i+l) + a(i-1)
45 c(i,j) = b(i,3) + c(i,3)
46 end do

477

48 CSMS$HALO UPDATE (b)
49 CSMS$HALO UPDATE (c)

50

51 do i = 2, im-1

52 a(i) = b(i+l,3j) + b(i-1,3) + c(i+1,3) - c(i-1,73)
53 end do

54

55 end do

56

57 do i =2, im - 1

58 ysum = ysum + a (i)

59 end do

60

61 end do

62

63 CSMS$REDUCE (ysum, SUM)

64

65 print *, 'ysum is ', ysum
66 CSMSS$PARALLEL END

67 end

Example 5-3: A sub-optimal version of a program parallelized using SMS.

SMS provides the capability to aggregate the halo updates of multiple variables. If lines
48-49 are replaced with

CSMS$HALO_UPDATE(b,c)
then SMS will combine the communications of the corresponding halo regions of b and c

as shown in Figure 5-5. Since the number of messages sent is halved, performance on
high-latency machines will improve.

62

P1 P2

Message
Buffer

Figure 5-5: An illustration of how communications are aggregated to reduce latency for a portion of
the HALO_UPDATE of a and b. The last column of process P1’s variables are communicated as a
single message to P2 where they are unpacked into the corresponding halo regions.

5.2.3 Updating Halos for Array Sections

Sometimes, it is not necessary to do a halo update for an entire array. For example, in the
following code fragment an adjacent dependence may only apply to some of the vertical
levels of a 3D array:

CSMS$DISTRIBUTE (DECOMP_IJ, <im>, <jm>) BEGIN
real x(im, jm, km)
real y(im,jm, km)

CSMS$DISTRIBUTE END

63

CSMS$HALO _ UPDATE(x <0,1> <0,0>)

do 100 k = 1,2
do 100 j 1,im
do 100 i 1,im

y(i,j,k) = x(i+1,j,k) - x(i,7,k)
100 continue

However, the HALO_UPDATE directive will update the halo of array x at all k levels
even though the dependence exists only for k=1 and k=2. This HALO_UPDATE
directive can be optimized using standard Fortran array syntax as shown below:

CSMS$HALO UPDATE (x(:,:,1:2) <0,1> <0,0>)

Now, only the k=1 and k=2 levels of array x will have the halo points updated. Note
that use of array section syntax will only improve performance for subsections in non-
decomposed dimensions.

5.2.4 Trading Communications for Computations Using HALO _COMP

Example 5-3 can be further optimized by trading communication for redundant
computations in the halo region as is briefly discussed in the SMS overview paper. This
is done using the HALO_COMP directive to modify the ranges of parallel loops to
include computations in the halo regions. These extra computations can eliminate the
need for some halo updates.

Figure 5-6, Figure 5-7, and Figure 5-8 illustrate how redundant computations work.
Without the HALO_COMP directive, b and c are only computed in interior points
using stencils like that shown in Figure 5-6. Halo regions of b and ¢ must then be
updated via an HALO_UPDATE for a to be properly computed as shown in Figure 5-7.
A computation one step into the halo region (Figure 5-8) requires that a have a halo size
of two instead of one. Since process P1 now computes points such as b(4,2) and
c(4,2), the computation of a(3,2) shown in Figure 5-7 can proceed without having
update the halo points of b and c. However, extra computations are done since process
P2 must also perform exactly the same computation for its corresponding interior points
b(4,2) and c(4,2),

Use of the HALO_COMP directive in this example reduces latency because the halo
updates of b and c are no longer required. In addition, communication bandwidth is
reduced. Although the amount of data communicated by the halo update of a has
doubled, this is more than offset by the elimination of the halo updates of b and c.

64

“b”, “c” stencils

P1 P2 P3
: &
2 o090
1
0 1 2 3 4 3 4 5 6 7 6 7 8 9 10

Figure 5-6: Memory layout of a (assuming im=9, ym=3) with sample stencil for calculations of b
and c overlaid.

“a” stencil

P1 P2 P3
: K
2 o0
1
01 2 3 5 6 7 6 7 8 9 10

Figure 5-7: Memory layout of b and ¢ with sample stencil for calculation of a overlaid. The halo
regions of b and ¢ must be updated via HALO_UPDATE for the calculation of a to be executed
correctly.

65

“b”, “c” stencils
centered in the halo

P1 / P2 P3
3 T
2 L_an an

-1 01 2 3 4\ 23 456 7 8 5 67 8 91011

Updated halo
region

Figure 5-8: Modified memory layout of a with new sample stencil centered in the halo region. The
computation of point b(4,2) and c(4, 2) effectively updates the halo regions of b and c so