Scal abl e Model 1 ng System
(SM5)
Ref er ence Manual

Nat i onal Oceani c and At nospheric Adm nistration
Forecast Systens Laboratory
Advanced Conputing Branch
325 Broadway
Boul der, Col orado 80303

Mark W Govett
Leslie Hart
Tom Hender son
Dan Schaffer

February 2000
SMS Version 2.0

| nt r oducti on

Tabl e of Contents

Docunent ati on Notes .

CSMB$CREATE_DECOVP

CSMB$DECLARE_DECOWP .

CSMs$DI STRI BUTE .

CSMS$EXCHANGE .
CSMS$EXI T .

CSMS$FLUSH_OUTPUT .
CSMS$GLOBAL_| NDEX .

CSMB$HALO COMP
CSMS$! GNORE .
CSMS$! NSERT .
CSMS$MESSAGE
CSMS$PARALLEL .

CSMB$PRI NT_MODE .

CSMB$REDUCE .
CSVB$REMOVE .
CSMS$TO_GLOBAL
CSMB$TO_LOCAL .
CSMB$TRANSFER .

Aut onati ¢ Code Transl ations . .
| nput / Qutput Statenents

12.
16.
21.
24.
26.
29.
35.
38.
41.
43.
45.
49.
51.
56.
S7.
59.
63.
66.

| nt r oducti on

Thi s docunent describes all of the Scal abl e Mddel i ng System (SVS5)
directives required to translate regular grid finite difference
nodel and spectral nodel Fortran codes into parallel versions
that can be run on a variety of shared and distributed nenory
machi nes. A conponent of SMS, called the Parallel Pre-Processor
(PPP), is used to translate the SM5 directives and serial Fortran
code into parallel Fortran source. Further information about SMS
is described in the overview docunent: SMS: A Directive-Based
Paral l eli zati on Tool for Shared and Distributed Menory High
Performance. |In addition, the SM5 Users Cuide, details

i nformation on how to use SMs5 to parallelize Fortran 77 codes.

It is highly reconmmended that these docunents be read before this
SMS Reference Manual is used.

In this reference manual, each directive is described in detail
with sections defining the syntax, describing the directive, its
limtations, notes, error nessages, and code exanples. The
syntax section provides a description of each paranmeter and the
permtted grammar types. These types are defined in the next
section titled: Docunentation Notes.

In order to clarify code translations, generated output code is
occasionally presented. This output is NOT the actual code
generated by PPP; it is pseudo-code and should be used for

i nformati onal purposes only.

Docunent ati on Not es

Grammar Types

1. (expr) an expression: any conbination of integers,
or variable nanmes (including array
references) and the binary operators: */+-

Exanples: { 1, a, a+l, a(l)+1 }

2. (expr-) an in item1 EXCEPT array references are not
permtted (eg. a(l))
Exanples: { 1, a, a+l }

3. (expr+) in addition to item1l, phrases of the form
Lower Bound : UpperBound are permtted, where
bot h bounds can be expressions

Exanmples: { 1, a+l, 1:nx, a(l):b(1) }

4. (int) any nuneric integer val ue
Exanples: {1, 2, 3}

5. (key) a specific keyword nust be given
Exanples: { Treat As_ Conpl ex }

6. (string) any quoted text
Exanples: { “this is a string” }

7. (var) any vari abl e nane
Exanmples: { nx, ny, a, b}

8. (var|int) a variable or integer as defined in itenms 4
and 7 are pernmtted

1. Syntax Notes

1. PPP directives longer than 72 characters mnust be
continued on the next line using the PPP |line continuation
characters: CSMs$>

Exanpl e:

CSMS$CREATE_DECOWP(deconp,
CSMS$> <gl obal _si zel, gl obal size2, gl obal _size3>,
CSMS$> <halo_1, halo_2, halo_3>

CSMB$CREATE DECOVP

SYNTAX

CSVMS$CREATE_DECOWP (dh[(nest)],
< globall [, global2 [, gl obal 3]] >,
< halol [,halo2 [, halo3]]>
[,< Ib_stratl [,Ib_strat2 [,Ib_strat3]]>])

Requi red Fi el ds:

deconp (var) name of data deconposition

gl obal 1 (expr) gl obal size of the 1% deconposed
di mensi on

hal o1 (expr) t hi ckness of the halo region for

the 1°' deconposed di nension
Opti onal Fi el ds:

nest (expr-) deconposi tion nest index

gl obal 2 (expr) gl obal size of the 2" deconposed
di mensi on

gl obal 3 (expr) gl obal size of the 3" deconposed
di mensi on

hal 02 (expr) t hi ckness of the halo region for
t he 2" deconposed di mension

hal 03 (expr) t hi ckness of the halo region for
the 3% deconposed di mension

I b_stratl (key) | oad bal ancing strategy for the 1°
deconposed di nensi on

| b_strat2 (key) | oad bal ancing strategy for the 2™
deconposed di nmensi on

| b_strat3 (key) | oad bal ancing strategy for the 3™

deconposed di nensi on

Load Bal ancing Strateqgies are:
SCRAMBLE LAT_STRATEGY
SCRAMBLE LON STRATEGY
SCRAMBLE_WAVENUM STRATEGY

SEMANTI CS

This directive initializes the data structures, decl ared by
CSMS$DECLARE_DECOWP, that are necessary to support data
novenent, |ocal and gl obal address translation, do-|oop
transformati ons, and data deconposition by SMS. These
structures are initialized at run-tinme based on the nunber
of processors specified at the conmand |ine (using snmsRun).
Once deconpositions are defined and initialized,

5.

CSMS$DI STRI BUTE is used to deternine how each array is
di vi ded up anong the processors.

This directive should be inserted at the begi nning of the
execut abl e portion of the program Each di nension specified
by the gl obal size argunents (globall, 2, 3) will be
deconposed by SMS. Both static and dynam c nenory

all ocation are supported (see Exanples 1 and 2). If dynamc
menory allocation is used, CSMS$CREATE_DECOWVP cannot appear
after a CSMS$DI STRI BUTE because the sizes of deconposition
structures, determ ned at run-time, cannot be assigned
before they are initialized (see Exanple 3).

Nesting is supported by SM5. If nultiple nests are decl ared
(eg. two declared nests inplies CSMS$DECLARE DECOMP(dh(2)),
then a directive nust be specified to initialize EACH NEST
(eg. CSMS$CREATE_DECOWP(dh(1), CSMS$CREATE DECOWP(dh(2)).
Consult the SMS Users CGuide for nore information and
exanpl es on data deconposition using SMs.

LI M TATI ONS
1. Any two of the first three dinensions can be deconposed.
2. The maxi mum gl obal size and hal o thickness permtted for
each dinension is 1000 and 6 respectively. 1In a future

upgrade, these values can be optionally set to other val ues
at the PPP command |i ne.

MVESSAGES

ERRORS:

Thi s data deconposition structure does not exist.

A data deconposition with this nanme has not been
defined by a correspondi ng CSMS$DECLARE_DECOWP
directive that is in scope.

This index scranbling technique is not supported.

The only types of index scranbling supported are:
scranbl e_wavenum st r at egy
scranbl e_| at _strategy
scranbl e_| on_strategy

The nunber of argunents differs fromthe definition.

The nunber of di nensions specified nust match the
nunber of dinmensions given for this deconposition in
t he correspondi ng CSMS$DECLARE _DECOWP directi ve.

The nunber of halo argunents differs fromthe nunber of
gl obal size val ues.

There nmust be a one to one correspondence between the
gl obal size (globall,2,3) and hal o t hi ckness
(hal 01, 2, 3) argunents.

RELATED DI RECTI VES

CSMVB$DECLARE_DECOVP
CSMB$DI STRI BUTE
CSMB$TO_LOCAL

NOTES

1. Halo wdths for a scranmbl ed di nensi on nust be zero.

EXAVPLES

Exanple 1: Static Menory Allocation
Exanple 2: Dynamic Menory All ocation
Exanple 3: Limtation for the Dynam c Case

Exanple 1: Static Menory Allocation

For a fortran programwth the statically allocated array
u(nx, ny,nz), a deconposition structure is created to
deconpose the array U over the avail able processors. The

| ocal ly decl ared size of the deconposed array shoul d be

| arge enough to run on the m ni num expected nunber of
processors (see Exanple 1 of CSMS$DECLARE DECOWMP). The

decl ared | ocal sizes are determned at run-time based on the
nurmber of processors and the gl obal sizes given by
CSMS$CREATE_DECOWP. The exanpl e bel ow decl ares | ocal array
si zes large enough to run on 16 processors (4 by 4).

program static
paramet er (NX=512, NY=512, NZ=64)

CSMS$DECLARE_DECOMP(dh, <NX/ 4+(2*3)+1, NY/ 4+(2*3)+1>)
CSMS$DI STRI BUTE(dh, nx, ny) BEGI N

real u(nx,ny,nz)
CSMS$DI STRI BUTE END

CSMS$CREATE_DECOMP(dh, <nx, ny>, <3, 3>)

end

This program creates automatic arrays whose deconposed sizes
depend on the nunber of processors specified at run-tine.
Note that this type of nenory allocation is an extension to
f77 and is not a feature of all conpilers. It is supported
by all f90 conpil ers however

Since the subroutine argunents nx and ny are translated to
the actual |ocal sizes (CSMS$TO LOCAL), no directives are
needed inside the subroutine nodel assumng it is
enbarrassingly parallel.

program dynam ¢

i nt eger nx, ny, nz

namel i st /domai n_size/ nx,ny,nz
CSMS$DECLARE_DECOMP(dh)

open(1,file="domain_size.nl")
read(1l, domai n_size)
close(1)

CSMS$CREATE_DECOMP(dh, <nx, ny>, <0, 0>)

CSMS$TO _LOCAL(<dh : 1, nx>, <dh : 2, ny>:SIZE) BEG N
call model (nx, ny, nz)

CSMS$TO_LOCAL END
end

subrouti ne model (nl, n2, n3)
i nteger nl,n2,n3
real u(nl, n2,n3)

C
do i=1,n1
do j=1,n2
c more code .
enddo
enddo
return
end

Exanple 3: Linmtation for the Dynam c Case
This exanple illustrates a requirenment that a dynanmically

al l ocat ed data deconposition be initialized by
CSMS$CREATE_DECOWP BEFORE it is used by the CSMS$DI STRI BUTE

8.

directive. This is because structures initialized by
CSMS$CREATE_DECOWP are used to size the deconposed array
di mensi ons identified by CSMS$DI STRI BUTE.

program si nmpl e_conp

call conmpute(100)
end

subroutine compute(im
integer im

CSMS$DECLARE_DECOMP(deconp)

CSMS$DI STRI BUTE(deconp, <i m>) BEGI N
integer x(im, y(im, z(im

CSMS$DI STRI BUTE END

CSMS$CREATE_DECOMP(deconp, <inmp, <0>)

CSMS$PARALLEL(deconp, <i >) BEGI N

c execut abl e code ..

CSMS$PARALLEL END

return
end

Re- coded I nput File
CSMS$DECLARE_DECOWVP and CSMS$CREATE _DECOWP are noved into

the main routine to insure CSMS$DI STRIBUTE wil|l receive the
correct local size values inside conmpute(). Note: a common

bl ock is used to comunicate the |local array sizes between
routines in code generated by CSMS$DECLARE DECOWP. This
expl ai ns why CSMS$DECLARE _DECOWP appears in both routines.

program si npl e_conp

CSMS$DECLARE_DECOMP(deconp)
CSMS$CREATE_DECOMP(deconmp, <100>, <0>)
call compute(100)
end

subroutine compute(im
integer im
CSMS$DECLARE_DECOMP(deconp)

CSMS$DI STRI BUTE(deconp, <im) BEGI N
integer x(im, y(im, z(im

CSMS$DI STRI BUTE END

CSMS$PARALLEL(deconp, <i >) BEGH N

c execut abl e code ..

CSMS$PARALLEL END
return
end

10.

11.

CSMS$DECLARE DECOVP

SYNTAX

CSMS$DECLARE _DECOWP (deconp[(num)],
[, <decl aredl [, decl ared2 [, decl ared3]] >]
[:<lowerl, [,lower2 [,lower3]] >])

Requi red Fi el ds:
decomp (var) nanme of the data deconposition

Optional Fields:

num (expr-) nunber deconpositions nests

decl aredl (expr+) decl ared | ocal size of the 1%
deconposed di nensi on

decl ared2 (expr+) decl ared | ocal size of the 2™
deconposed di nensi on

decl ared3 (expr+) decl ared | ocal size of the 3"
deconposed di nensi on

| oner 1 (expr-) | ower bound of the 1° deconposed
di mensi on

| ower 2 (expr-) | oner bound of the 2" deconposed
di mensi on

| ower 3 (expr-) | ower bound of the 3'® deconposed
di mensi on

SEMANTI CS

This directive defines deconposition structures necessary to
support data novenent, |ocal and gl obal address transl ation,
do-l oop transformati ons and data deconposition. These
structures are then filled at run-tinme based on information
provi ded by CSMS$CREATE DECOWP and applied to deconposed
arrays using the CSMS$DI STRI BUTE directive. These
deconposed arrays are defined with unit |ower bounds unless
stated explicitly (using lowerl,2,3) by this directive (see
Exanple 1).

This directive nust be in scope of all references to arrays,
parallel regions and I/O statenents that require access to
the generated deconposition structures. Typically,
CSMS$DECLARE_DECOWMP is placed in an include file that either
al ready exists or has been created specifically for the
parallel nodel. These file dependencies nust be indicated
by all nodul es that need them using the ppp command |ine
options --Finclude or --Fcomopn respectively (see the SMS
Users CGuide: Building A Parallel Program.

12.

This directive was designed to support both dynam c and
static nenory allocation. |If static allocation is used, the
user MJST specify local sizes (declaredl, 2,3 fields above)
that are | arge enough to handl e the nunber of processors
with which the user plans to run the program To mnin ze
menory use and optim ze cache re-use, nmultiple statically

al l ocated prograns can be built with different declared size
values for differing nunbers of processors. At run tine,

the actual |ocal sizes required on each processor will be
conputed. If dynamc allocation is used, declared size
val ues MUST NOT be present - SMS will cal culate the |ocal

sizes required automatically.

LI M TATI ONS

1. Any two of the first three di nensions can be deconposed.

VESSAGES
ERRORS:

The nunber of argunments differs fromthe nunber of | ower
bounds val ues.

I f | ower bounds values (lowerl,2,3) are |listed, we
requi re the nunber of argunents be equal to the nunber
of declared | ocal size (declaredl, 2,3) argunents given
(for STATIC nenory allocation only).

RELATED DI RECTI VES

CSMB$CREATE_DECOMP
CSMVB$DI STRI BUTE
CSMVB$PARAL LEL
CSMB$LOCAL_SI ZE

NOTES

1. This directive nust be in scope of all directives that
require access to the decl ared deconposition (deconp).
Typically, this directive is placed in a file that is
i ncl uded by all nodules that need it; however, it can al so
be inserted directly into existing source. See Exanple 1.

EXAVPLES

13.

Exanple 1: Non-Unit Lower Bounds Support

Static nenory allocation is used in this exanple because the

decl ared | ocal sizes (NX_LOCAL, NY_LOCAL) are given in
CSMS$DECLARE_DECOMP. Further, the original arrays are
defined with | ower bounds of zero. W include the non-unit

| ower bound val ues in CSMS$DECLARE_DECOWP. This information
is then used by CSMS$DI STRI BUTE to preserve the | ower bounds

of the deconposed arrays.

To inprove the clarity of this exanple, constants were
defi ned using CSMS$I NSERT directive to define the |oca

si zes, number of processors and hal o thi cknesses of each
di mensi on. These conputations could al so have been stated
explicitly as paranmeters in the directive (eg.

CSMS$DECLARE_DECOWMP(my_deconp, <NX+1/4+2*3+1,...>), avoiding

the insert decl arations.

The size declarations (NX _LOCAL, NY LOCAL) will be expl ained

in detail. The first ternms (NX+1/nprocs_x, NY+1/nprocs_y)
I ndi cate the m ni rum nunber of processors permtted will be
12 because 4 (nprocs_x) and 3 (nprocs_y) processors are

required for each dinension to satisfy conputations on the
array “a”. The second terms (thick x, thick_y) indicate
sufficient storage is allowed for halo thickness of 3 in
both directions (indicated by 2*3). Finally, an additional
unit of storage is included to account for round off errors
on varying values of NX and NY in the third term

Note: the nunber of processors assigned to each di nension
(nprocs_x, nprocs_y) is determned at run-tine based on the
nunmber of processors assigned to the program and the gl oba
di rensi ons of the deconposed arrays. See the SMS Users
Guide for a nore detail ed discussion.

i nteger nx, ny

paramet er (nx=64, ny=48)

CSMS$| NSERT paramet er (nprocs_x=4, nprocs_y=3)
CSMS$I| NSERT parameter (thick_x=2*3, thick_y=2*3)
CSMS$| NSERT paramet er (NX_LOCAL (NX+1) / nprocs_x+t hi ck_x+1)

CSMS$I| NSERT par amet er (NY_LOCAL (NY+1) / nprocs_y+t hi ck_y+1)
CSMS$DECLARE_DECOMP(my_deconp, <NX_LOCAL, NY_LOCAL>: <0, 0>)
CSMS$DI STRI BUTE (ny_deconp, NX, NY) BEG N

real a(0:NX, 0:NY)
CSMsS$DI STRI BUTE END

CSMS$CREATE_DECOMP(my_deconp, <NX+1, NY+1>, <0, 0>)

14.

CSMS$PARALLEL (my_deconp, NX, NY) BEGI N
do i =0, NX
do j =0, NY
a(i,j) =0.0
c more data parallel computations
enddo

enddo
CSMS$PARALLEL EN

15.

CSVs$DI STRI BUTE

SYNTAX

CSMS$DI STRI BUTE ([<] deconp [(nest)],
[<tagsl>] [, <tags2> [, <tags3>]]
[TREAT_AS COWPLEX] [>]
[, <deconmp2, ...>]) BEGN

CSMS$DI STRI BUTE END

Requi red Fi el ds:

deconp (var) name of the data deconpostion
Optional Fields

nest (expr-) deconposition nest index

tagsl (var|int) list of variables that identify the
1°* deconposed di nensi on.

tags2 (var|int) list of variables that identify the
2" deconposed di nensi on

tags3 (var|int) list of variables that identify the

3'% deconposed di nension

TREAT_AS_COWPLEX keyword specifies real declarations
shoul d be treated as their conpl ex
equi val ent (see note 2)

deconp2 anot her deconposition couplet -
wi th options as defined above.
This is useful for nesting. See
Exanpl e 3.

SEMANTI CS

This directive links the data deconposition structures,
defined by CSMS$DECLARE_DECOWP and created by
CSMS$CREATE_DECOWP, with arrays targeted for deconposition.
CSMS$DI STRI BUTE is the heart of PPP handling of deconposed
data in the user’s program Two fundanmental aspects of
distributed arrays are handled: (1) identifying arrays that
are deconposed and how they are deconposed, and (2)

repl aci ng the sizes of the deconposed array dinensions with
their correspondi ng processor |ocal sizes.

Variables listed in the directive (tagsl, 2,3) identify which
array di nmensions are deconposed. Further, a nmapping between
each deconposed array di nension and the di nensions of the
data deconposition is also determned. This mapping is used
to insure correct handling of each array for exchanges,

16.

transfers, I/0O operations, |ocal and gl obal address
transl ations, and reductions.

Repl aci ng the array’s deconposed di nensions with processor

| ocal sizes depend on identifying the nenory all ocation
schenme that was used (given by CSMS$DECLARE _DECOWP). For
static allocation, the declared |ocal size, specified in
CSMS$DECLARE_DECOWP (decl aredl,2,3) will be used. 1In the
dynanmi c case the size of each deconposed di nensi on, conputed
at run-time by SM5, will be used.

| f dynamic nenory allocation is used, CSMS$CREATE_DECOVP
cannot appear after a CSMS$DI STRI BUTE because the sizes of
deconposition structures, determned at run-tinme, cannot be
assi gned before they are initialized. See Exanple 3 in
CSMS$CREATE_DECOWP for nore details.

The optional keyword TREAT_AS COWLEX applies to real arrays
that store the real and inmginary parts of conpl ex nunbers
in adjacent nmenory |locations. |If this keyword is used, all
decl arations contained in the enclosed directive will be
treated as though they are conplex values by SM5 (eg. for
I/ O transfers, reductions, exchanges). See Exanple 2 for
nore details.

LI M TATI ONS

1. The translation of assuned size declarations (eg.
a(nx,*)) are not supported.

VESSACGES
ERRORS

The nanme given for this deconposition has not been defined
or is not in scope.

The data deconposition nane given by paraneter deconp

(above), nust have been defined by CSMS$DECLARE DECOWP
and be in scope.

CSMs$DI STRI BUTE can only be used for declarative statenents.
This directive was designed to operate on array
declarations. It cannot be used for subroutine or
function declarations, assignnment statenents, etc.

WARNI NGS

17.

This array, deconposed by CSMS$DI STRI BUTE, is bei ng used
outside of a parallel region.

Typically, a deconposed array (defined by the
CSMS$DI STRIBUTE), is used within a declared parall el
regi on (CSMS$PARALLEL) .

RELATED DI RECTI VES

CSMVB$DECLARE_DECOVP
CSMB$CREATE_DECOMP

NOTES

1. Brackets: <> are not required when a single tag (tagl, 2,
3) is used to specify a deconposed di nension. For exanple
CSMs$DI STRI BUTE(dh, nx, ny) can be used, where nx relates to
the first dinmension and ny to the second.

2. An array is not deconposed (1) if it is outside the
scope of a CSMS$DI STRI BUTE directive or (2) none of its
di mensi ons are declared with one of the tags specified in
the encl osed distribute directive.

EXAVPLES

Exanple 1: Array Declaration Exanpl es
Exanpl e 2: TREAT_AS COWPLEX Array Handl i ng
Exanple 3: Miltiple data Deconpositions

Exanpl e 1: Array Decl aration Exanpl es

In the exanple below, all of the arrays EXCEPT x5 will be
deconposed according to data deconposition dh. The variable

x5 will not be deconposed (or transl ated) because none of
its dinensions matches the tags |isted in CSMS$DI STRI BUTE.
Generated parallel output illustrates these points.

CSMS$DECLARE_DECOMP(dh, <im/ 2+1, jm 2+1>)
CSMS$DI STRI BUTE(dh, im jm BEGH N

real x0(im5)

real x1(imjm

real x2(3,imjm

real x3(jm3,im

real x4(jmim

real x5(10, 20, km

18.

CSMS$DI STRI BUTE END

GENERATED PARALLEL PSEUDO- CODE

Each of the arrays listed is deconposed differently as shown
I n the output generated. For exanple, array x3's first

di mension is associated with the second di nension of the
dat a deconposition: dh. The second di nension is not
deconposed and the third is associated with the first

di rensi on of the deconposition. The translated out put
assigns the appropriate declared size paraneter that is

defi ned by out put generated by CSMS$DECLARE DECOWP.

C CSMS$DI STRI BUTE(dh, im jm BEG N
real xO0(Declared_Size_1, 5)
real x1(Declared_Size_1, Decl ared_Size_2)
real x2(3, Declared_Size_1, Declared_Size_2)
real x3(Declared_Size_2,3, Declared_Size_1)
real x4(Declared_Size_2, Declared_Size_1)
real x5(10, 20, km)

C CSMsS$DI STRI BUTE END

Exanpl e 2: TREAT_AS COMPLEX Array Handl i ng

A common net hod for the treatnent of conplex variables is to
store the real and imginary parts into adjacent real val ue
pai rs. When TREAT_AS COWPLEX is used, all real arrays within
t he encl osed CSMsS$DI STRIBUTE wi || be handl ed as though they
are conpl ex vari abl es.

In this exanple, the following two declarations will be
treated exactly the sane way by the SM5 run-tinme system
The inner nost dinmension of the real declaration is tw ce
the size of the conplex declaration. However, the user’s
treatment of these different declarations only requires the
TREAT- AS_ COWLEX keyword. No ot her changes are required by
the user. SMs takes care of all the details required to
treat these real-valued pairs as conpl ex vari abl es.

CSMS$DECLARE_DECOMP(ny_dh, <jtrun>)
CSMS$DI STRI BUTE(my_dh, <jtrun>) BEGI N
complex a(jtrun, lev, ny)

CSMS$DI STRI BUTE END

CSMS$DI STRI BUTE(my_dh, <jtrun> : TREAT_AS_COMPLEX) BEGI N

real ar(jtrun*2, lev, ny)
CSMS$DI STRI BUTE END

19.

Exanple 3: Multiple Data Deconpositions

The parallelization of nested finite difference
approxi mati on (FDA) nodels frequently requires nultiple
grids be in scope. 1In this exanple, a fine and a coarse
mesh deconposition are dynamcally allocated and initialized
usi ng CSMS$DECLARE_DECOWP and CSMS$CREATE_DECOWP. These
deconpositions are used by CSMsS$DI STRI BUTE to deconpose the
fine and coarse variables fldfmand fldcmrespectively. The
scratch arrays cwork and fwork are simlarly deconposed.

After coarse grid conputations are done, CSMS$TRANSFER i s
used to transfer data to the fine grid. Refer to the SMS
Users Quide for nore infornmation on nesting.

Note: Multiple deconpositions are expressed in a single
CSMS$DI STRI BUTE directive to avoid re-ordering the coarse
and fine mesh array declarations. 1In this scenario, two
CSMS$DI STRI BUTE directives woul d be used: one for the coarse
mesh variables and the other for the fine nmesh ones.

parameter (maxgrds=2)
parameter (ncnm=512, ncme512, mfme512, nfnme512)
CSMS$DECLARE_DECOMP(dh(maxgrds), <mcm 4, ncm 4>)

CSMS$DI STRI BUTE(<dh(1), mcm ncne>, <dh(2), nfm nfn>) BEGI N
real fldcm (ncm ncm kk)
real fldfm (nfm nfm kk)
real cwork (nmcm ncm
real fwork (nmfm nfm
CSMS$DI STRI BUTE END

CSMS$CREATE_DECOMP(dh(1), <mcm ncme, <0, 0>)
CSMS$CREATE_DECOMP(dh(2), <mfm nfm>, <0, 0>)

c coarse grid conputations ...

C transfer results to the fine grid
CSMS$TRANSFER(<f | dem, f I df m>)

C fine grid computations ...

20.

CSMB$ EXCHANGE

SYNTAX

CSMS$EXCHANGE (
Varl [< | ower 1: upperl, |ower2:upper?2, |ower3:upper3>]
[,Var2 [<...>]])

Requi red Fi el ds:

Var 1 (var) vari able to be exchanged.
Optional Fields:
Var 2 (var) anot her variable to be exchanged
di nml (var|int) thickness of halo to be exchanged
in the first deconposed di nension.
di n2 (var|int) thickness of halo to be exchanged
I n the second deconposed di nensi on.
di n8 (var|int) thickness of halo to be exchanged

in the third deconposed di nension

NOTE: diml, dinR, and dinB assune the thickness of
upper and | ower halos to be exchanged is the sane. |If
you wi sh to exchange halo data with different | ower and
upper the field dinml, din2 or dinB can be repl aced
w t h:

| ower : upper

for any deconposed di nensi on.

SEMANTI CS

This directive comruni cates with nei ghboring processors to
update hal o or ghost regions. Only the halo regions are
updated; if other |ocal data nust be noved between vari abl es
that are deconposed differently (or not deconposed) then
CSMS$TRANSFER shoul d be used. If nmultiple arrays are
exchanged within a single directive, the exchanges are
aggregated (conbined) to inprove performance. |Information
provi ded by CSMS$DI STRIBUTE i s used to generate the correct
comruni cati on code for each variabl e exchanged.

LI M TATI ONS

1. This directive will not work for variabl es whose
interior region is smaller than the hal o thickness (defined

21.

by CSMS$CREATE _DECOWP) in a given di nension

2. This directive does not work with deconposition
di mensi ons contai ni ng scranbl ed i ndices.

MESSAGES
ERRORS
Cannot exchange a vari abl e that has not been deconposed.

A vari abl e nust be deconposed in order for its |ocal
data to be exchanged wi th nei ghboring processors

RELATED DI RECTI VES

CSMB$CREATE_DECOMP
CSMB$CREATE_PACKED SPEC DECOMP
CSMVB$DI STRI BUTE

CSVB$HALO_COVP

CSMB$TRANSFER

NOTES

Exanpl e 1: Dependent Loop Conputations

In this exanple, we have chosen to do exchanges after every
dependent | oop. This technique is useful on nmachi nes having
(relatively) low |l atencies and high band-w dths for inter-
processor comruni cation. Redundant conputations are

avoi ded, but communication is needed before every | oop.

This code will scale well for |arge nunbers of processors
provi ded i nter-processor comruni cation latency is | ow and
bandwi dth i s high

Anot her approach that is useful on high | atency machines is
to elimnate the second exchange by doi ng redundant
conputations in the halo region of the variable wkl.
Exanple 1 in CSMS$HALO COWP il lustrates this approach

subroutine smoot h(x)

C Include all stuff not passed in (irrelevant to exanple).

22.

i nclude 'everything.h'

CSMS$DI STRI BUTE(DH_GRI D, nx, ny) BEGH N
real x(nx,ny)

C Local declaration
real wkl(nx, ny)

CSMS$DI STRI BUTE END

C Exchange variable x to update its halo region.
CSMS$EXCHANGE(x)

CSMS$PARALLEL (DH_GRID, <i>, <j>) BEG N
C Snoot her conput ati ons.

do 20 j=2,ny-1

do 20 i=2,nx-1

wk1(i,j)=0.5*x(i,j)+0.125*
& (x(i-2,j)y+x(i+1,j)+x(i,j-21)+x(i,j+1))
20 continue

CSMS$EXCHANGE(wk 1)

do 40 j=2,ny-1
do 40 i=2,nx-1
x(i,j)=0.5*wk1(i,j)+0.125*
& (Wk1(i-2,j)+wkd(i+1,j)+wkl(i,j-21)+wkl(i,j+1))
40 continue
CSMS$PARALLEL END

cC nmore conmput ations

23.

CSMS$EXI T

SYNTAX

CSMS$SEXIT [([status])]

Requi red Fi el ds:
none.

Optional Fields:
st at us (int) exit status reported by SMS when
the programterm nates.

SEMANTI CS

The term nation of a program using SMS can either abort or
exit normally. A normal exit fromSMsS wll insure proper and
orderly process term nation. The SMS control process wll
wait until every processor’s conputations, conmunications
and I/O are conplete before exiting. An abort from SVS w ||
termnate all processes imedi ately, regardl ess of state.

PPP autonmatically generates code to either abort or exit in
two different ways. Code that tells SMs to abort
(PPP_ABORT) is generated whenever a “stop” statenment is
encountered in the Fortran source. Code to termnate a
program normal ly (PPP_EXIT) is generated by PPP whenever an
“end” program statenent is encountered in the source code.

This directive nodifies the above default behavior froma
program abort to a normal exit when CSMS$EXI T appears at the
statenent prior to the Fortran stop statenent. For nore
i nformati on about SMS process control, refer to the SMS
Users Cui de.

LI M TATI ONS
NONE

MESSAGES

NONE

RELATED DI RECTI VES

24.

Exanpl e 1: Program Term nati on

By default, code is automatically generated by PPP to
PPP_ABORT whenever a stop statenment is encountered unl ess
CSMS$EXI T appears in the previous statement. In this
exanpl e, the CSMS$EXIT is used to insure a normal program
termnation if the abort flag is fal se.

program mai n
| ogi cal abort

abort = .false.
call model (parans, abort)

if (abort .eq. .true.) stop
CSMS$EXI T

stop
end

25.

CSMB$FLUSH OUTPUT

SYNTAX

CSMS$FLUSH_OUTPUT

Required Fiel ds
NONE.

SEMANTI CS

CSMS$FLUSH _OQUTPUT al | ows conput e processes to continue nodel
comput ations concurrent with data being witten to disk.
This directive should be used whenever the application has a
| ong period of conputations before the next I/O statenent is
reached. See the SMS Users Cuide for nore details on the
use of I/0O cache processors.

This directive is never required; it is only used to inprove
performance. Further, this directive has no effect on the

file contents; output is exactly the same with or w thout
this directive.

LI M TATI ONS
NONE

VESSAGES
NONE

RELATED DI RECTI VES
NONE
NOTES

Since read and ASCI| output statenents interact with the 1/0
subsystem via the SM5 server process, they should be avoided
until the cache processors are finished servicing binary

out put operations resulting fromthe CSMS$FLUSH OUTPUT.

If you are not using I/O cache processors, the follow ng
envi ronnent vari ables may be useful:
SM5 RBS - size of block for input (in Bytes)

26.

SM5_RBC - nunber of blocks for input (default is 16)

SM5_WBS - size of blocks for output (in Bytes)

SM5 CLOSE_ MODE - set to “require_flush” to defer output
until CSMS$FLUSH OUTPUT i s encount er ed.

If input files are too large to fit in the physical nenory
of one processor, the follow ng environnment variable is
useful :
SM5_RAN_RSTYLE - set to “one-var” to instruct SM5 to read
one input variable at a tine.

The recomended val ues for these variables are:
SM5_RBS - size of the file /15 (size of the | argest
variable if "one-var" is used).
SM5 RBC - 16
SM5 WBS - size of the file
SM5 CLOSE_MODE - do not require-a flush

Al'l of these variables are optim zation hints to the SM51/0
sub-system If values are not specified, SMs will do the
best job it can and will make correct progress at the
expense of performance. De-optim zation values can result
in extrenely poor |/O performance. Refer to the SMS Users
Guide for nore information about optim zing parallel 1/0
oper ati ons usi ng SMs.

EXAVPLES

Exanpl e 1: Overlap Conputations with Mdel Qutput

Thi s code segnment outputs binary data to disk every “ioutl"”
tinme steps though the routine “output”. This code segnent
will only work efficiently if the SMS wite operation prior
to the CSMS$FLUSH OUTPUT are conplete before nore binary /0
are done. Oherw se, all processes containing outstandi ng
/O requests nmust wait for wite operations to conplete

bef ore conputati ons can resune.

c mai n nodel tine-stepping |oop
do istep = 1, nunsteps

C ... nodel conputations ...
call conpute

c sone binary output to disk
if (nmod(istep,ioutl).eq.0) then
cal | out put
CSMS$FLUSH_OUTPUT

27.

endi f

enddo

28.

CSVB$GLOBAL | NDEX

SYNTAX
CSMS$GLOBAL | NDEX (
di ml [>]
[, dim2 [>]]) BEGN

CSMS$GLOBAL_ | NDEX END

Requi red Fi el ds:

di mlL (int) deconposed di nensi on for which
array references should be treated
as gl obal

Optional Fields:
di n2 (int) anot her deconposed di nensi on for
whi ch array references should be
treated as gl obal

SEMANTI CS

This directive is used to translate indices of deconposed
arrays from gl obal references to processor-1local references.
Typical uses of this directive are for nodel boundary
handl i ng, and the output of diagnostic nessages on el enents
of deconposed arrays.

The nanme of the data deconposition is determ ned either
explicitly (deconpl, deconp2) or by using the default
deconposition defined by an encl osing parall el

(CSMS$PARALLEL) region. The rel ationship between the array
di mensi on and the deconposition di mension decl ared gl obal by
this directive (dinl, din2) is determ ned by
CSMS$DI STRI BUTE. See the exanples for nore details.

LI M TATI ONS

1. A maximum of two dinensions is supported.

2. The translation of deconposed array indices that are
t hensel ves arrays, is not currently permtted. In a
future update we plan to support these translations.

3. Read, wite, and print statenments that occur within the
scope of a CSMS$GLOBAL_I|I NDEX directive will not be
translated. See Exanple 4 for nore details.

4. Else clauses of an if-then-else nust relate to the sane

29.

| ocal data given as tested by the if-conditional. See
Exanple 2 for nore details
5. Nested CSMS$GLOBAL_I|I NDEX directives are not permtted.

VESSAGES
ERRORS

No data deconposition has been specified for this directive.

Ei ther the data deconposition nmust be given explicitly
in the gl obal index (deconpl, deconp2), or this
directive nust be contained within an encl osing
paral l el regi on (CSMS$PARALLEL).

CSMS$GLOBAL_|I NDEX transl ations of array indices on |I/0O
statenents are not support ed.

These types of translations are not currently
support ed. See Exanple 4 for a coding alternative.

The translation of this indirect array reference is not
currently support ed.

The transl ati on of deconposed array indices that are

thensel ves arrays, is not currently permtted. In a
future update we plan to support these translations.

Non-unit stride loops within the scope of a gl obal index
directive are not currently transl ated.

We plan to update PPP to support these | oops.

RELATED DI RECTI VES
CSMS$DI STRI BUTE
CSM5$I NSERT

CSMS$PARALLEL
CSMS$REMOVE

NOTES
EXAVPLES

Exanpl e 1: Boundary Initialization
Exanpl e 2: Conditional Statenent Handling
Exanpl e 3: Handli ng of Deconposed Di nensions

30.

Exanple 4: Translation of 1/0O statenents

Exanpl e 1: Boundary Initialization

A typical use of this directive is to initialize the
boundari es of deconposed arrays. |In this exanple, u and v
are both deconposed in two di mensi ons by CSMS$DI STRI BUTE.
To initialize the east-west gl obal boundaries of the
deconposed arrays u and v, CSMS$GLOBAL | NDEX(1) is used.
Simlarly, CSMS$GLOBAL_|I NDEX(2) is used to initialize the
nort h-south boundaries (not shown).

Each processor contains a sub-region of the deconposed

arrays u and v. The generated code will insure that only
those processors that contain the east-west gl oba
boundaries wi Il execute the assignnent statenents.

CSMS$DI STRI BUTE(dh, m n) BEGI N
real u(mn, k)
real v(mn, k)
CSMS$DI STRI BUTE END

CSMS$PARALLEL (dh, i,j) BEG N
CSMS$GLOBAL_I NDEX(1) BEGI N
do j=1, n
v(1l,j,k) = v(1,j,k) - vav
u(mij,k) = u(mj,k) - vav
enddo

CSMS$GLOBAL_| NDEX END
CSMS$PARALLEL END

Exanpl e 2: Conditional Statenment Handling

It is inportant to insure that all deconposed array
references within an if-else statenment containing a
CSMS$GA.OBAL_| NDEX directive, are local to the processor
where conputations are done. For exanple, an out of bounds
reference would be generated if ek(mj,k) were referenced
within the if | oop because that data would not be local to
the processors that contain the first row of the gl obal
array ek.

CSMS$DI STRI BUTE(dh, m n) BEGI N
real ek(mn, k)
real em(m n, k)
real u3(mn, k)
CSMS$DI STRI BUTE END

CSMS$PARALLEL (dh, m n) BEGI N

do j=1, n
CSMS$GLOBAL_| NDEX(1) BEGI N

31.

if(u3(l,j,k)
ek(1,j,k)
em(1,j, k)
el se
ek(1,j,
en(l,j,
endi f
CSMS$GLOBAL _| NDEX END
enddo
CSMS$PARALLEL END

0)
J0*ek(2,], k) +ek(3,], k)
o*em(2, . k) +em(3, | k)

Exanpl e 3: Handling of Deconposed Di nensions

In this exanple we illustrate the binding of the deconposed
di nensi on given by the CSMS$G.OBAL_| NDEX directive with the
data deconposition as it applies to the arrays. View ng the
CSMS$DI STRI BUTE t agged variables (mn), we notice that avz
and zsfc are deconposed in both dinms but zygeo is only
deconposed in the 2" (j) dinension. This will affect the
transl ation of the assignnent statenent as illustrated by

t he generated parallel code.

Proper translation requires that each variable in the

assi gnnment statenent be checked to see if it is deconposed
in the first dinension (specified by GLOBAL | NDEX(1l)) as
defined by CSMS$DI STRIBUTE. Using this deconposition

i nformation, PPP translates only the first index of avz and
zsfc, leaving the other variabl es al one.

CSMS$DI STRI BUTE(dh, m n) BEGI N
real avz(m n)
real zygeo(n, k)
real zsfc(mn)
CSMS$DI STRI BUTE END
real sigma(k)

CSMS$PARALLEL(dh,,j) BEG N
if(condition_met)then
do k=1, k
do j=1,n
CSMS$GLOBAL_| NDEX(1) BEGI N
zygeo(j, k) =sigmma(k)*avz(1l,j)+zsfc(l,j)
CSMS$GLOBAL_| NDEX END
enddo
enddo
endi f

c Mor e code ..
CSMS$PARALLEL END

Exanpl e 4: Translation of I/O statenents

32.

CSMS$GLOBAL_| NDEX transl ations of array indices for 1/0
statenments are not currently supported. These transl ations
are conplicated by the requirenent that statenents often
need to be broken into nultiple fragnents because no single
processor has all of the data in its |ocal nenory. 1In the
event a format descriptor exists, it nmust be broken up too.

paramet er (nx=16, ny=16)
csns$decl are_decomp(dh, nx_a, ny_a)

csms$di stribute(dh, nx, ny) begin
real a(nx,ny)
csms$di stribute end

csms$paral l el (dh) begin
csms$gl obal _i ndex(1, 2) begin
print a(l,1),a(l,ny),a(nx,ny),a(nx, 1)

csms$gl obal _i ndex end

csms$parallel end

Re-coded Input File

Two re-coding techni ques can be used to resolve this print
statenent. A reduction operation can be done to gather the
corner points by each processor and then output by a single

print statenment. This technique is illustrated in Exanple 3

of CSMS$REDUCE.

Anot her approach is to use CSMS$I NSERT and CSMS$REMOVE t o
re-code this segnment. As illustrated below, the print
statenent is broken into four statenents (one for each
corner point). Do-loops are used and translated (if the

| oop vari abl es appear in CSMS$PARALLEL) to insure only those

processors containing the array references will output them
Furt her, asynchronous output is required to avoid processor
deadl ock (see CSMS$PRI NT_MODE for nore details).

Note: While the first approach will guarantee the sane

output as the original code, it will execute nore slowy
because of the extra conmuni cations required by the
reducti on.

paramet er (nx=16, ny=16)
csnms$decl are_deconmp(dh, <nx, ny>)

csms$di stribute(dh, nx, ny) begin

real a(nx,ny)
csnse$di stribute end

33.

csnms$parallel (dh, i, j) begin
csms$renmove begin

print *,a(l1,1),a(l, ny> a(nx,ny), a(nx,1)
csms$renove end

csnms$print_mode (sync) begin

csms$i nsert do i=1,1
csms$insert do j=1,1

csms$i nsert print *,a(l,j)
csns$i nsert enddo

csns$i nsert enddo

csms$i nsert do i=1,1
csnms$insert do j =ny, ny
csnms$insert print *,a(i,j)
csns$i nsert enddo

csns$i nsert enddo

csms$i nsert do i =nx, nx
csnms$insert do j =ny, ny
csnms$insert print *,a(i,j)
csms$i nsert enddo

csns$i nsert enddo

csms$i nsert do i =nx, nx

csms$i nsert do j=1,1
csms$insert print *,a(i,j)
csms$i nsert enddo

csms$i nsert enddo

csms$print _mode end
csns$paral l el end

34.

CSMB$HALO COVP

SYNTAX

CSMS$HALO COWP (< |l owerl, upperl> [<,|ower2, upper2>
[,lower3, upper3>]]) BEG N

CSMB$HALO COVP END

Requi red Fi el ds:

| ower 1 (expr-) nunmber of steps in the hal o region
conputations will be done for the
| oner (left-nost) |ocal boundary in
t he 1% deconposed di nensi on.

upperl (expr-) nunber of steps in the halo region
conmputations will be done for the
upper (right)local boundary in the
1°* deconposed di nensi on

Optional Fields:

Lower 2 (expr-) as above for the |ower boundary of
the 2" deconposed di nension

Upper 2 (expr-) as above for the upper boundary of
the 2" deconposed di nension

Lower 3 (expr-) as above for the |ower boundary of
the 3'° deconposed di nensi on.

Upper 3 (expr-) as above for the upper boundary of

the 3¢ deconposed di nensi on

SEMANTI CS

This directive is used to control the nunber of steps into
the hal o or ghost region that conputations will be done.

The default behavior (when CSMS$HALO COWP is not used) is to
avoi d doing any conputations in the hal o region.
Computations in the halo region are called “redundant
conput ati ons” because each hal o point corresponds to an
interior point of a neighboring processor’s |ocal nenory. As
a result, conputations on a halo point will be done on at

| east two processors. The benefit of doing these extra
conmputes is that conmmuni cati on between processors can be
reduced | eading to an overall inprovenent of perfornmance on
many machi nes.

LI M TATI ONS
NONE

35.

MVESSAGES
ERRORS

CSMS$HALO_COWP can only be used within an active parallel
regi on.

Must be bounded by CSMS$PARALLEL BEG N / END

RELATED DI RECTI VES

CSMS$DECLARE_DECOVP
CSMsS$DI STRI BUTE
CSMS$EXCHANGE
CSMS$PARALLEL

NOTES

1. This directive nust be used within the scope of a
paral l el region

2. The m ni mum nunber of steps into the hal o region
permtted is zero; the maxi mum nunber is the halo thickness
(defined by CSMS$CREATE _DECOWP) for the dinmension of the
deconposition (given by CSMS$PARALLEL)

EXAMPLES

Exampl e 1: Tradi ng Conputations for Comrunication

This exanple illustrates an SMS nmethod to trade-off
redundant conputations in the halo region for reduced
conmuni cati ons. CSMS$HALO COWP(<1, 1>,<1,1>) indicates
redundant conputations will be done one step into the halo
region of the first two deconposed di mensions. This

el imnates the requirenent that wkl be updated before it is
required. After loop 40 the array x is valid only in the
interior (all halo points are in need of an update via an
exchange) .

Not e: This approach is useful on machines that have
(relatively) high latencies for inter-processor

comruni cation. Conmuni cation is needed only once at the
begi nni ng of subroutine snooth. Redundant conputations will
limt the scalability for |arge nunbers of processors
however. Refer to the SM5 Users CGuide for nore information

36.

CSMSSEXCHANGE (Exanple 1) illustrates this same code segnent
wi th no redundant conputations in the halo region. |nstead
an extra CSMS$EXCHANGE is required to update wkl before the
40 | oop gi ven bel ow.

subroutine smoot h(x)
C Include all stuff not passed in (irrelevant to exanple).
include 'everything.h
CSMS$DI STRI BUTE(DH_GRI D, <nx, ny>) BEGH N
C Subroutine argunments.
real x(nx,ny)
C Local declarations.
real wkl(nx,ny),wk2(nx, ny)
CSMS$DI STRI BUTE END

C Exchange variable x to update its halo region
CSMS$EXCHANGE(x)

CSMS$PARALLEL (DH_GRID, <i>, <j>) BEG N
C Smoot her conputati ons.
CSMS$HALO _COWMP(<1, 1>, <1,1>) BEG N

do 20 j=2,ny-1

do 20 i=2,nx-1

wk1(i,j)=0.5%x(i,j)
& +0. 125*%(x(i-1,j)+x(i+1,j)+x(i,j-21)+x(i,j+1))
20 continue

CSMS$HALO_COMP END

C no exchange is required here due to redundant conps in the hal o.

CSMS$HALO_COWMP END
do 40 j=2,ny-1
do 40 i=2,nx-1
X(i,j)=0.5*wkl1(i, |
+0. 125* (wk1(
40 conti nue
CSMS$PARALLEL END

)
-1,) +wk1(i+1,) +wk1(i,j - 1) +wki(i,] +1))

37.

CSMV5$1 GNORE

SYNTAX

CSMS$1 GNORE BEG N
CSMS$I GNORE END

Requi red Fi el ds:
NONE

SEMANTI CS

This directive inforns PPP about sections of code that
shoul d not be translated but should still be retained in the
code.

LI M TATI ONS
NONE

VESSAGES
NONE

RELATED DI RECTI VES

CSMS$I NSERT
CSMS$REMOVE

NOTES
NONE

EXAVPLES

Example 1: File Format Conversion

Binary fortran files are not portable across operating
systens due to non-standard record handling. As a result,
we normal ly convert these files to MPI external 10 format, a
standard that SMS uses for binary I/QO In this code
exanpl e, we do not want PPP to translate the origina

38.

open/read/cl ose statenents because we need to read the
Fortran binary formatted i nput file.

In the generated output, PPP only converts the fortran wite
statenments and “ignores” the read statenents. Wite
statenents are translated into calls to SM5 |ibrary routines
that will output these binary data into the MPI external 10
format. The transfornmed code should be |inked with the
single process version of the SMs |ibrary and run on one
processor. Refer to the SM5 Users Manual for nore

i nformation on I/ O operations.

CSMS$| GNORE BEGI N

C read Fortran unformatted binary file
open(18, file ="binary.dat’,form" unformatted’)
read(18) a,b,c
cl ose (18)

CSMS$I GNORE END

Cwite SMS-format binary file
open (18, file="binary.SMS_dat’,form=" unformatted’)
write (18) a,b,c
close (18)

Exanple 2: Coll apsed Loop Conputations

In this exanple, we conpute the vector length of the first
two deconposed di nensions and store the result in “m”. W
then use this value as a stop | oop bound on the coll apsed

conmputation found in the first loop. 1In this case, we do
not want PPP to touch the “i” |loop so the CSNB$IGNORE is
used.

Note: In alnost all cases, better performance can be
achieved by re-witing the collapsed |oops in their standard
2 or 3 dinensional form Loop collapsing is an outdated
hand- opti m zati on that usually does not inprove performance.

Further, if coll apsed | oops are used on deconposed arrays
that also contain halos, it nay not be possible to avoid
doi ng conputations on the un-initialized values in these
regions. Again, we recomrend re-witing these |oops.

subroutine comp(m n, kk)

CSMS$DECLARE_DECOMP(dh)
CSMS$DI STRI BUTE (dh, m n) BEGI N
real fldin (mn,kk)

CSMS$DI STRI BUTE END

39.

CSMS$PARALLEL(dh, i, j) BEG N

CSMS$TO_LOCAL(<1,np, <2,n> :SIZE) BEG N
m = m?* n

CSMS$TO _LOCAL END

do k=1, kk
CSMS$1 GNORE BEGI N
do i=1,m
fldin (i,1,k)=0.0
enddo
CSMS$1 GNORE END
enddo

doi =1, m
i =1, n

c array computations
enddo

enddo
CSMS$PARALLEL END

40.

CSV5$1 NSERT

SYNTAX

CSMS$I NSERT “li ne of code”

Requi red Fi el ds:

NONE
Opti onal Fields:
NONE
SEMANTI CS

This directive allows users to insert code to be
parallelized by PPP. Each line that is inserted nust be
prefaced by CSMS$I NSERT and adhere to Fortran 77 fixed
format rules. A single space separator is required for
statenent | abels and and additional six spaces for non-

| abel l ed fortran statenents.

LI M TATI ONS
NONE

VESSAGES
NONE

RELATED DI RECTI VES

CSMS$REMOVE
CSMS$1 GNORE

NOTES

EXAMPLES

Exanple 1: Qutput File Redirection

In this exanple, CSMS$lI NSERT and CSMS$REMOVE are used to

sel ect input data files based on whether a parallel run
(using SM5) is executed. Different files are used because
SMS uses the MPI external data format for binary 1/O0 Wile

41.

this format is portable, standard Fortran binary files are
not .

CSMS$REMOVE BEGI N
open(36,file="nyfile ,form’ unformatted’)
CSMS$REMOVE END

CSMS$! NSERT open(36,file="nyfile.SMS ,form" unformatted’)
read(36) u,v,w p,t,qv
cl ose(36)

42.

CSMB$MESSAGE

SYNTAX

CSMSSMESSAGE (Action, “Text”)

Requi red Fi el ds:

Acti on (key) nmessage action - options are:
ABORT, WARN, | NFORM
Text (string) quoted string to be output
SEMANTI CS

This directive is used to informthe user at run-tine of
code segnments that are being executed by SM5S that nmay be
problematic for PPP. This is useful when code segnents do
not appear to be executed. Unable to consult the code
author, an alternative to spending lots of tine rewiting
their code is to sinply ABORT with a nessage from SMs if the
code ever is executed. This serves as a useful alternative
to sinply renmoving the code with an CSMS$REMOVE or rewor ki ng
t he code segnent.

Three nmessage actions are available. ABORT is the only
action that will halt execution of the program WARN and
INFORMwi Il only wite the given nessage (Text) to stderr or
stdout respectively.

LI M TATI ONS
NONE

MESSAGES

ERRORS

Supported nessage actions are: WARN, ABORT, AND | NFORM

RELATED DI RECTI VES
CSMS$I NSERT

CSMB$PRI NT_ MODE
CSVB$REMOVE

43.

NOTES

1. The type of output (eg. ASYNC, ROOT, etc.) produced from
this directive will depend on the encl osi ng CSMS$PRI NT_MODE
specification. By default, asynchronous output will be
used.

EXAVPLES

Exanpl e 1: Unsupported Code

In this exanple, we observe a periodic boundary
initialization where nx is the right-hand bound for the
first dinension. This segnment cannot be parallelized

wi thout rewiting the code to separate the |left-side and
ri ght-side deconposed array references on ekm

Rat her than nodify this code, we use CSMS$MESSAGE to abort
in the event this code segnent is executed. At that point,
this code can be reworked.

CSMS$DI STRI BUTE (dh, nx, my) BEGI N
real ekm(nx, my, kk)
CSMS$DI STRI BUTE END

c condition_ever_met set by other computations in the node

CSMS$PARALLEL(dh,i,j) BEG N
if (condition_ever_met) then
CSMS$MESSAGE(ABORT, ' This code is not supported by sms')

do k=1, kk
do j=1,n
ekm(1,j,k)=ekm(nx,j, k)
C more periodic array references ...
enddo
enddo
endi f
c
c .. other code ..

CSMS$PARALLEL END

44.

CSVS$PARALLEL

SYNTAX

CSMS$PARALLEL (deconp [(nest)]
[,<ivars > [,< jvars >] [,< kvars >]) BEG N

CSMS$PARALLEL END

Requi red Fi el ds:

deconp (var) nanme of the data deconposition
Optional Fields:

nest (expr-) deconposi tion nest index

ivars (var) comma separated |ist of variables

used to reference arrays deconposed
by deconp in the 1% deconposed
di mensi on

jvars (var) comma separated |ist of variable
used to reference arrays deconposed
by deconp in the 2" deconposed
di mensi on

kvars (var) comma separated |ist of variables
used to reference arrays deconposed
by deconmp in the 3'® deconposed
di mensi on

SEMANTI CS
Defines a region over which parallel conputations will be
done on each processor’s |ocal data, as defined by the given
data deconposition (deconp). All do-loops inside a parallel
region that reference the specified | oop variables (ivars,
jvars, kvars) wll be translated. This directive also

provi des a default data deconposition context for other PPP
directives used within the scope of the parallel region.

LI M TATI ONS

1. Explicit nesting of parallel regions is not permtted.

MVESSAGES
ERRORS

45.

Nesting of CSMS$PARALLEL directives is not permtted.

It is likely that a CSMS$PARALLEL END directive is
needed.

CSMS$PARALLEL END directive requires a correspondi ng
CSMS$PARALLEL BEQ N.

Parall el Begin / End pairs are required.

The nunber of di nensions given exceeds the rank of the data
deconposition

The nunber of di nensions specified by the parallel
region argunments (ivarl, jvarl, kvarl) cannot exceed
t he nunber of dinensions in the data deconposition
(deconp) defined by CSMS$DECLARE DECOWP. Be sure to
separate each dinension’s parallel variables with
brackets <> (see note 2).

The deconposition given for this directive has not been
defined or is not in scope.

The deconposition nanme, given by deconp, nust have been
decl ared by CSMS$DECLARE DECOWMP and be visible to this
CSMS$SPARALLEL directive.

NOTES
Non-unit stride do-loop detected.

Negative unit stride do-loop detected.

RELATED DI RECTI VES

CSMS$DECLARE_DECOMP
CSMVB$CREATE_DECOMP
CSMB$DI STRI BUTE
CSVB$HALO COWP
CSMB$TO_LOCAL
CSVB$TO_GLOBAL
CSVB$GLOBAL_| NDEX

CSMS$REDUCE
NOTES
1. Brackets (<>) can be omtted if a single variable is
I
[

sted for that dinension (ivarl, jvarl, kvarl). Exanple 1
I

[
I lustrates this point.

46.

EXAVPLES

Exanpl e 1: Deconposed Loop Ceneration
Exanpl e 2: Non-Unit Stride Loop Handling

In this exanple the only loops that are translated into

| ocal start and stop array references are for those

vari ables that are listed in the CSMS$SPARALLEL directive. In
this case we have specified i for the first deconposed

di mension, and j for the second. The k loop is not
transl at ed.

CSMS$DI STRI BUTE(decomp, i, j) BEG N
real f(mn)
CSMS$DI STRI BUTE END

CSMS$PARALLEL (deconp, i, j) BEG N
do k=1, | evs
do j=1, n
do i=1, m
f(i,j)=0.0
enddo
enddo
enddo
CSMS$PARALLEL END

GENERATED PARALLEL PSEUDO- CODE

Transl ation vectors (eg. i_start, i_stop), created at run-
time by CSMS$CREATE DECOWP, are used to define the processor
| ocal start and stop | oop bounds. Factors that affect these
transl ation vectors are (1) the data deconposition, (2) the
dat a deconposition dinmension, (3) the nunber of steps into

t he hal o regi on conputations are done (CSMS$HALO COWP), and
(4) the deconposition nest |level (if any).

CSMS$PARALLEL (deconp, i,j) BEGIN
do k = 1, levs

do j=j _start(1l), j_stop(n)
do i = i_start(1l), i_stop(m
f(i,j)=0.0
enddo
enddo
enddo

CSMS$SPARALLEL END

Exanple 2: Non-unit Stride Loop Handling

A non-unit stride of 2 is used in this exanple. PPP
translation will insure only globally addressed even
nunber ed conput ati ons are done on each processor.

CSMS$DI STRI BUTE(deconp, jlen) BEGH N
real *8 cc(jlen), bb(jlen)
CSMS$DI STRI BUTE END

CSMS$PARALLEL(deconp, m) BEGI N

do 3 m=2, jlen, 2
cc(m = cc(m + bb(m
3 continue

CSMS$PARALLEL END

48.

CSMB$PRI NT_MODE

SYNTAX

CSMS$PRI NT_MODE (node) BEG N
CSMS$PRI NT_MODE END

Requi red Fi el ds:

node (key) print node to be used for output.
Options are:
ASYNC -asynchronous out put
ORDERED - ordered out put
ROOT -root node out put

SEMANTI CS

This directive applies to standard output of strings. Four
out put node options are avail abl e:

ASYNC Each processor prints its string when this
statenent is reached. The processors do not
synchroni ze. Message ordering may differ from one
run to the next.

ORDERED In fixed order, each processor prints its string.
This node is typically used for debugging. The
processors synchroni ze so deadl ock will occur if
one or nore processors do not execute the output
st at enent

ROOT The designated root processor (node zero) prints

its string. The processors do not synchroni ze.

There is also a default print node. |If the user does not
specify a print node using CSMS$PRI NT_MODE, the environnent
vari able SMs PUTS MODE is exam ned. SMS PUTS MODE can be
set to any of the above nodes at run-tine. If it is not
visible or set to sonething else then the node reverts to

t he ROOT node’ .

LI M TATI ONS

49.

NONE
MVESSAGES
NONE

RELATED DI RECTI VES
CSMS$MESSAGE

NOTES

1. This directive also controls the output of nessages
generated by the CSMSSMESSAGE directive.

EXAVPLES

Exanpl e 1: Code Segnent where ASYNC Mode is Required.

The processors that output tstart will depend on the
envi ronnent variable SMs PUTS MODE. If SMS PUTS MODE is not
set, only the ROOT node will output this statenent.

The second wite statenent is only printed on a process
where x(i,j) is greater than thresh. Since all processors
may not satisfy this condition, asynchronous output (ASYNC)
is required or a deadl ock nmay occur. For nore infornmation
about process control, refer to the SM5 Users QGui de.

write (*,6000) tstart

6000 format (' Model start time = "',f8.3)
CSMS$PARALLEL(dh, i, j) BEGIN
do j =1, ny
do i =1, nx

if (x(i,j).gt.thresh) then
CSMS$PRI NT_MODE(ASYNC) BEGI N
write (*,6001) x(i,j)
CSMS$PRI NT_MODE END

6001 format (' Convergence error, x = ',f11.3)
endi f
enddo
enddo

50.

CSM5$ REDUCE

St andard Reducti on

CSMS$REDUCE(Var [, Vars], Function)

Requi red Fi el ds:
Var (var) vari able to be reduced
Function (key) type of reduction operation -
supported functions are:
MAX, M N, SUM
Optional Fields:
Var s (var) ot her variables to be reduced

Bit-wi se Exact Reduction

CSMS$REDUCE (<SrcVarl, DestVarl [,Rdinms]> [, <SrcVar2,
DestVar2 [,Rdims]>][,...] [, SUM]) BEGA N

CSMS$REDUCE END
Requi red Fi el ds:

Srcvarl (var) array variable to be reduced

DestVarl (var) vari abl e where reduction result
will be stored

Function (var) type of reduction operation -
supported functions are:

SUM
Optional Fields:

Rdi ns (var) array di nensi ons over which
reducti on operations wll be done

Srcvar2 (var) anot her array variable to be
reduced

DestVar2 (var) vari abl e where result of SrcVar?2
reduction wll be stored

SUM (key) bit-wi se exact sum

SEMANTI CS

A reduction is used to deternmne a global MAX, MN or SUM
over all the processors. Two types of reductions are
supported: standard and bit-w se exact reductions.

51.

The standard reduction directive perforns the given function
on non-deconposed variables. The reduced variable wll be
stored in the variable being reduced (in place reduction).

The bit-w se exact reduction is used to insure exactly the
same floating point SUMregardl ess of the nunber of
processors. Since floating point arithnmetic is not

associ ative (due to round-off errors), this reduction is
useful to insure precise parallel results. The variables to
be reduced nust be deconposed arrays and should be real or
conpl ex data types where round-off errors are an issue.

By default, all dinensions of the given array will be
reduced unl ess reduction dinmensions are explicitly stated
(by Rdims). The size of those dinmensions that are not
reduced nmust match the correspondi ng di nensions of the

destination array that will store the result. Exanple 1
illustrates this point.

LI M TATI ONS
1. Standard reductions do not operate on deconposed arrays.
2. Reduction of conplex types has not been inplenented yet.

3. Inplicitly typed variables cannot be reduced. This wll
be corrected in a future rel ease.

4. Bit-w se reductions can be done on any of the first three
deconposed di nensi ons.

VESSACGES
ERRORS

Bit-w se Reductions are allowed over any of the first 3
di mensi ons.

Any of the first three dinensions can be reduced. See
Exanpl e 1.

Reductions are only permtted for “integer”, “real” or
“doubl e” types.

These are the only types that can currently be reduced.

Source bit-w se reduction variabl es nust be deconposed.

Source bit-w se exact reduction vari abl es nust be

52.

arrays and they nust be deconposed.

Supported standard reduction functions are MN, MAX, and
SUM

These function nanes are case insensitive.

Supported bit-w se reduction functions are: SUM

This variable's type/precision is not currently supported.
This refers to the fortran | anguage extension that
allows a precision nodifier to be added to the
type (eg. integer*4, logical*2,...). Currently

PPP only supports the type/precision specifiers:
real *4 and real *8.

RELATED DI RECTI VES
CSMs$DI STRI BUTE

CSMS$PARALLEL

NOTES
1. If no reduction dinmension (Rdins) is specified, the
first three dinensions will be reduced.

2. PPP assumes all code within the CSMS$REDUCE is a
reduction as specified in the directive. |If it is not, then
results wll vary wildly between the bit-w se and standard
reducti ons.

EXAMPLES

Exanple 1: Bit-w se Exact Suns over User Specified D nmensions

In this exanple we are reduci ng pkc over dinensions one and
three. The size the array in the remaining dinmension nust

mat ch the declared size of the destination array pksum In
this case pksumcontains two elenments and this nmatches the

size of the second dinension of pkc.

The code between the begin and end reduce will be replaced
with a global sumthat will insure exactly the sane result
regardl ess of the nunber of processors.

53.

csnms$di stribute(grid_dh, <ny>) begin
real *8 pkc(nx, 2, ny)

csns$di stribute end
real *8 pksum(2)

csnms$reduce(<pkc, pksum 1, 3>, SUM begin
pksum 0.0
prsum 0.0

do j
do
do i nx

pksum(1l) = pksum(1l) + pkc(i,!l,j)
enddo
enddo
enddo

csns$reduce end

my
2

e

Exanpl e 2: Standard Reducti ons

St andard reductions only operate on non-deconposed vari abl es
- in this case we conpute a max, mn and nmean fromthe

vari abl e dout. Local values are stored in dmax, dm n and
dnean and then reductions are done to get global results.

CSMS$DI STRI BUTE (dh, 1len) BEGIN
real dout (Il en)
CSMS$DI STRI BUTE END

real dmax, dm n, dmean

dmax=dout (
dm n=dout (
dmean=0.0
CSMS$PARALLEL (dh, 1) BEG N
do i=1,1en
dmax=max(dout (i), dmax)
dm n=m n(dout (i), dm n)
dmean=dmean+dout (i)
enddo
CSMS$PARALLEL END

1)
1)

CSMS$REDUCE (dmean, SUM)

CSMS$REDUCE (dm n, MAX)

CSMS$REDUCE (dm n, M N)
dmean=dmean/ fl oat (| en)
print *,dmax, dm n, dmean

Exanple 3: 1/0O Statenent Qut put

In this exanple, we wish to output the corner points of a
deconposed array. Two possibilities exist to handle this
situation. First, we break the output statenment into
multiple print statenments and hand code in | ocal | oops

54.

(CSMS$GLOBAL | NDEX - Exanpl e 4).

Second, we can use CSMS$REDUCE to gather the corner points
on each processor and then output the results. This

paral lelization requires we create a variable (pts) to hold
the corner points. Using CSMS$GLOBAL | NDEX, the previously
initialized values of pts are updated on those processors
hol ding a | ocal copy of each corner point. Finally we

gat her the corner points using the reduction operator: SUM

CSMS$1 NSERT real pts(4)

CSMS$DI STRI BUTE(dh, nx, ny) BEGI N
real a(nx,ny)

CSMsS$DI STRI BUTE END

CSMS$I NSERT do i=1,4
CSMS$1 NSERT pts(i) = 0.0
CSMS$1 NSERT enddo
CSMS$PARALLEL (dh, i, j) BEGIN

CSMS$REMOVE BEGI N
write(6,’ (4f4.2)') a(1,1),a(1,ny),a(nx,ny),a(nx,1)
CSMS$REMOVE END

CSMS$GLOBAL_| NDEX (1, 2) BEG N

CSMS$| NSERT pts(1) = a(1,1)

CSMS$I| NSERT pts(2) = a(1,ny)

CSMS$1 NSERT pts(3) = a(nx, ny)

CSMS$I1 NSERT pts(4) = a(nx,1)
CSMS$GLOBAL _| NDEX END

CSMS$REDUCE(pts, SUM

CSMS$| NSERT write(6,' (4f4.2)') (pts(i),i=1,4)

55.

CSM5$ REMOVE

SYNTAX

CSMS$REMOVE BEG N
CSMS$REMOVE END

Requi red Fi el ds:
NONE

SEMANTI CS
This directive renmoves all the code between the CSMS$REMOVE
BEG N and CSMS$REMOVE END. |If the ppp conmand |ine option
“--comment” is used, these code are sinply comented out,
ot herwi se the renoved code will not appear in the translated
output. O ten this directive is used in conjunction with

CSMS$I NSERT to nodi fy code segnents that are undesirabl e,
not parallelizable, or problematic for PPP.

LI M TATI ONS
NONE
VESSAGES
ERRORS

CSMS$REMOVE END found at line <line #> without a matching
CSMS$REMOVE BEG N.

RELATED DI RECTI VES

CSMS$I GNORE
CSMS$I NSERT

NOTES

EXAMPLES
See the exanpl e in CSVMS$I NSERT.

56.

CSMB$TO GLOBAL

SYNTAX

CSMS$TO_GLOBAL (
< dind, varsi>
[, < din2, vars2>]
[,< dinB,vars3>]) BEG N

CSMS$TO_GLOBAL END

Requi red Fi el ds:
di ml (int) deconposi tion di nensi on
varsl (var) comma separated |ist of variables
that should be converted to gl oba
val ues in the given dinension
Optional Fields:

di n2 (int) anot her data deconposition
di mensi on
vars2 (var) comma separated |ist of variables

t hat should be converted to gl obal
val ues in the given dinension

di nB (int) anot her data deconposition
di mensi on
vars3 (var) comm separated |ist of variables

that should be converted to gl oba
val ues in the given dinension

SEMANTI CS

This directive converts variabl es,used as array indices,
from processor local to their correspondi ng gl obal val ue.
Conversions are done on scalar entities only; no arrays or
array references will be translated. For the direct

transl ation of array indices, refer to the directive
CSMS$GLOBAL | NDEX.

LI M TATI ONS

1. No arrays or array indices will be translated. See
csnme$gl obal i ndex to handl e these transl ations.

VESSAGES

57.

ERRORS
No data deconposition has been specified for this directive.

Ei ther the data deconposition nust be specified
directly using the paraneter deconp, or this directive
nmust be within the scope of a csns$parallel region

RELATED DI RECTI VES
CSMS$DI STRI BUTE

NOTES

1. This directive nmust be inside an encl osing parall el
regi on.

EXAMPLES

Exanpl e 1: G obal Indices Inside Loops

In this exanple, the loop index “j” has been translated to a
| ocal val ue by CSMS$PARALLEL. Since the if-conditiona
requires a global value of j in the 2" deconposed di nension,
CSMS$TO GLOBAL(<2,j>) is used.

C sequential code with directives
CSMS$DI STRI BUTE(dh, <I M_WORLD>, <JM WORLD>) BEGI N
real x(! M WORLD, JM WORLD)
real y(!M WORLD, JM WORLD)
real z(!M WORLD, JM WORLD)
CSMS$DI STRI BUTE END

CSMS$PARALLEL(dh, <i>, <j>) BEGI N

do j=1, JM WORLD
do i=1, | M_WORLD
CSMS$TO_GLOBAL(<2,j>) BEG N
if (j .gt. 5) then
CSMS$TO_GLOBAL END
x(i,j) = y(i,j)
el se
X(i,])
endi f
enddo
enddo
CSMS$PARALLEL END

1
N
—
—
~

58.

CSMB$TO LOCAL

SYNTAX

CSMS$TO_LOCAL (

< dinl, varsl>
[, < din2, vars2>
[, < dinB, vars3>]]
[: SIZE]) BEG N

CSMS$TO _LOCAL END

Required Fields:

di mL (int) deconposi tion di nension

varsl (var) comma separated |ist of variables
t hat should be converted to | oca
val ues

Opti onal Fields:

di n2 (int) anot her data deconposition
di mensi on

vars2 (var) comma separated |ist of variables
t hat shoul d be converted to gl oba
val ues

di n8 (int) anot her data deconposition
di mensi on

vars3 (var) comma separated |list of variables
that should be converted to gl oba
val ues

SI ZE (key) to request the locally declared

array size

SEMANTI CS

This directive converts a variable to array size from gl obal
to processor |ocal values. Conversions are done on scal ar
entities only; no arrays or array references wll be not

t ransl at ed.

| f the SIZE keyword is used, the variable is converted to
the locally declared size of the given deconposed di nensi on.
This nodifier is often used in conputing the |ocal size of
an array in the given deconposed di nension. See Exanple 2
for nore details.

LI M TATI ONS

59.

1. Array indices are not be transl ated.

MESSAGES
ERRORS
No data deconposition has been specified for this directive.
Ei t her the deconposition (deconp) nust be specified

explicitly, or this directive nust be contained within an
encl osi ng parall el region (CSMS$PARALLEL).

The only option permtted for this directive is: “SlIZE’

NOTES

To_Local: An output array index was transl ated.

RELATED DI RECTI VES
CSMs$DI STRI BUTE

NOTES

1. The SIZE nodifier is applied to all local variables
listed in the directive.

2. This directive nust be inside an enclosing parall el
regi on.

EXAMPLES

Exanpl e 1: Local Conputations are Required
Exanple 2: Using the SIZE Keyword
Exanpl e 3: Local Length Conputations

Exanpl e 1: Local Conputations are Required

In this exanple, we require |ocal conputations within a
defined parallel region. The | oop index “i” has been
translated into a | ocal variable by CSMS$PARALLEL. W use
CSMS$A.OBAL to reference a gl obal maxi num Once conput ed,
t hi s maxi mum nust then be converted back to a | ocal value
for use as the deconposed array index: ilocal.

CSMS$DI STRI BUTE(decomp, m) BEGI N
real x(m
real y(m

CSMS$DI STRI BUTE END

CSMS$PARALLEL(deconp, i) BEGH N
doi =1, m
CSMS$TO_GLOBAL(<1,i>) BEG N
CSMS$TO _LOCAL(<1, ilocal>) BEG N
ilocal = max(1,i-1)
CSMS$TO_LOCAL END
CSMS$TO_GLOBAL END
x(i) = y(ilocal)
enddo
CSMS$PARALLEL END

Exanpl e 2: Using the SIZE Keyword

The SIZE nodifier to this directive will get the actual size

of the locally defined array for the given deconposed
di mension. This local size is often passed as an argunent
to a subroutine as illustrated in the exanple bel ow.

In this case, we use the SIZE nodifier of CSMS$TO LOCAL to
pass the declared | ocal sizes of the arrays used in the
subroutine conpute. Since all references to the arrays “a”
and “b” within subroutine conpute are | ocal no

paral lelization of this routine is required.

CSMS$DI STRI BUTE(deconp, nx, ny) BEGH N
real a(nx, ny, kk)
real b(nx, ny, kk)
CSMS$DI STRI BUTE END

CSMS$PARALLEL(deconp) BEGI N
CSMS$TO_LOCAL(<1, nx>, <2, ny>:size) BEGI N
call compute(a, b, nx, ny)
CSMS$TO_LOCAL END
CSMS$PARALLEL END
subroutine conmpute(a, b, mn)

integer mn
real a(mn), b(mn)

do i=1,m
do j=1,n

c |l ocal conputations

enddo
enddo

61.

Exanpl e 3: Local Length Conputations

In this exanple, we conpute the |ocal vector length of the
first two deconposed di nensions and store it in m. This
value is used as a | ocal upper bound for the coll apsed i

| oop conmputation. | MPORTANT NOTE: The i | oop does not
require translation in this case because fldin is a |loca
array; no parallel region (CSMS$PARALLEL) is required.

Not e: Loop collapsing is an outdated hand-optin zation that
should be rewitten to their standard two or three

di mensi onal form Refer to Exanple 2 from CSMS$I GNORE f or
nore details on the dangers of using collapsed | oops.

subroutine comp(m n, kk)

CSMS$DI STRI BUTE(dh, m n) BEGI N
real fldin (mn,kk)
CSMS$DI STRI BUTE END

CSMS$PARALLEL(dh) BEGI N

CSMS$TO_LOCAL(<dh: 1, m>, <dh: 2, n>: SI ZE) BEGI N
m = m?* n

CSMS$TO_LOCAL END

CSMS$PARALLEL END

do i=1,m

fldin (i,1,k)=0.0
enddo

62.

CSVB$ TRANSFER

Mul ti-line option
CSMS$TRANSFER (
< SrcVarl, DestVarl >
[< SrcVvar2, DestVar2>) BEG N

CSMS$TRANSFER END

Si ngl e-1ine option

CSMS$TRANSFER (
< SrcVarl, DestVarl >
[< Srcvar2, DestVar2>)

Requi red Fi el ds:

SrcVar 1l (var) variable to be transferred

DestVvarl (var) destination variable to receive the
transfer

Optional Fields:

Srcvar2 (var) anot her variable to be transferred

DestVar2 (var) destination variable to receive the
transfer

SEMANTI CS

This directive is used to nove data arrays froma source to
a destination deconposition. Source or destination arrays
may be deconposed or non-deconposed. The source (SrcVarl)
and destination (DestVarl) arrays nust be the sane type and
rank but nay have different sizes. Additional pairs of
arrays do not need to be simlar to any other pairs.
However, array pairs that are the sanme type and rank as
other pairs wll be aggregated to reduce communi cation

| at ency.

Transfers between deconpositions should be used when the
benefits of resolving data dependencies are greater than the
comruni cati on costs associated with transferring between
data deconpositions.

Both single and nmulti-line transfer directives are

63.

supported. Both generate the sanme SMS transfer code
however, the nmulti-line transfer will renove all statenents
bet ween the begin and end transfer directives. This option
Is useful when existing statenents that copy between grids
shoul d be replaced. Exanple 1 illustrates this point.

LI M TATI ONS

1. The source and destination variables nust be different
arrays.

2. For any dinension, data may be scranbl ed before or after

the transfer but not both. This neans you cannot transfer
bet ween packed data deconpositions.

MVESSAGES
ERROR

Vector |l engths nust be the sanme for Gid Ratio and O fset
fields.

If grid ratio and offsets are used, they nust contain
t he sanme nunber of dinensions.

Cl osi ng CSMS$TRANSFER nust be suppli ed.
Nesting of transfer directives is not permtted. In

addition, all transfers nust be conpleted by the end of
a programunit (function, subroutine or program.

RELATED DI RECTI VES

CSMS$DECLARE_DECOVP
CSMS$CREATE_DECOVP
CSMsS$DI STRI BUTE

NOTES

Exanpl e 1: Spectral Mdel Transfers

64.

Data transfers between grids are useful in spectral nodels
for transformati ons between fourier and grid space. The
multi-line transfer option is used because the parall el
transfer replaced the original code that originally copied
data between the array pairs <fi, fj> and <dfi, dfj>.

This code segnent illustrates the conmputation being broken
up due to data dependencies in both the 1% (i) and 2" (j)

di nensi ons. One di nensional data deconpositions are defined
for each dinension (dhi and dhj). CSMS$TRANSFER is used to
transpose between these deconpositions so that efficient
paral |l el conmputations can be done.

subroutine spectral _conp

CSMS$DI STRI BUTE(dhj , <j n») BEGI N
real fj(imjmkm
real dfj(imjmkm
CSMS$DI STRI BUTE END

CSMS$DI STRI BUTE(dhi , <i n») BEGI N
real fj(imjmkm
real dfj(imjmkm
CSMS$DI STRI BUTE END

do while (global _error .gt. tol erance)

call compute_j _dep(fi,dfi)
CSMS$TRANSFER(<fi,fj>, <dfi, dfj> BEG N

do k= 1, km
doj =1, jm
doi =1, im
fiCi,j, k) =fi(i,j,k)
dfj(i,j, k) = dfi(i,j,k)
enddo
enddo
enddo

CSMS$TRANSFER END

call compute_i_dep(fj,dfj)
CSMS$TRANSFER(<fj,fi>, <dfj, dfi> BEG N

do k= 1, km
doj =1, jm
doi =1, im
fi(i,j, k) =fj(i,j,k)
dfi (i,j,k) = dfj(i,j,k)
enddo
enddo
enddo

CSMS$TRANSFER END

c nmore code
enddo

65.

Aut omati ¢ Code Transl ati ons

In some cases PPP translates code without requiring directives.
Currently, there are two areas in which autonmatic transl ation of
the code are done: 1/O and programterm nation statenents. This
section will highlight these areas in detail

| nput / Qutput Statenents

Code generation for 1/Orelies on CSMS$DI STRI BUTE directive to
identify variables that are deconposed. Variables that are not
contained within this directive or are in the directive but
contain no matching variable tags will be treated as NON
DECOVPOSED entities. See the docunentation on CSMS$DI STRI BUTE
for further details on tagging.

Currently all Fortran read, wite, open, close and print
statenents are automatically translated by PPP with the foll ow ng
EXCEPTI ONS:

a. Inplied do-loops for unformatted out put.
eg. wite(5) (a(i),i=1,5)

b. Unformatted output of single elenents of a deconposed
arrays:
eg. wite(5) a(b)

c. end, err options are not handl ed
eg. open(5,err=50,end=100,file="test.dat’)

e. formatted input/ output strings |onger than 256
characters
(see exanple 1).

Each of these exceptions will generate a PPP error.

The slash format specifier is automatically renmoved fromall 1/0
statenments (eg. format(/,i5) wll becone: format(i5))
MESSAGES

ERRORS:

This real type is not currently supported.

The only real types PPP currently supports are: real,
real *4 and real *8

Unformatted I nplied-Do statenments are not currently

66.

support ed.

Due to the conplexity in the code generation required,
PPP does not currently translate these statenents.

(Eg. print *, (a(i),i=1,nx)).

Note: PPP is able to translate formatted inplied-do
statenents; however the output nust be | ess than the
512 character length currently all owed.

Maxi mum format string | ength exceeded.

The nunber of characters permtted for formatted 1/0
cannot exceed 512.

Unformatted |/ O of deconposed arrays is not currently
supported.

The PPP handling of these statements has not been
devel oped (see Exanple 1).

NOTES:

Unsupported array declaration

PPP cannot handl e assunmed size arrays because sone
transl ati ons nust know the nunber of elenents (see

Exanpl e 2).
Sl ash format descriptor renoved

The SMS run-tinme system cannot currently handle the

sl ash format descriptor so it is renoved. |f you w sh
to retain the original output formatting you will need
to break the output into nultiple statenents.

EXAVPLES

Exanpl e 1: Deconposed array output
Exanpl e 2: Assuned size arrays

Exanpl e 1: Deconposed array out put

SM5 manages the |/ O of deconposed arrays in parallel. PPP
translation of read and wite statements currently handl es
the output of full arrays only. A future upgrade w ||
handl e 1 ndi vidual array el enents.

67.

In the exanple below, the first “wite” statenment wll
generate an error; all other statenents are transl ated
correctly by PPP.

CSMS$DI STRI BUTE(dh, nx, ny) BEG N
real a(nx, ny, nz)

CSMs$DI STRI BUTE END
real levs(lm

read(5) a
do k=1,Im

wite(4) a(1,1,Kk)

print * ’'pressure |level = ‘,levs(k)
enddo

Exanpl e 2: Assuned size arrays

This type of inplied array declaration is not supported in
PPP. A warning nessage is used because the statenent may
not affect code translations. |In this exanple the handling
of “string” does not require translation by PPP so the
message can be ignored.

Note: In a future upgrade, PPP wi |l output a warning nessage

only when it DOES affect a code translation.

subrouti ne puts(proc, handl e, string, stat us)
I nt eger proc, handle, status
character*(*) string

print *,string
return

68.

