
Scalable Modeling System
(SMS)

Reference Manual

National Oceanic and Atmospheric Administration
Forecast Systems Laboratory
Advanced Computing Branch

325 Broadway
Boulder, Colorado 80303

Mark W. Govett
Leslie Hart

Tom Henderson
Dan Schaffer

February 2000
SMS Version 2.0

Table of Contents

Introduction . 3.

Documentation Notes . 4.

CSMS$CREATE_DECOMP . 5.

CSMS$DECLARE_DECOMP . 12.

CSMS$DISTRIBUTE . 16.

CSMS$EXCHANGE . 21.

CSMS$EXIT . 24.

CSMS$FLUSH_OUTPUT . 26.

CSMS$GLOBAL_INDEX . 29.

CSMS$HALO_COMP . 35.

CSMS$IGNORE . 38.

CSMS$INSERT . 41.

CSMS$MESSAGE . 43.

CSMS$PARALLEL . 45.

CSMS$PRINT_MODE . 49.

CSMS$REDUCE . 51.

CSMS$REMOVE . 56.

CSMS$TO_GLOBAL . 57.

CSMS$TO_LOCAL . 59.

CSMS$TRANSFER . 63.

Automatic Code Translations 66.
Input / Output Statements 66.

3.

Introduction

This document describes all of the Scalable Modeling System (SMS)
directives required to translate regular grid finite difference
model and spectral model Fortran codes into parallel versions
that can be run on a variety of shared and distributed memory
machines. A component of SMS, called the Parallel Pre-Processor
(PPP), is used to translate the SMS directives and serial Fortran
code into parallel Fortran source. Further information about SMS
is described in the overview document: SMS: A Directive-Based
Parallelization Tool for Shared and Distributed Memory High
Performance. In addition, the SMS Users Guide, details
information on how to use SMS to parallelize Fortran 77 codes.
It is highly recommended that these documents be read before this
SMS Reference Manual is used.

In this reference manual, each directive is described in detail
with sections defining the syntax, describing the directive, its
limitations, notes, error messages, and code examples. The
syntax section provides a description of each parameter and the
permitted grammar types. These types are defined in the next
section titled: Documentation Notes.

In order to clarify code translations, generated output code is
occasionally presented. This output is NOT the actual code
generated by PPP; it is pseudo-code and should be used for
informational purposes only.

4.

Documentation Notes

I. Grammar Types

1. (expr) an expression: any combination of integers,
or variable names (including array
references) and the binary operators: */+-

Examples: { 1, a, a+1, a(1)+1 }

2. (expr-) an in item 1 EXCEPT array references are not
permitted (eg. a(1))

Examples: { 1, a, a+1 }

3. (expr+) in addition to item 1, phrases of the form
LowerBound : UpperBound are permitted, where
both bounds can be expressions

Examples: { 1, a+1, 1:nx, a(1):b(1) }

4. (int) any numeric integer value
Examples: {1, 2, 3 }

5. (key) a specific keyword must be given
Examples: { Treat_As_Complex }

6. (string) any quoted text
Examples: { “this is a string” }

7. (var) any variable name
Examples: { nx, ny, a, b }

8. (var|int) a variable or integer as defined in items 4
and 7 are permitted

II. Syntax Notes

1. PPP directives longer than 72 characters must be
continued on the next line using the PPP line continuation
characters: CSMS$>

Example:

CSMS$CREATE_DECOMP(decomp,
CSMS$> <global_size1, global_size2, global_size3>,
CSMS$> <halo_1, halo_2, halo_3>

5.

CSMS$CREATE_DECOMP

SYNTAX

CSMS$CREATE_DECOMP (dh[(nest)],
< global1 [,global2 [,global3]]>,
< halo1 [,halo2 [,halo3]]>
[,< lb_strat1 [,lb_strat2 [,lb_strat3]]>])

Required Fields:
decomp (var) name of data decomposition
global1 (expr) global size of the 1st decomposed

dimension
halo1 (expr) thickness of the halo region for

the 1st decomposed dimension
Optional Fields:

nest (expr-) decomposition nest index
global2 (expr) global size of the 2nd decomposed

dimension
global3 (expr) global size of the 3rd decomposed

dimension
halo2 (expr) thickness of the halo region for

the 2nd decomposed dimension
halo3 (expr) thickness of the halo region for

the 3rd decomposed dimension
lb_strat1 (key) load balancing strategy for the 1st

decomposed dimension
lb_strat2 (key) load balancing strategy for the 2nd

decomposed dimension
lb_strat3 (key) load balancing strategy for the 3rd

decomposed dimension

Load Balancing Strategies are:
 SCRAMBLE_LAT_STRATEGY
 SCRAMBLE_LON_STRATEGY
 SCRAMBLE_WAVENUM_STRATEGY

SEMANTICS

This directive initializes the data structures, declared by
CSMS$DECLARE_DECOMP, that are necessary to support data
movement, local and global address translation, do-loop
transformations, and data decomposition by SMS. These
structures are initialized at run-time based on the number
of processors specified at the command line (using smsRun).
Once decompositions are defined and initialized,

6.

CSMS$DISTRIBUTE is used to determine how each array is
divided up among the processors.

This directive should be inserted at the beginning of the
executable portion of the program. Each dimension specified
by the global size arguments (global1, 2, 3) will be
decomposed by SMS. Both static and dynamic memory
allocation are supported (see Examples 1 and 2). If dynamic
memory allocation is used, CSMS$CREATE_DECOMP cannot appear
after a CSMS$DISTRIBUTE because the sizes of decomposition
structures, determined at run-time, cannot be assigned
before they are initialized (see Example 3).

Nesting is supported by SMS. If multiple nests are declared
(eg. two declared nests implies CSMS$DECLARE_DECOMP(dh(2)),
then a directive must be specified to initialize EACH NEST
(eg. CSMS$CREATE_DECOMP(dh(1), CSMS$CREATE_DECOMP(dh(2)).
Consult the SMS Users Guide for more information and
examples on data decomposition using SMS.

LIMITATIONS

1. Any two of the first three dimensions can be decomposed.

2. The maximum global size and halo thickness permitted for
each dimension is 1000 and 6 respectively. In a future
upgrade, these values can be optionally set to other values
at the PPP command line.

MESSAGES

 ERRORS:

This data decomposition structure does not exist.

A data decomposition with this name has not been
defined by a corresponding CSMS$DECLARE_DECOMP
directive that is in scope.

This index scrambling technique is not supported.

The only types of index scrambling supported are:
scramble_wavenum_strategy
scramble_lat_strategy
scramble_lon_strategy

The number of arguments differs from the definition.

7.

The number of dimensions specified must match the
number of dimensions given for this decomposition in
the corresponding CSMS$DECLARE_DECOMP directive.

The number of halo arguments differs from the number of
global size values.

There must be a one to one correspondence between the
global size (global1,2,3) and halo thickness
(halo1,2,3) arguments.

RELATED DIRECTIVES

CSMS$DECLARE_DECOMP
CSMS$DISTRIBUTE
CSMS$TO_LOCAL

NOTES

1. Halo widths for a scrambled dimension must be zero.

EXAMPLES

Example 1: Static Memory Allocation
Example 2: Dynamic Memory Allocation
Example 3: Limitation for the Dynamic Case

 Example 1: Static Memory Allocation

For a fortran program with the statically allocated array
u(nx,ny,nz), a decomposition structure is created to
decompose the array U over the available processors. The
locally declared size of the decomposed array should be
large enough to run on the minimum expected number of
processors (see Example 1 of CSMS$DECLARE_DECOMP). The
declared local sizes are determined at run-time based on the
number of processors and the global sizes given by
CSMS$CREATE_DECOMP. The example below declares local array
sizes large enough to run on 16 processors (4 by 4).

 program static

 parameter(NX=512, NY=512, NZ=64)

CSMS$DECLARE_DECOMP(dh, <NX/4+(2*3)+1, NY/4+(2*3)+1>)
CSMS$DISTRIBUTE(dh, nx, ny) BEGIN

8.

 real u(nx,ny,nz)
CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(dh, <nx, ny>,<3, 3>)

 end

 Example 2: Dynamic Memory Allocation

This program creates automatic arrays whose decomposed sizes
depend on the number of processors specified at run-time.
Note that this type of memory allocation is an extension to
f77 and is not a feature of all compilers. It is supported
by all f90 compilers however.

Since the subroutine arguments nx and ny are translated to
the actual local sizes (CSMS$TO_LOCAL), no directives are
needed inside the subroutine model assuming it is
embarrassingly parallel.

 program dynamic
 integer nx,ny,nz
 namelist /domain_size/ nx,ny,nz
CSMS$DECLARE_DECOMP(dh)

 open(1,file='domain_size.nl')
 read(1,domain_size)
 close(1)

CSMS$CREATE_DECOMP(dh, <nx,ny>,<0,0>)
CSMS$TO_LOCAL(<dh : 1, nx>,<dh : 2, ny>:SIZE) BEGIN
 call model(nx,ny,nz)
CSMS$TO_LOCAL END

 end

 subroutine model(n1,n2,n3)
 integer n1,n2,n3
 real u(n1,n2,n3)
C
 do i=1,n1
 do j=1,n2
c more code ..
 enddo
 enddo

 return
 end

 Example 3: Limitation for the Dynamic Case

This example illustrates a requirement that a dynamically
allocated data decomposition be initialized by
CSMS$CREATE_DECOMP BEFORE it is used by the CSMS$DISTRIBUTE

9.

directive. This is because structures initialized by
CSMS$CREATE_DECOMP are used to size the decomposed array
dimensions identified by CSMS$DISTRIBUTE.

 program simple_comp

 call compute(100)
 end
..
 subroutine compute(im)
 integer im

CSMS$DECLARE_DECOMP(decomp)

CSMS$DISTRIBUTE(decomp, <im>) BEGIN
 integer x(im), y(im), z(im)
CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(decomp, <im>, <0>)

CSMS$PARALLEL(decomp,<i>) BEGIN

c executable code ...

CSMS$PARALLEL END

 return
 end

Re-coded Input File

CSMS$DECLARE_DECOMP and CSMS$CREATE_DECOMP are moved into
the main routine to insure CSMS$DISTRIBUTE will receive the
correct local size values inside compute(). Note: a common
block is used to communicate the local array sizes between
routines in code generated by CSMS$DECLARE_DECOMP. This
explains why CSMS$DECLARE_DECOMP appears in both routines.

 program simple_comp

CSMS$DECLARE_DECOMP(decomp)
CSMS$CREATE_DECOMP(decomp, <100>, <0>)
 call compute(100)
 end
..
 subroutine compute(im)
 integer im
CSMS$DECLARE_DECOMP(decomp)

CSMS$DISTRIBUTE(decomp, <im>) BEGIN
 integer x(im), y(im), z(im)
CSMS$DISTRIBUTE END

CSMS$PARALLEL(decomp,<i>) BEGIN

c executable code ...

10.

CSMS$PARALLEL END
 return
 end

11.

12.

CSMS$DECLARE_DECOMP

SYNTAX

CSMS$DECLARE_DECOMP (decomp[(num)],
[,<declared1 [,declared2 [,declared3]]>]
[:<lower1, [,lower2 [,lower3]] >])

Required Fields:
decomp (var) name of the data decomposition

Optional Fields:
num (expr-) number decompositions nests
declared1 (expr+) declared local size of the 1st

decomposed dimension
declared2 (expr+) declared local size of the 2nd

decomposed dimension
declared3 (expr+) declared local size of the 3rd

decomposed dimension
lower1 (expr-) lower bound of the 1st decomposed

dimension
lower2 (expr-) lower bound of the 2nd decomposed

dimension
lower3 (expr-) lower bound of the 3rd decomposed

dimension

SEMANTICS

This directive defines decomposition structures necessary to
support data movement, local and global address translation,
do-loop transformations and data decomposition. These
structures are then filled at run-time based on information
provided by CSMS$CREATE_DECOMP and applied to decomposed
arrays using the CSMS$DISTRIBUTE directive. These
decomposed arrays are defined with unit lower bounds unless
stated explicitly (using lower1,2,3) by this directive (see
Example 1).

This directive must be in scope of all references to arrays,
parallel regions and I/O statements that require access to
the generated decomposition structures. Typically,
CSMS$DECLARE_DECOMP is placed in an include file that either
already exists or has been created specifically for the
parallel model. These file dependencies must be indicated
by all modules that need them using the ppp command line
options --Finclude or --Fcommon respectively (see the SMS
Users Guide: Building A Parallel Program).

13.

This directive was designed to support both dynamic and
static memory allocation. If static allocation is used, the
user MUST specify local sizes (declared1,2,3 fields above)
that are large enough to handle the number of processors
with which the user plans to run the program. To minimize
memory use and optimize cache re-use, multiple statically
allocated programs can be built with different declared size
values for differing numbers of processors. At run time,
the actual local sizes required on each processor will be
computed. If dynamic allocation is used, declared size
values MUST NOT be present - SMS will calculate the local
sizes required automatically.

LIMITATIONS

1. Any two of the first three dimensions can be decomposed.

MESSAGES

 ERRORS:

The number of arguments differs from the number of lower
bounds values.

If lower bounds values (lower1,2,3) are listed, we
require the number of arguments be equal to the number
of declared local size (declared1,2,3) arguments given
(for STATIC memory allocation only).

RELATED DIRECTIVES

CSMS$CREATE_DECOMP
CSMS$DISTRIBUTE
CSMS$PARALLEL
CSMS$LOCAL_SIZE

NOTES

1. This directive must be in scope of all directives that
require access to the declared decomposition (decomp).
Typically, this directive is placed in a file that is
included by all modules that need it; however, it can also
be inserted directly into existing source. See Example 1.

EXAMPLES

14.

 Example 1: Non-Unit Lower Bounds Support

Static memory allocation is used in this example because the
declared local sizes (NX_LOCAL, NY_LOCAL) are given in
CSMS$DECLARE_DECOMP. Further, the original arrays are
defined with lower bounds of zero. We include the non-unit
lower bound values in CSMS$DECLARE_DECOMP. This information
is then used by CSMS$DISTRIBUTE to preserve the lower bounds
of the decomposed arrays.

To improve the clarity of this example, constants were
defined using CSMS$INSERT directive to define the local
sizes, number of processors and halo thicknesses of each
dimension. These computations could also have been stated
explicitly as parameters in the directive (eg.
CSMS$DECLARE_DECOMP(my_decomp, <NX+1/4+2*3+1,...>), avoiding
the insert declarations.

The size declarations (NX_LOCAL, NY_LOCAL) will be explained
in detail. The first terms (NX+1/nprocs_x, NY+1/nprocs_y)
indicate the minimum number of processors permitted will be
12 because 4 (nprocs_x) and 3 (nprocs_y) processors are
required for each dimension to satisfy computations on the
array “a”. The second terms (thick_x, thick_y) indicate
sufficient storage is allowed for halo thickness of 3 in
both directions (indicated by 2*3). Finally, an additional
unit of storage is included to account for round off errors
on varying values of NX and NY in the third term.

Note: the number of processors assigned to each dimension
(nprocs_x, nprocs_y) is determined at run-time based on the
number of processors assigned to the program and the global
dimensions of the decomposed arrays. See the SMS Users
Guide for a more detailed discussion.

integer nx,ny

 parameter(nx=64, ny=48)

CSMS$INSERT parameter(nprocs_x=4, nprocs_y=3)

CSMS$INSERT parameter(thick_x=2*3, thick_y=2*3)

CSMS$INSERT parameter(NX_LOCAL = (NX+1)/nprocs_x+thick_x+1)
CSMS$INSERT parameter(NY_LOCAL = (NY+1)/nprocs_y+thick_y+1)

CSMS$DECLARE_DECOMP(my_decomp, <NX_LOCAL, NY_LOCAL>:<0,0>)

CSMS$DISTRIBUTE (my_decomp, NX, NY) BEGIN
 real a(0:NX,0:NY)
CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(my_decomp,<NX+1,NY+1>, <0,0>)

15.

CSMS$PARALLEL (my_decomp,NX,NY) BEGIN
 do i=0, NX
 do j=0, NY

 a(i,j) = 0.0

c more data parallel computations ...

 enddo
 enddo
CSMS$PARALLEL EN

16.

CSMS$DISTRIBUTE

SYNTAX

CSMS$DISTRIBUTE ([<] decomp [(nest)],
[<tags1>] [,<tags2> [,<tags3>]]
[: TREAT_AS_COMPLEX][>]
[, <decomp2, ...>]) BEGIN

CSMS$DISTRIBUTE END

Required Fields:
decomp (var) name of the data decompostion

Optional Fields
nest (expr-) decomposition nest index
tags1 (var|int) list of variables that identify the

1st decomposed dimension.
tags2 (var|int) list of variables that identify the

2nd decomposed dimension
tags3 (var|int) list of variables that identify the

3rd decomposed dimension
TREAT_AS_COMPLEX keyword specifies real declarations

should be treated as their complex
equivalent (see note 2)

decomp2 another decomposition couplet -
with options as defined above.
This is useful for nesting. See
Example 3.

SEMANTICS

This directive links the data decomposition structures,
defined by CSMS$DECLARE_DECOMP and created by
CSMS$CREATE_DECOMP, with arrays targeted for decomposition.
CSMS$DISTRIBUTE is the heart of PPP handling of decomposed
data in the user’s program. Two fundamental aspects of
distributed arrays are handled: (1) identifying arrays that
are decomposed and how they are decomposed, and (2)
replacing the sizes of the decomposed array dimensions with
their corresponding processor local sizes.

Variables listed in the directive (tags1,2,3) identify which
array dimensions are decomposed. Further, a mapping between
each decomposed array dimension and the dimensions of the
data decomposition is also determined. This mapping is used
to insure correct handling of each array for exchanges,

17.

transfers, I/O operations, local and global address
translations, and reductions.

Replacing the array’s decomposed dimensions with processor
local sizes depend on identifying the memory allocation
scheme that was used (given by CSMS$DECLARE_DECOMP). For
static allocation, the declared local size, specified in
CSMS$DECLARE_DECOMP (declared1,2,3) will be used. In the
dynamic case the size of each decomposed dimension, computed
at run-time by SMS, will be used.

If dynamic memory allocation is used, CSMS$CREATE_DECOMP
cannot appear after a CSMS$DISTRIBUTE because the sizes of
decomposition structures, determined at run-time, cannot be
assigned before they are initialized. See Example 3 in
CSMS$CREATE_DECOMP for more details.

The optional keyword TREAT_AS_COMPLEX applies to real arrays
that store the real and imaginary parts of complex numbers
in adjacent memory locations. If this keyword is used, all
declarations contained in the enclosed directive will be
treated as though they are complex values by SMS (eg. for
I/O, transfers, reductions, exchanges). See Example 2 for
more details.

LIMITATIONS

1. The translation of assumed size declarations (eg.
a(nx,*)) are not supported.

MESSAGES

 ERRORS

The name given for this decomposition has not been defined
or is not in scope.

The data decomposition name given by parameter decomp
(above), must have been defined by CSMS$DECLARE_DECOMP
and be in scope.

CSMS$DISTRIBUTE can only be used for declarative statements.

This directive was designed to operate on array
declarations. It cannot be used for subroutine or
function declarations, assignment statements, etc.

 WARNINGS

18.

This array, decomposed by CSMS$DISTRIBUTE, is being used
outside of a parallel region.

Typically, a decomposed array (defined by the
CSMS$DISTRIBUTE), is used within a declared parallel
region (CSMS$PARALLEL).

RELATED DIRECTIVES

CSMS$DECLARE_DECOMP
CSMS$CREATE_DECOMP

NOTES

1. Brackets: <> are not required when a single tag (tag1, 2,
3) is used to specify a decomposed dimension. For example
CSMS$DISTRIBUTE(dh,nx,ny) can be used, where nx relates to
the first dimension and ny to the second.

2. An array is not decomposed (1) if it is outside the
scope of a CSMS$DISTRIBUTE directive or (2) none of its
dimensions are declared with one of the tags specified in
the enclosed distribute directive.

EXAMPLES

Example 1: Array Declaration Examples
Example 2: TREAT_AS_COMPLEX Array Handling
Example 3: Multiple data Decompositions

 Example 1: Array Declaration Examples

In the example below, all of the arrays EXCEPT x5 will be
decomposed according to data decomposition dh. The variable
x5 will not be decomposed (or translated) because none of
its dimensions matches the tags listed in CSMS$DISTRIBUTE.
Generated parallel output illustrates these points.

CSMS$DECLARE_DECOMP(dh, <im/2+1, jm/2+1>)
CSMS$DISTRIBUTE(dh, im, jm) BEGIN
 real x0(im,5)
 real x1(im,jm)
 real x2(3,im,jm)
 real x3(jm,3,im)
 real x4(jm,im)
 real x5(10,20,km)

19.

CSMS$DISTRIBUTE END

...
GENERATED PARALLEL PSEUDO-CODE

Each of the arrays listed is decomposed differently as shown
in the output generated. For example, array x3's first
dimension is associated with the second dimension of the
data decomposition: dh. The second dimension is not
decomposed and the third is associated with the first
dimension of the decomposition. The translated output
assigns the appropriate declared size parameter that is
defined by output generated by CSMS$DECLARE_DECOMP.

...

C CSMS$DISTRIBUTE(dh, im, jm) BEGIN
real x0(Declared_Size_1, 5)

 real x1(Declared_Size_1, Declared_Size_2)
 real x2(3, Declared_Size_1, Declared_Size_2)
 real x3(Declared_Size_2,3, Declared_Size_1)
 real x4(Declared_Size_2, Declared_Size_1)
 real x5(10,20,km)
C CSMS$DISTRIBUTE END

 Example 2: TREAT_AS_COMPLEX Array Handling

A common method for the treatment of complex variables is to
store the real and imaginary parts into adjacent real value
pairs. When TREAT_AS_COMPLEX is used, all real arrays within
the enclosed CSMS$DISTRIBUTE will be handled as though they
are complex variables.

In this example, the following two declarations will be
treated exactly the same way by the SMS run-time system.
The inner most dimension of the real declaration is twice
the size of the complex declaration. However, the user’s
treatment of these different declarations only requires the
TREAT-AS_COMPLEX keyword. No other changes are required by
the user. SMS takes care of all the details required to
treat these real-valued pairs as complex variables.

CSMS$DECLARE_DECOMP(my_dh, <jtrun>)
CSMS$DISTRIBUTE(my_dh, <jtrun>) BEGIN
 complex a(jtrun, lev, my)
CSMS$DISTRIBUTE END

CSMS$DISTRIBUTE(my_dh, <jtrun> : TREAT_AS_COMPLEX) BEGIN
 real ar(jtrun*2, lev, my)
CSMS$DISTRIBUTE END

20.

 Example 3: Multiple Data Decompositions

The parallelization of nested finite difference
approximation (FDA) models frequently requires multiple
grids be in scope. In this example, a fine and a coarse
mesh decomposition are dynamically allocated and initialized
using CSMS$DECLARE_DECOMP and CSMS$CREATE_DECOMP. These
decompositions are used by CSMS$DISTRIBUTE to decompose the
fine and coarse variables fldfm and fldcm respectively. The
scratch arrays cwork and fwork are similarly decomposed.

After coarse grid computations are done, CSMS$TRANSFER is
used to transfer data to the fine grid. Refer to the SMS
Users Guide for more information on nesting.

Note: Multiple decompositions are expressed in a single
CSMS$DISTRIBUTE directive to avoid re-ordering the coarse
and fine mesh array declarations. In this scenario, two
CSMS$DISTRIBUTE directives would be used: one for the coarse
mesh variables and the other for the fine mesh ones.

 parameter (maxgrds=2)
parameter (mcm=512, ncm=512, mfm=512, nfm=512)

CSMS$DECLARE_DECOMP(dh(maxgrds), <mcm/4, ncm/4>)

CSMS$DISTRIBUTE(<dh(1),mcm,ncm>, <dh(2),mfm,nfm>) BEGIN
 real fldcm (mcm,ncm,kk)
 real fldfm (mfm,nfm,kk)

real cwork (mcm, ncm)
real fwork (mfm, nfm)

CSMS$DISTRIBUTE END

CSMS$CREATE_DECOMP(dh(1),<mcm, ncm>, <0,0>)
CSMS$CREATE_DECOMP(dh(2),<mfm, nfm>, <0,0>)

c coarse grid computations ...

C transfer results to the fine grid
CSMS$TRANSFER(<fldcm, fldfm>)

C fine grid computations ...

21.

 CSMS$EXCHANGE

SYNTAX

CSMS$EXCHANGE (
 Var1 [< lower1:upper1, lower2:upper2, lower3:upper3>]
[,Var2 [<...>]])

Required Fields:
Var1 (var) variable to be exchanged.

Optional Fields:
Var2 (var) another variable to be exchanged
dim1 (var|int) thickness of halo to be exchanged

in the first decomposed dimension.
dim2 (var|int) thickness of halo to be exchanged

in the second decomposed dimension.
dim3 (var|int) thickness of halo to be exchanged

in the third decomposed dimension.

NOTE: dim1, dim2, and dim3 assume the thickness of
upper and lower halos to be exchanged is the same. If
you wish to exchange halo data with different lower and
upper the field dim1, dim2 or dim3 can be replaced
with:

lower:upper

for any decomposed dimension.

SEMANTICS

This directive communicates with neighboring processors to
update halo or ghost regions. Only the halo regions are
updated; if other local data must be moved between variables
that are decomposed differently (or not decomposed) then
CSMS$TRANSFER should be used. If multiple arrays are
exchanged within a single directive, the exchanges are
aggregated (combined) to improve performance. Information
provided by CSMS$DISTRIBUTE is used to generate the correct
communication code for each variable exchanged.

LIMITATIONS

1. This directive will not work for variables whose
interior region is smaller than the halo thickness (defined

22.

by CSMS$CREATE_DECOMP) in a given dimension.

2. This directive does not work with decomposition
dimensions containing scrambled indices.

MESSAGES

 ERRORS

Cannot exchange a variable that has not been decomposed.

A variable must be decomposed in order for its local
data to be exchanged with neighboring processors

RELATED DIRECTIVES

CSMS$CREATE_DECOMP
CSMS$CREATE_PACKED_SPEC_DECOMP
CSMS$DISTRIBUTE
CSMS$HALO_COMP
CSMS$TRANSFER

NOTES

EXAMPLES

 Example 1: Dependent Loop Computations

In this example, we have chosen to do exchanges after every
dependent loop. This technique is useful on machines having
(relatively) low latencies and high band-widths for inter-
processor communication. Redundant computations are
avoided, but communication is needed before every loop.
This code will scale well for large numbers of processors
provided inter-processor communication latency is low and
bandwidth is high.

Another approach that is useful on high latency machines is
to eliminate the second exchange by doing redundant
computations in the halo region of the variable wk1.
Example 1 in CSMS$HALO_COMP illustrates this approach.

 subroutine smooth(x)

C Include all stuff not passed in (irrelevant to example).

23.

 include 'everything.h'

CSMS$DISTRIBUTE(DH_GRID, nx, ny) BEGIN
 real x(nx,ny)
C Local declaration
 real wk1(nx,ny)
CSMS$DISTRIBUTE END

C Exchange variable x to update its halo region.
CSMS$EXCHANGE(x)

CSMS$PARALLEL (DH_GRID, <i>, <j>) BEGIN
C Smoother computations.
 do 20 j=2,ny-1
 do 20 i=2,nx-1
 wk1(i,j)=0.5*x(i,j)+0.125*
 & (x(i-1,j)+x(i+1,j)+x(i,j-1)+x(i,j+1))
 20 continue
CSMS$EXCHANGE(wk1)

 do 40 j=2,ny-1
 do 40 i=2,nx-1
 x(i,j)=0.5*wk1(i,j)+0.125*
 & (wk1(i-1,j)+wk1(i+1,j)+wk1(i,j-1)+wk1(i,j+1))
 40 continue
CSMS$PARALLEL END

c more computations ...

24.

CSMS$EXIT

SYNTAX

CSMS$EXIT [([status])]

Required Fields:
none.

Optional Fields:
status (int) exit status reported by SMS when

the program terminates.

SEMANTICS

The termination of a program using SMS can either abort or
exit normally. A normal exit from SMS will insure proper and
orderly process termination. The SMS control process will
wait until every processor’s computations, communications
and I/O are complete before exiting. An abort from SMS will
terminate all processes immediately, regardless of state.

PPP automatically generates code to either abort or exit in
two different ways. Code that tells SMS to abort
(PPP_ABORT) is generated whenever a “stop” statement is
encountered in the Fortran source. Code to terminate a
program normally (PPP_EXIT) is generated by PPP whenever an
“end” program statement is encountered in the source code.

This directive modifies the above default behavior from a
program abort to a normal exit when CSMS$EXIT appears at the
statement prior to the Fortran stop statement. For more
information about SMS process control, refer to the SMS
Users Guide.

LIMITATIONS

NONE

MESSAGES

NONE

RELATED DIRECTIVES

25.

NOTES

EXAMPLES

 Example 1: Program Termination

By default, code is automatically generated by PPP to
PPP_ABORT whenever a stop statement is encountered unless
CSMS$EXIT appears in the previous statement. In this
example, the CSMS$EXIT is used to insure a normal program
termination if the abort flag is false.

 program main

 logical abort

 abort = .false.
 call model(params, abort)

 if (abort .eq. .true.) stop

CSMS$EXIT
 stop
 end

26.

CSMS$FLUSH_OUTPUT

SYNTAX

CSMS$FLUSH_OUTPUT

Required Fields

NONE.

SEMANTICS

CSMS$FLUSH_OUTPUT allows compute processes to continue model
computations concurrent with data being written to disk.
This directive should be used whenever the application has a
long period of computations before the next I/O statement is
reached. See the SMS Users Guide for more details on the
use of I/O cache processors.

This directive is never required; it is only used to improve
performance. Further, this directive has no effect on the
file contents; output is exactly the same with or without
this directive.

LIMITATIONS

NONE

MESSAGES

NONE

RELATED DIRECTIVES

NONE

NOTES

Since read and ASCII output statements interact with the I/O
subsystem via the SMS server process, they should be avoided
until the cache processors are finished servicing binary
output operations resulting from the CSMS$FLUSH_OUTPUT.

If you are not using I/O cache processors, the following
environment variables may be useful:
 SMS_RBS - size of block for input (in Bytes)

27.

 SMS_RBC - number of blocks for input (default is 16)
 SMS_WBS - size of blocks for output (in Bytes)
 SMS_CLOSE_MODE - set to “require_flush” to defer output

until CSMS$FLUSH_OUTPUT is encountered.

If input files are too large to fit in the physical memory
of one processor, the following environment variable is
useful:
 SMS_RAN_RSTYLE - set to “one-var” to instruct SMS to read

one input variable at a time.

The recommended values for these variables are:
 SMS_RBS - size of the file /15 (size of the largest

variable if "one-var" is used).
 SMS_RBC - 16
 SMS_WBS - size of the file
 SMS_CLOSE_MODE - do not require-a flush

All of these variables are optimization hints to the SMS I/O
sub-system. If values are not specified, SMS will do the
best job it can and will make correct progress at the
expense of performance. De-optimization values can result
in extremely poor I/O performance. Refer to the SMS Users
Guide for more information about optimizing parallel I/O
operations using SMS.

EXAMPLES

 Example 1: Overlap Computations with Model Output

This code segment outputs binary data to disk every “iout1"
time steps though the routine “output". This code segment
will only work efficiently if the SMS write operation prior
to the CSMS$FLUSH_OUTPUT are complete before more binary I/O
are done. Otherwise, all processes containing outstanding
I/O requests must wait for write operations to complete
before computations can resume.

c main model time-stepping loop
 do istep = 1, numsteps

c ... model computations ...
 call compute

c some binary output to disk
 if (mod(istep,iout1).eq.0) then
 call output
CSMS$FLUSH_OUTPUT

28.

 endif

 enddo

29.

CSMS$GLOBAL_INDEX

SYNTAX

CSMS$GLOBAL_INDEX (
 dim1 [>]
[, dim2 [>]]) BEGIN

CSMS$GLOBAL_INDEX END

Required Fields:
dim1 (int) decomposed dimension for which

array references should be treated
as global.

Optional Fields:
dim2 (int) another decomposed dimension for

which array references should be
treated as global.

SEMANTICS

This directive is used to translate indices of decomposed
arrays from global references to processor-local references.
Typical uses of this directive are for model boundary
handling, and the output of diagnostic messages on elements
of decomposed arrays.

The name of the data decomposition is determined either
explicitly (decomp1, decomp2) or by using the default
decomposition defined by an enclosing parallel
(CSMS$PARALLEL) region. The relationship between the array
dimension and the decomposition dimension declared global by
this directive (dim1, dim2) is determined by
CSMS$DISTRIBUTE. See the examples for more details.

LIMITATIONS

1. A maximum of two dimensions is supported.
2. The translation of decomposed array indices that are

themselves arrays, is not currently permitted. In a
future update we plan to support these translations.

3. Read, write, and print statements that occur within the
scope of a CSMS$GLOBAL_INDEX directive will not be
translated. See Example 4 for more details.

4. Else clauses of an if-then-else must relate to the same

30.

local data given as tested by the if-conditional. See
Example 2 for more details.

5. Nested CSMS$GLOBAL_INDEX directives are not permitted.

MESSAGES

 ERRORS

No data decomposition has been specified for this directive.

Either the data decomposition must be given explicitly
in the global_index (decomp1, decomp2), or this
directive must be contained within an enclosing
parallel region (CSMS$PARALLEL).

CSMS$GLOBAL_INDEX translations of array indices on I/O
statements are not supported.

These types of translations are not currently
supported. See Example 4 for a coding alternative.

The translation of this indirect array reference is not
currently supported.

The translation of decomposed array indices that are
themselves arrays, is not currently permitted. In a
future update we plan to support these translations.

Non-unit stride loops within the scope of a global_index
directive are not currently translated.

We plan to update PPP to support these loops.

RELATED DIRECTIVES

CSMS$DISTRIBUTE
CSMS$INSERT
CSMS$PARALLEL
CSMS$REMOVE

NOTES

EXAMPLES

Example 1: Boundary Initialization
Example 2: Conditional Statement Handling
Example 3: Handling of Decomposed Dimensions

31.

Example 4: Translation of I/O statements

 Example 1: Boundary Initialization

A typical use of this directive is to initialize the
boundaries of decomposed arrays. In this example, u and v
are both decomposed in two dimensions by CSMS$DISTRIBUTE.
To initialize the east-west global boundaries of the
decomposed arrays u and v, CSMS$GLOBAL_INDEX(1) is used.
Similarly, CSMS$GLOBAL_INDEX(2) is used to initialize the
north-south boundaries (not shown).

Each processor contains a sub-region of the decomposed
arrays u and v. The generated code will insure that only
those processors that contain the east-west global
boundaries will execute the assignment statements.

CSMS$DISTRIBUTE(dh,m,n) BEGIN
 real u(m,n,k)
 real v(m,n,k)
CSMS$DISTRIBUTE END

CSMS$PARALLEL (dh, i,j) BEGIN
CSMS$GLOBAL_INDEX(1) BEGIN
 do j=1, n
 v(1,j,k) = v(1,j,k) - vav
 u(m,j,k) = u(m,j,k) - vav
 enddo
CSMS$GLOBAL_INDEX END
CSMS$PARALLEL END

 Example 2: Conditional Statement Handling

It is important to insure that all decomposed array
references within an if-else statement containing a
CSMS$GLOBAL_INDEX directive, are local to the processor
where computations are done. For example, an out of bounds
reference would be generated if ek(m,j,k) were referenced
within the if loop because that data would not be local to
the processors that contain the first row of the global
array ek.

CSMS$DISTRIBUTE(dh,m,n) BEGIN
 real ek(m,n,k)
 real em(m,n,k)
 real u3(m,n,k)
CSMS$DISTRIBUTE END

CSMS$PARALLEL (dh,m,n) BEGIN
 do j=1, n
CSMS$GLOBAL_INDEX(1) BEGIN

32.

 if(u3(1,j,k) .eq. 0) then
 ek(1,j,k) = 2.0*ek(2,j,k)+ek(3,j,k)
 em(1,j,k) = 2.0*em(2,j,k)+em(3,j,k)
 else
 ek(1,j,k) = ek(2,j,k)
 em(1,j,k) = ek(2,j,k)
 endif
CSMS$GLOBAL_INDEX END
 enddo

 CSMS$PARALLEL END

 Example 3: Handling of Decomposed Dimensions

In this example we illustrate the binding of the decomposed
dimension given by the CSMS$GLOBAL_INDEX directive with the
data decomposition as it applies to the arrays. Viewing the
CSMS$DISTRIBUTE tagged variables (m,n), we notice that avz
and zsfc are decomposed in both dims but zygeo is only
decomposed in the 2nd (j) dimension. This will affect the
translation of the assignment statement as illustrated by
the generated parallel code.

Proper translation requires that each variable in the
assignment statement be checked to see if it is decomposed
in the first dimension (specified by GLOBAL_INDEX(1)) as
defined by CSMS$DISTRIBUTE. Using this decomposition
information, PPP translates only the first index of avz and
zsfc, leaving the other variables alone.

CSMS$DISTRIBUTE(dh,m,n) BEGIN
 real avz(m,n)
 real zygeo(n,k)
 real zsfc(m,n)
CSMS$DISTRIBUTE END
 real sigma(k)

CSMS$PARALLEL(dh,,j) BEGIN
 if(condition_met)then
 do k=1,k
 do j=1,n
CSMS$GLOBAL_INDEX(1) BEGIN
 zygeo(j,k)=sigmma(k)*avz(1,j)+zsfc(1,j)
CSMS$GLOBAL_INDEX END
 enddo
 enddo
 endif

c More code ...
CSMS$PARALLEL END

 Example 4: Translation of I/O statements

33.

CSMS$GLOBAL_INDEX translations of array indices for I/O
statements are not currently supported. These translations
are complicated by the requirement that statements often
need to be broken into multiple fragments because no single
processor has all of the data in its local memory. In the
event a format descriptor exists, it must be broken up too.

 parameter(nx=16,ny=16)
csms$declare_decomp(dh,nx_a,ny_a)

csms$distribute(dh,nx,ny) begin
 real a(nx,ny)

csms$distribute end

csms$parallel(dh) begin

csms$global_index(1, 2) begin
 print a(1,1),a(1,ny),a(nx,ny),a(nx,1)
csms$global_index end

csms$parallel end

...
Re-coded Input File

Two re-coding techniques can be used to resolve this print
statement. A reduction operation can be done to gather the
corner points by each processor and then output by a single
print statement. This technique is illustrated in Example 3
of CSMS$REDUCE.

Another approach is to use CSMS$INSERT and CSMS$REMOVE to
re-code this segment. As illustrated below, the print
statement is broken into four statements (one for each
corner point). Do-loops are used and translated (if the
loop variables appear in CSMS$PARALLEL) to insure only those
processors containing the array references will output them.
Further, asynchronous output is required to avoid processor
deadlock (see CSMS$PRINT_MODE for more details).

Note: While the first approach will guarantee the same
output as the original code, it will execute more slowly
because of the extra communications required by the
reduction.

...

 parameter(nx=16,ny=16)
csms$declare_decomp(dh, <nx,ny>)

csms$distribute(dh, nx, ny) begin
 real a(nx,ny)

csms$distribute end

34.

csms$parallel (dh, i, j) begin

csms$remove begin
 print *,a(1,1),a(1,ny>,a(nx,ny),a(nx,1)
csms$remove end

csms$print_mode (sync) begin
csms$insert do i=1,1
csms$insert do j=1,1
csms$insert print *,a(I,j)
csms$insert enddo
csms$insert enddo

csms$insert do i=1,1
csms$insert do j=ny,ny
csms$insert print *,a(i,j)
csms$insert enddo
csms$insert enddo

csms$insert do i=nx,nx
csms$insert do j=ny,ny
csms$insert print *,a(i,j)
csms$insert enddo
csms$insert enddo

csms$insert do i=nx,nx
csms$insert do j=1,1
csms$insert print *,a(i,j)
csms$insert enddo
csms$insert enddo

csms$print_mode end
csms$parallel end

35.

CSMS$HALO_COMP

SYNTAX

CSMS$HALO_COMP (< lower1, upper1> [<,lower2, upper2>
[,lower3, upper3>]]) BEGIN

CSMS$HALO_COMP END

Required Fields:
lower1 (expr-) number of steps in the halo region

computations will be done for the
lower (left-most) local boundary in
the 1st decomposed dimension.

upper1 (expr-) number of steps in the halo region
computations will be done for the
upper (right)local boundary in the
1st decomposed dimension

Optional Fields:
Lower2 (expr-) as above for the lower boundary of

the 2nd decomposed dimension.
Upper2 (expr-) as above for the upper boundary of

the 2nd decomposed dimension
Lower3 (expr-) as above for the lower boundary of

the 3rd decomposed dimension.
Upper3 (expr-) as above for the upper boundary of

the 3rd decomposed dimension .

SEMANTICS

This directive is used to control the number of steps into
the halo or ghost region that computations will be done.
The default behavior (when CSMS$HALO_COMP is not used) is to
avoid doing any computations in the halo region.
Computations in the halo region are called “redundant
computations” because each halo point corresponds to an
interior point of a neighboring processor’s local memory. As
a result, computations on a halo point will be done on at
least two processors. The benefit of doing these extra
computes is that communication between processors can be
reduced leading to an overall improvement of performance on
many machines.

LIMITATIONS

NONE

36.

MESSAGES

 ERRORS

CSMS$HALO_COMP can only be used within an active parallel
region.

Must be bounded by CSMS$PARALLEL BEGIN / END.

RELATED DIRECTIVES

CSMS$DECLARE_DECOMP
CSMS$DISTRIBUTE
CSMS$EXCHANGE
CSMS$PARALLEL

NOTES

1. This directive must be used within the scope of a
parallel region.

2. The minimum number of steps into the halo region
permitted is zero; the maximum number is the halo thickness
(defined by CSMS$CREATE_DECOMP) for the dimension of the
decomposition (given by CSMS$PARALLEL)

EXAMPLES

 Example 1: Trading Computations for Communication

This example illustrates an SMS method to trade-off
redundant computations in the halo region for reduced
communications. CSMS$HALO_COMP(<1,1>,<1,1>) indicates
redundant computations will be done one step into the halo
region of the first two decomposed dimensions. This
eliminates the requirement that wk1 be updated before it is
required. After loop 40 the array x is valid only in the
interior (all halo points are in need of an update via an
exchange).

Note: This approach is useful on machines that have
(relatively) high latencies for inter-processor
communication. Communication is needed only once at the
beginning of subroutine smooth. Redundant computations will
limit the scalability for large numbers of processors
however. Refer to the SMS Users Guide for more information.

37.

CSMS$EXCHANGE (Example 1) illustrates this same code segment
with no redundant computations in the halo region. Instead
an extra CSMS$EXCHANGE is required to update wk1 before the
40 loop given below.

 subroutine smooth(x)
C Include all stuff not passed in (irrelevant to example).
 include 'everything.h'
CSMS$DISTRIBUTE(DH_GRID, <nx, ny>) BEGIN
C Subroutine arguments.
 real x(nx,ny)
C Local declarations.
 real wk1(nx,ny),wk2(nx,ny)
CSMS$DISTRIBUTE END

C Exchange variable x to update its halo region.
CSMS$EXCHANGE(x)

CSMS$PARALLEL (DH_GRID, <i>, <j>) BEGIN
C Smoother computations.
CSMS$HALO_COMP(<1,1>, <1,1>) BEGIN
 do 20 j=2,ny-1
 do 20 i=2,nx-1
 wk1(i,j)=0.5*x(i,j)
 & +0.125*(x(i-1,j)+x(i+1,j)+x(i,j-1)+x(i,j+1))
 20 continue
CSMS$HALO_COMP END

C no exchange is required here due to redundant comps in the halo.

CSMS$HALO_COMP END
 do 40 j=2,ny-1
 do 40 i=2,nx-1
 x(i,j)=0.5*wk1(i,j)
 & +0.125*(wk1(i-1,j)+wk1(i+1,j)+wk1(i,j-1)+wk1(i,j+1))
 40 continue
CSMS$PARALLEL END

38.

CSMS$IGNORE

SYNTAX

CSMS$IGNORE BEGIN
CSMS$IGNORE END

Required Fields:
NONE

SEMANTICS

This directive informs PPP about sections of code that
should not be translated but should still be retained in the
code.

LIMITATIONS

NONE

MESSAGES

NONE

RELATED DIRECTIVES

CSMS$INSERT
CSMS$REMOVE

NOTES

NONE

EXAMPLES

 Example 1: File Format Conversion

Binary fortran files are not portable across operating
systems due to non-standard record handling. As a result,
we normally convert these files to MPI external IO format, a
standard that SMS uses for binary I/O. In this code
example, we do not want PPP to translate the original

39.

open/read/close statements because we need to read the
Fortran binary formatted input file.

In the generated output, PPP only converts the fortran write
statements and “ignores” the read statements. Write
statements are translated into calls to SMS library routines
that will output these binary data into the MPI external IO
format. The transformed code should be linked with the
single process version of the SMS library and run on one
processor. Refer to the SMS Users Manual for more
information on I/O operations.

CSMS$IGNORE BEGIN
C read Fortran unformatted binary file
 open(18, file =’binary.dat’,form=’unformatted’)
 read(18) a,b,c
 close (18)
CSMS$IGNORE END

C write SMS-format binary file
 open (18, file=’binary.SMS_dat’,form=’unformatted’)
 write (18) a,b,c
 close (18)

 Example 2: Collapsed Loop Computations

In this example, we compute the vector length of the first
two decomposed dimensions and store the result in “mn”. We
then use this value as a stop loop bound on the collapsed
computation found in the first loop. In this case, we do
not want PPP to touch the “i” loop so the CSMS$IGNORE is
used.

Note: In almost all cases, better performance can be
achieved by re-writing the collapsed loops in their standard
2 or 3 dimensional form. Loop collapsing is an outdated
hand-optimization that usually does not improve performance.

Further, if collapsed loops are used on decomposed arrays
that also contain halos, it may not be possible to avoid
doing computations on the un-initialized values in these
regions. Again, we recommend re-writing these loops.

 subroutine comp(m,n,kk)

CSMS$DECLARE_DECOMP(dh)
CSMS$DISTRIBUTE (dh,m,n) BEGIN
 real fldin (m,n,kk)
CSMS$DISTRIBUTE END

40.

CSMS$PARALLEL(dh, i, j) BEGIN
CSMS$TO_LOCAL(<1,m>, <2,n> :SIZE) BEGIN
 mn = m * n
CSMS$TO_LOCAL END

 do k=1,kk
CSMS$IGNORE BEGIN
 do i=1,mn
 fldin (i,1,k)=0.0
 enddo
CSMS$IGNORE END
 enddo
c
 do i = 1,m
 do j = 1, n

c array computations ...

 enddo
 enddo
CSMS$PARALLEL END

41.

CSMS$INSERT

SYNTAX

CSMS$INSERT “line of code”

Required Fields:
NONE

Optional Fields:
NONE

SEMANTICS

This directive allows users to insert code to be
parallelized by PPP. Each line that is inserted must be
prefaced by CSMS$INSERT and adhere to Fortran 77 fixed
format rules. A single space separator is required for
statement labels and and additional six spaces for non-
labelled fortran statements.

LIMITATIONS

NONE

MESSAGES

NONE

RELATED DIRECTIVES

CSMS$REMOVE
CSMS$IGNORE

NOTES

EXAMPLES

Example 1: Output File Redirection

In this example, CSMS$INSERT and CSMS$REMOVE are used to
select input data files based on whether a parallel run
(using SMS) is executed. Different files are used because
SMS uses the MPI external data format for binary I/O. While

42.

this format is portable, standard Fortran binary files are
not.

CSMS$REMOVE BEGIN
 open(36,file=’myfile’,form=’unformatted’)
CSMS$REMOVE END

CSMS$INSERT open(36,file=’myfile.SMS’,form=’unformatted’)
 read(36) u,v,w,p,t,qv
 close(36)

43.

CSMS$MESSAGE

SYNTAX

CSMS$MESSAGE (Action, “Text”)

Required Fields:
Action (key) message action - options are:

ABORT, WARN, INFORM
Text (string) quoted string to be output

SEMANTICS

This directive is used to inform the user at run-time of
code segments that are being executed by SMS that may be
problematic for PPP. This is useful when code segments do
not appear to be executed. Unable to consult the code
author, an alternative to spending lots of time rewriting
their code is to simply ABORT with a message from SMS if the
code ever is executed. This serves as a useful alternative
to simply removing the code with an CSMS$REMOVE or reworking
the code segment.

Three message actions are available. ABORT is the only
action that will halt execution of the program. WARN and
INFORM will only write the given message (Text) to stderr or
stdout respectively.

LIMITATIONS

NONE

MESSAGES

 ERRORS

Supported message actions are: WARN, ABORT, AND INFORM.

RELATED DIRECTIVES

CSMS$INSERT
CSMS$PRINT_MODE
CSMS$REMOVE

44.

NOTES

1. The type of output (eg. ASYNC, ROOT, etc.) produced from
this directive will depend on the enclosing CSMS$PRINT_MODE
specification. By default, asynchronous output will be
used.

EXAMPLES

 Example 1: Unsupported Code

In this example, we observe a periodic boundary
initialization where nx is the right-hand bound for the
first dimension. This segment cannot be parallelized
without rewriting the code to separate the left-side and
right-side decomposed array references on ekm.

Rather than modify this code, we use CSMS$MESSAGE to abort
in the event this code segment is executed. At that point,
this code can be reworked.

CSMS$DISTRIBUTE (dh,nx,my) BEGIN
real ekm(nx,my,kk)

CSMS$DISTRIBUTE END

c condition_ever_met set by other computations in the model

CSMS$PARALLEL(dh,i,j) BEGIN
 if (condition_ever_met) then
CSMS$MESSAGE(ABORT,'This code is not supported by sms')

 do k=1, kk
 do j=1,n
 ekm(1,j,k)=ekm(nx,j,k)

C more periodic array references ...

 enddo
 enddo
 endif
c
c .. other code ...

CSMS$PARALLEL END

45.

CSMS$PARALLEL

SYNTAX

CSMS$PARALLEL (decomp [(nest)]
[,< ivars > [,< jvars >] [,< kvars >]) BEGIN

CSMS$PARALLEL END

Required Fields:
decomp (var) name of the data decomposition

Optional Fields:
nest (expr-) decomposition nest index
ivars (var) comma separated list of variables

used to reference arrays decomposed
by decomp in the 1st decomposed
dimension

jvars (var) comma separated list of variable
used to reference arrays decomposed
by decomp in the 2nd decomposed
dimension

kvars (var) comma separated list of variables
used to reference arrays decomposed
by decomp in the 3rd decomposed
dimension

SEMANTICS

Defines a region over which parallel computations will be
done on each processor’s local data, as defined by the given
data decomposition (decomp). All do-loops inside a parallel
region that reference the specified loop variables (ivars,
jvars, kvars) will be translated. This directive also
provides a default data decomposition context for other PPP
directives used within the scope of the parallel region.

LIMITATIONS

1. Explicit nesting of parallel regions is not permitted.

MESSAGES

 ERRORS

46.

Nesting of CSMS$PARALLEL directives is not permitted.

It is likely that a CSMS$PARALLEL END directive is
needed.

CSMS$PARALLEL END directive requires a corresponding
CSMS$PARALLEL BEGIN.

Parallel Begin / End pairs are required.

The number of dimensions given exceeds the rank of the data
decomposition.

The number of dimensions specified by the parallel
region arguments (ivar1, jvar1, kvar1) cannot exceed
the number of dimensions in the data decomposition
(decomp) defined by CSMS$DECLARE_DECOMP. Be sure to
separate each dimension’s parallel variables with
brackets <> (see note 2).

The decomposition given for this directive has not been
defined or is not in scope.

The decomposition name, given by decomp, must have been
declared by CSMS$DECLARE_DECOMP and be visible to this
CSMS$PARALLEL directive.

 NOTES

Non-unit stride do-loop detected.

Negative unit stride do-loop detected.

RELATED DIRECTIVES

CSMS$DECLARE_DECOMP
CSMS$CREATE_DECOMP
CSMS$DISTRIBUTE
CSMS$HALO_COMP
CSMS$TO_LOCAL
CSMS$TO_GLOBAL
CSMS$GLOBAL_INDEX
CSMS$REDUCE

NOTES

1. Brackets (<>) can be omitted if a single variable is
listed for that dimension (ivar1, jvar1, kvar1). Example 1
illustrates this point.

47.

EXAMPLES

Example 1: Decomposed Loop Generation
Example 2: Non-Unit Stride Loop Handling

 Example 1: Decomposed Loop Generation

In this example the only loops that are translated into
local start and stop array references are for those
variables that are listed in the CSMS$PARALLEL directive. In
this case we have specified i for the first decomposed
dimension, and j for the second. The k loop is not
translated.

CSMS$DISTRIBUTE(decomp, i, j) BEGIN
 real f(m,n)
CSMS$DISTRIBUTE END

CSMS$PARALLEL (decomp, i, j) BEGIN
 do k=1, levs
 do j=1, n
 do i=1, m
 f(i,j)= 0.0
 enddo
 enddo
 enddo
CSMS$PARALLEL END

...
GENERATED PARALLEL PSEUDO-CODE

Translation vectors (eg. i_start, i_stop), created at run-
time by CSMS$CREATE_DECOMP, are used to define the processor
local start and stop loop bounds. Factors that affect these
translation vectors are (1) the data decomposition, (2) the
data decomposition dimension, (3) the number of steps into
the halo region computations are done (CSMS$HALO_COMP), and
(4) the decomposition nest level (if any).

...

CSMS$PARALLEL (decomp, i,j) BEGIN
 do k = 1, levs

 do j= j_start(1), j_stop(n)
 do i = i_start(1), i_stop(m)

 f(i,j)= 0.0
 enddo
 enddo
 enddo
CSMS$PARALLEL END

48.

 Example 2: Non-unit Stride Loop Handling

A non-unit stride of 2 is used in this example. PPP
translation will insure only globally addressed even
numbered computations are done on each processor.

CSMS$DISTRIBUTE(decomp, jlen) BEGIN
 real*8 cc(jlen), bb(jlen)
CSMS$DISTRIBUTE END

CSMS$PARALLEL(decomp, m) BEGIN
 do 3 m=2, jlen, 2
 cc(m) = cc(m) + bb(m)
3 continue
CSMS$PARALLEL END

49.

CSMS$PRINT_MODE

SYNTAX

CSMS$PRINT_MODE (mode) BEGIN
CSMS$PRINT_MODE END

Required Fields:
mode (key) print mode to be used for output.

 Options are:
ASYNC -asynchronous output
ORDERED -ordered output
ROOT -root node output

SEMANTICS

This directive applies to standard output of strings. Four
output mode options are available:

ASYNC Each processor prints its string when this
statement is reached. The processors do not
synchronize. Message ordering may differ from one
run to the next.

ORDERED In fixed order, each processor prints its string.
This mode is typically used for debugging. The
processors synchronize so deadlock will occur if
one or more processors do not execute the output
statement

ROOT The designated root processor (node zero) prints
its string. The processors do not synchronize.

There is also a default print mode. If the user does not
specify a print mode using CSMS$PRINT_MODE, the environment
variable SMS_PUTS_MODE is examined. SMS_PUTS_MODE can be
set to any of the above modes at run-time. If it is not
visible or set to something else then the mode reverts to
the ROOT node`.

LIMITATIONS

50.

NONE

MESSAGES

NONE

RELATED DIRECTIVES

CSMS$MESSAGE

NOTES

1. This directive also controls the output of messages
generated by the CSMS$MESSAGE directive.

EXAMPLES

 Example 1: Code Segment where ASYNC Mode is Required.

The processors that output tstart will depend on the
environment variable SMS_PUTS_MODE. If SMS_PUTS_MODE is not
set, only the ROOT node will output this statement.

The second write statement is only printed on a process
where x(i,j) is greater than thresh. Since all processors
may not satisfy this condition, asynchronous output (ASYNC)
is required or a deadlock may occur. For more information
about process control, refer to the SMS Users Guide.

 write (*,6000) tstart
 6000 format (' Model start time = ',f8.3)

CSMS$PARALLEL(dh, i, j) BEGIN
 do j = 1, ny
 do i = 1, nx
 if (x(i,j).gt.thresh) then
CSMS$PRINT_MODE(ASYNC) BEGIN
 write (*,6001) x(i,j)
CSMS$PRINT_MODE END

 6001 format (' Convergence error, x = ',f11.3)
 endif
 enddo
 enddo

c...

51.

CSMS$REDUCE

SYNTAX

Standard Reduction
--

CSMS$REDUCE(Var [,Vars], Function)

Required Fields:
Var (var) variable to be reduced
Function (key) type of reduction operation -

supported functions are:
MAX, MIN, SUM

Optional Fields:
Vars (var) other variables to be reduced

Bit-wise Exact Reduction
--

CSMS$REDUCE (<SrcVar1, DestVar1 [,Rdims]> [,<SrcVar2,
DestVar2 [,Rdims]>][,...] [, SUM]) BEGIN

CSMS$REDUCE END

Required Fields:
SrcVar1 (var) array variable to be reduced
DestVar1 (var) variable where reduction result

will be stored
Function (var) type of reduction operation -

supported functions are:
SUM

Optional Fields:
Rdims (var) array dimensions over which

reduction operations will be done
SrcVar2 (var) another array variable to be

reduced
DestVar2 (var) variable where result of SrcVar2

reduction will be stored
SUM (key) bit-wise exact sum

SEMANTICS

A reduction is used to determine a global MAX, MIN or SUM
over all the processors. Two types of reductions are
supported: standard and bit-wise exact reductions.

52.

The standard reduction directive performs the given function
on non-decomposed variables. The reduced variable will be
stored in the variable being reduced (in place reduction).

The bit-wise exact reduction is used to insure exactly the
same floating point SUM regardless of the number of
processors. Since floating point arithmetic is not
associative (due to round-off errors), this reduction is
useful to insure precise parallel results. The variables to
be reduced must be decomposed arrays and should be real or
complex data types where round-off errors are an issue.

By default, all dimensions of the given array will be
reduced unless reduction dimensions are explicitly stated
(by Rdims). The size of those dimensions that are not
reduced must match the corresponding dimensions of the
destination array that will store the result. Example 1
illustrates this point.

LIMITATIONS

1. Standard reductions do not operate on decomposed arrays.

2. Reduction of complex types has not been implemented yet.

3. Implicitly typed variables cannot be reduced. This will
be corrected in a future release.

4. Bit-wise reductions can be done on any of the first three
decomposed dimensions.

MESSAGES

 ERRORS

Bit-wise Reductions are allowed over any of the first 3
dimensions.

Any of the first three dimensions can be reduced. See
Example 1.

Reductions are only permitted for “integer”, “real” or
“double” types.

These are the only types that can currently be reduced.

Source bit-wise reduction variables must be decomposed.

Source bit-wise exact reduction variables must be

53.

arrays and they must be decomposed.

Supported standard reduction functions are MIN, MAX, and
SUM.

These function names are case insensitive.

Supported bit-wise reduction functions are: SUM

This variable's type/precision is not currently supported.

This refers to the fortran language extension that
allows a precision modifier to be added to the
type (eg. integer*4, logical*2,...). Currently
PPP only supports the type/precision specifiers:
real*4 and real*8.

RELATED DIRECTIVES

CSMS$DISTRIBUTE
CSMS$PARALLEL

NOTES

1. If no reduction dimension (Rdims) is specified, the
first three dimensions will be reduced.

2. PPP assumes all code within the CSMS$REDUCE is a
reduction as specified in the directive. If it is not, then
results will vary wildly between the bit-wise and standard
reductions.

EXAMPLES

 Example 1: Bit-wise Exact Sums over User Specified Dimensions

In this example we are reducing pkc over dimensions one and
three. The size the array in the remaining dimension must
match the declared size of the destination array pksum. In
this case pksum contains two elements and this matches the
size of the second dimension of pkc.

The code between the begin and end reduce will be replaced
with a global sum that will insure exactly the same result
regardless of the number of processors.

54.

csms$distribute(grid_dh,<my>) begin
 real*8 pkc(nx,2,my)
csms$distribute end
 real*8 pksum(2)

csms$reduce(<pkc, pksum,1,3>,SUM) begin
 pksum = 0.0
 prsum = 0.0

 do j = 1, my
 do l = 1, 2
 do i = 1, nx
 pksum(1) = pksum(1) + pkc(i,l,j)
 enddo
 enddo
 enddo
csms$reduce end

 Example 2: Standard Reductions

Standard reductions only operate on non-decomposed variables
- in this case we compute a max, min and mean from the
variable dout. Local values are stored in dmax, dmin and
dmean and then reductions are done to get global results.

CSMS$DISTRIBUTE (dh, len) BEGIN
 real dout(len)
CSMS$DISTRIBUTE END

 real dmax, dmin, dmean

 dmax=dout(1)
 dmin=dout(1)
 dmean=0.0
CSMS$PARALLEL (dh, I) BEGIN
 do i=1,len
 dmax=max(dout(i),dmax)
 dmin=min(dout(i),dmin)
 dmean=dmean+dout(i)
 enddo
CSMS$PARALLEL END

CSMS$REDUCE (dmean, SUM)
CSMS$REDUCE (dmin, MAX)
CSMS$REDUCE (dmin, MIN)
 dmean=dmean/float(len)

print *,dmax,dmin,dmean

 Example 3: I/O Statement Output

In this example, we wish to output the corner points of a
decomposed array. Two possibilities exist to handle this
situation. First, we break the output statement into
multiple print statements and hand code in local loops

55.

(CSMS$GLOBAL_INDEX - Example 4).

Second, we can use CSMS$REDUCE to gather the corner points
on each processor and then output the results. This
parallelization requires we create a variable (pts) to hold
the corner points. Using CSMS$GLOBAL_INDEX, the previously
initialized values of pts are updated on those processors
holding a local copy of each corner point. Finally we
gather the corner points using the reduction operator: SUM.

CSMS$INSERT real pts(4)
CSMS$DISTRIBUTE(dh,nx,ny) BEGIN
 real a(nx,ny)
CSMS$DISTRIBUTE END

CSMS$INSERT do i=1,4
CSMS$INSERT pts(i) = 0.0
CSMS$INSERT enddo

CSMS$PARALLEL (dh, i, j) BEGIN

CSMS$REMOVE BEGIN
 write(6,’(4f4.2)’) a(1,1),a(1,ny),a(nx,ny),a(nx,1)
CSMS$REMOVE END

CSMS$GLOBAL_INDEX (1,2) BEGIN
CSMS$INSERT pts(1) = a(1,1)
CSMS$INSERT pts(2) = a(1,ny)
CSMS$INSERT pts(3) = a(nx,ny)
CSMS$INSERT pts(4) = a(nx,1)
CSMS$GLOBAL_INDEX END

CSMS$REDUCE(pts, SUM)
CSMS$INSERT write(6,’(4f4.2)’) (pts(i),i=1,4)

56.

CSMS$REMOVE

SYNTAX

CSMS$REMOVE BEGIN
CSMS$REMOVE END

Required Fields:
NONE

SEMANTICS

This directive removes all the code between the CSMS$REMOVE
BEGIN and CSMS$REMOVE END. If the ppp command line option
“--comment” is used, these code are simply commented out,
otherwise the removed code will not appear in the translated
output. Often this directive is used in conjunction with
CSMS$INSERT to modify code segments that are undesirable,
not parallelizable, or problematic for PPP.

LIMITATIONS

NONE

MESSAGES

 ERRORS

CSMS$REMOVE END found at line <line #> without a matching
CSMS$REMOVE BEGIN.

RELATED DIRECTIVES

CSMS$IGNORE
CSMS$INSERT

NOTES

EXAMPLES

See the example in CSMS$INSERT.

57.

CSMS$TO_GLOBAL

SYNTAX

CSMS$TO_GLOBAL (
 < dim1,vars1>
[,< dim2,vars2>]
[,< dim3,vars3>]) BEGIN

CSMS$TO_GLOBAL END

Required Fields:
dim1 (int) decomposition dimension
vars1 (var) comma separated list of variables

that should be converted to global
values in the given dimension

Optional Fields:
dim2 (int) another data decomposition

dimension
vars2 (var) comma separated list of variables

that should be converted to global
values in the given dimension

dim3 (int) another data decomposition
dimension

vars3 (var) comma separated list of variables
that should be converted to global
values in the given dimension

SEMANTICS

This directive converts variables,used as array indices,
from processor local to their corresponding global value.
Conversions are done on scalar entities only; no arrays or
array references will be translated. For the direct
translation of array indices, refer to the directive
CSMS$GLOBAL_INDEX.

LIMITATIONS

1. No arrays or array indices will be translated. See
csms$global_index to handle these translations.

MESSAGES

58.

 ERRORS

No data decomposition has been specified for this directive.

Either the data decomposition must be specified
directly using the parameter decomp, or this directive
must be within the scope of a csms$parallel region.

RELATED DIRECTIVES

CSMS$DISTRIBUTE

NOTES

1. This directive must be inside an enclosing parallel
region.

EXAMPLES

 Example 1: Global Indices Inside Loops

In this example, the loop index “j” has been translated to a
local value by CSMS$PARALLEL. Since the if-conditional
requires a global value of j in the 2nd decomposed dimension,
CSMS$TO_GLOBAL(<2,j>) is used.

C sequential code with directives
CSMS$DISTRIBUTE(dh, <IM_WORLD>, <JM_WORLD>) BEGIN
 real x(IM_WORLD,JM_WORLD)
 real y(IM_WORLD,JM_WORLD)
 real z(IM_WORLD,JM_WORLD)
CSMS$DISTRIBUTE END

CSMS$PARALLEL(dh, <i>, <j>) BEGIN

 do j=1, JM_WORLD
 do i=1, IM_WORLD
CSMS$TO_GLOBAL(<2,j>) BEGIN
 if (j .gt. 5) then
CSMS$TO_GLOBAL END
 x(i,j) = y(i,j)
 else
 x(i,j) = z(i,j)
 endif
 enddo
 enddo
CSMS$PARALLEL END

59.

CSMS$TO_LOCAL

SYNTAX

CSMS$TO_LOCAL (
 < dim1, vars1>
[, < dim2, vars2>
[, < dim3, vars3>]]
[: SIZE]) BEGIN

CSMS$TO_LOCAL END

Required Fields:
dim1 (int) decomposition dimension
vars1 (var) comma separated list of variables

that should be converted to local
values

Optional Fields:
dim2 (int) another data decomposition

dimension
vars2 (var) comma separated list of variables

that should be converted to global
values

dim3 (int) another data decomposition
dimension

vars3 (var) comma separated list of variables
that should be converted to global
values

SIZE (key) to request the locally declared
array size

SEMANTICS

This directive converts a variable to array size from global
to processor local values. Conversions are done on scalar
entities only; no arrays or array references will be not
translated.

If the SIZE keyword is used, the variable is converted to
the locally declared size of the given decomposed dimension.
This modifier is often used in computing the local size of
an array in the given decomposed dimension. See Example 2
for more details.

LIMITATIONS

60.

1. Array indices are not be translated.

MESSAGES

 ERRORS

No data decomposition has been specified for this directive.

Either the decomposition (decomp) must be specified
explicitly, or this directive must be contained within an
enclosing parallel region (CSMS$PARALLEL).

The only option permitted for this directive is: “SIZE”

 NOTES

To_Local: An output array index was translated.

RELATED DIRECTIVES

CSMS$DISTRIBUTE

NOTES

1. The SIZE modifier is applied to all local variables
listed in the directive.

2. This directive must be inside an enclosing parallel
region.

EXAMPLES

Example 1: Local Computations are Required
Example 2: Using the SIZE Keyword
Example 3: Local Length Computations

 Example 1: Local Computations are Required

In this example, we require local computations within a
defined parallel region. The loop index “i” has been
translated into a local variable by CSMS$PARALLEL. We use
CSMS$GLOBAL to reference a global maximum. Once computed,
this maximum must then be converted back to a local value
for use as the decomposed array index: ilocal.

61.

CSMS$DISTRIBUTE(decomp, m) BEGIN
 real x(m)
 real y(m)
CSMS$DISTRIBUTE END

CSMS$PARALLEL(decomp,i) BEGIN
 do i = 1, m
CSMS$TO_GLOBAL(<1,i>) BEGIN
CSMS$TO_LOCAL(<1, ilocal>) BEGIN
 ilocal = max(1,i-1)
CSMS$TO_LOCAL END
CSMS$TO_GLOBAL END
 x(i) = y(ilocal)
 enddo
CSMS$PARALLEL END

 Example 2: Using the SIZE Keyword

The SIZE modifier to this directive will get the actual size
of the locally defined array for the given decomposed
dimension. This local size is often passed as an argument
to a subroutine as illustrated in the example below.

In this case, we use the SIZE modifier of CSMS$TO_LOCAL to
pass the declared local sizes of the arrays used in the
subroutine compute. Since all references to the arrays “a”
and “b” within subroutine compute are local no
parallelization of this routine is required.

CSMS$DISTRIBUTE(decomp,nx,ny) BEGIN
 real a(nx,ny,kk)
 real b(nx,ny,kk)
CSMS$DISTRIBUTE END

CSMS$PARALLEL(decomp) BEGIN
CSMS$TO_LOCAL(<1,nx>,<2,ny>:size) BEGIN
 call compute(a,b,nx,ny)
CSMS$TO_LOCAL END
CSMS$PARALLEL END

c --
 subroutine compute(a,b,m,n)

integer m,n
 real a(m,n),b(m,n)

 do i=1,m
 do j=1,n

c local computations

 enddo
 enddo

62.

 Example 3: Local Length Computations

In this example, we compute the local vector length of the
first two decomposed dimensions and store it in mn. This
value is used as a local upper bound for the collapsed i
loop computation. IMPORTANT NOTE: The i loop does not
require translation in this case because fldin is a local
array; no parallel region (CSMS$PARALLEL) is required.

Note: Loop collapsing is an outdated hand-optimization that
should be rewritten to their standard two or three
dimensional form. Refer to Example 2 from CSMS$IGNORE for
more details on the dangers of using collapsed loops.

 subroutine comp(m,n,kk)

CSMS$DISTRIBUTE(dh,m,n) BEGIN
 real fldin (m,n,kk)
CSMS$DISTRIBUTE END

CSMS$PARALLEL(dh) BEGIN
CSMS$TO_LOCAL(<dh:1,m>,<dh:2,n>:SIZE) BEGIN
 mn = m * n
CSMS$TO_LOCAL END
CSMS$PARALLEL END

 do i=1,mn
 fldin (i,1,k)=0.0
 enddo

63.

CSMS$TRANSFER

SYNTAX

Multi-line option

CSMS$TRANSFER (
 < SrcVar1, DestVar1 >
[< SrcVar2, DestVar2>) BEGIN

CSMS$TRANSFER END

Single-line option

CSMS$TRANSFER (
 < SrcVar1, DestVar1 >

 [< SrcVar2, DestVar2>)

Required Fields:
SrcVar1 (var) variable to be transferred
DestVar1 (var) destination variable to receive the

transfer
Optional Fields:

SrcVar2 (var) another variable to be transferred
DestVar2 (var) destination variable to receive the

transfer

SEMANTICS

This directive is used to move data arrays from a source to
a destination decomposition. Source or destination arrays
may be decomposed or non-decomposed. The source (SrcVar1)
and destination (DestVar1) arrays must be the same type and
rank but may have different sizes. Additional pairs of
arrays do not need to be similar to any other pairs.
However, array pairs that are the same type and rank as
other pairs will be aggregated to reduce communication
latency.

Transfers between decompositions should be used when the
benefits of resolving data dependencies are greater than the
communication costs associated with transferring between
data decompositions.

Both single and multi-line transfer directives are

64.

supported. Both generate the same SMS transfer code
however, the multi-line transfer will remove all statements
between the begin and end transfer directives. This option
is useful when existing statements that copy between grids
should be replaced. Example 1 illustrates this point.

LIMITATIONS

1. The source and destination variables must be different
arrays.

2. For any dimension, data may be scrambled before or after
the transfer but not both. This means you cannot transfer
between packed data decompositions.

MESSAGES

 ERROR

Vector lengths must be the same for Grid Ratio and Offset
fields.

If grid ratio and offsets are used, they must contain
the same number of dimensions.

Closing CSMS$TRANSFER must be supplied.

Nesting of transfer directives is not permitted. In
addition, all transfers must be completed by the end of
a program unit (function, subroutine or program).

RELATED DIRECTIVES

CSMS$DECLARE_DECOMP
CSMS$CREATE_DECOMP
CSMS$DISTRIBUTE

NOTES

EXAMPLES

 Example 1: Spectral Model Transfers

65.

Data transfers between grids are useful in spectral models
for transformations between fourier and grid space. The
multi-line transfer option is used because the parallel
transfer replaced the original code that originally copied
data between the array pairs <fi, fj> and <dfi, dfj>.

This code segment illustrates the computation being broken
up due to data dependencies in both the 1st (i) and 2nd (j)
dimensions. One dimensional data decompositions are defined
for each dimension (dhi and dhj). CSMS$TRANSFER is used to
transpose between these decompositions so that efficient
parallel computations can be done.

subroutine spectral_comp

CSMS$DISTRIBUTE(dhj,<jm>) BEGIN
 real fj(im,jm,km)
 real dfj(im,jm,km)
CSMS$DISTRIBUTE END

CSMS$DISTRIBUTE(dhi,<im>) BEGIN
 real fj(im,jm,km)
 real dfj(im,jm,km)
CSMS$DISTRIBUTE END

 do while (global_error .gt. tolerance)

 call compute_j_dep(fi,dfi)
CSMS$TRANSFER(<fi,fj>, <dfi, dfj> BEGIN
 do k= 1, km
 do j = 1, jm
 do i = 1, im
 fj(i,j,k) = fi(i,j,k)
 dfj(i,j,k) = dfi(i,j,k)
 enddo
 enddo
 enddo
CSMS$TRANSFER END

 call compute_i_dep(fj,dfj)
CSMS$TRANSFER(<fj,fi>, <dfj, dfi> BEGIN
 do k= 1, km
 do j = 1, jm
 do i = 1, im
 fi(i,j,k) = fj(i,j,k)
 dfi(i,j,k) = dfj(i,j,k)
 enddo
 enddo
 enddo
CSMS$TRANSFER END

c more code
 enddo

66.

Automatic Code Translations

In some cases PPP translates code without requiring directives.
Currently, there are two areas in which automatic translation of
the code are done: I/O, and program termination statements. This
section will highlight these areas in detail.

Input / Output Statements

Code generation for I/O relies on CSMS$DISTRIBUTE directive to
identify variables that are decomposed. Variables that are not
contained within this directive or are in the directive but
contain no matching variable tags will be treated as NON-
DECOMPOSED entities. See the documentation on CSMS$DISTRIBUTE
for further details on tagging.

Currently all Fortran read, write, open, close and print
statements are automatically translated by PPP with the following
EXCEPTIONS:

a. Implied do-loops for unformatted output.
eg. write(5) (a(i),i=1,5)

b. Unformatted output of single elements of a decomposed
arrays:

eg. write(5) a(5)

c. end, err options are not handled
eg. open(5,err=50,end=100,file=’test.dat’)

e. formatted input/ output strings longer than 256
characters

(see example 1).

Each of these exceptions will generate a PPP error.

The slash format specifier is automatically removed from all I/O
statements (eg. format(/,i5) will become: format(i5))

MESSAGES

 ERRORS:

This real type is not currently supported.

The only real types PPP currently supports are: real,
real*4 and real*8

Unformatted Implied-Do statements are not currently

67.

supported.

Due to the complexity in the code generation required,
PPP does not currently translate these statements.
(Eg. print *,(a(i),i=1,nx)).

Note: PPP is able to translate formatted implied-do
statements; however the output must be less than the
512 character length currently allowed.

Maximum format string length exceeded.

The number of characters permitted for formatted I/O
cannot exceed 512.

Unformatted I/O of decomposed arrays is not currently
supported.

The PPP handling of these statements has not been
developed (see Example 1).

 NOTES:

Unsupported array declaration.

PPP cannot handle assumed size arrays because some
translations must know the number of elements (see
Example 2).

Slash format descriptor removed

The SMS run-time system cannot currently handle the
slash format descriptor so it is removed. If you wish
to retain the original output formatting you will need
to break the output into multiple statements.

EXAMPLES

Example 1: Decomposed array output
Example 2: Assumed size arrays

 Example 1: Decomposed array output

SMS manages the I/O of decomposed arrays in parallel. PPP
translation of read and write statements currently handles
the output of full arrays only. A future upgrade will
handle individual array elements.

68.

In the example below, the first “write” statement will
generate an error; all other statements are translated
correctly by PPP.

CSMS$DISTRIBUTE(dh,nx,ny) BEGIN
 real a(nx,ny,nz)
CSMS$DISTRIBUTE END
 real levs(lm)

 read(5) a
 do k=1,lm
 write(4) a(1,1,k)
 print *,’pressure level = ‘,levs(k)
 enddo

 Example 2: Assumed size arrays

This type of implied array declaration is not supported in
PPP. A warning message is used because the statement may
not affect code translations. In this example the handling
of “string” does not require translation by PPP so the
message can be ignored.

Note: In a future upgrade, PPP will output a warning message
only when it DOES affect a code translation.

 subroutine puts(proc,handle,string,status)
 integer proc, handle, status
 character*(*) string

 print *,string
 return

