Parallelization of the NIM Dynamical

Core for GPUs
Xbox 360 Mark Govett
Nl Jacques Middlecoff, Tom Henderson,
ER Jim Rosinski, Craig Tierney
— Bigger Systems , egna Po—

— More Expensive Facilities
— Bigger Power Bills
— Lower System Reliability

* GPU

— Faster
.. — Less power
Lower cost

GLOBAI m DIVISION;

GPU & MIC Hardware

* NVIDIA: Fermi chip first to support HPC

— Tesla (2008) 240 cores, 933 SP GFlops, CUDA
— Fermi (2010) 512 cores, 662 DP Gflops, ECC memory
— Kepler (2012) 28nm - - > 3-4x performance / watt
— Maxwell (2014?) Integrated CPU & GPU
 AMD/ATI: Graphics chip primarily 933Gflops
— Fusion (2011): integrates CPU & GPU 150w

* Intel MIC: Many Integrated Core (2012), 32-64 cores
— Large memory, cache
— x86 => existing tools work

— TACC plans a large cluster Tesla (2008)

NVIDIA: Fermi (2010) oo

3 billion transistors

250 +

200 4+

150 4

CPU:2008
~45 Gflops

Performance (Gilops)

100 +

50 ¢4+

o T
1998 1999

L FSRI*
Y‘S'TEMS DIVISION]

Application Performance

* NVIDIA GPU: a co-processor to CPU GPU Multi-layer Memory (Tesla)
— Data moved across PCl bus GPU
» Efficient use of memory is critical to | Biock o, of Block (1, 0f

good performance
— 1-2 cycles to access shared memory

— Hundreds of cycles to access global * * *

memory

’

Thread (0,0§ = Thread (1, 0} Thread (0,0f Thread (1, 0}

Shared 16K 16/48K
Cache 16/48K
Global 1-2GB 4-6GB CPU

GPU Programming Approaches

* Language Approach
— CUDA, OpenCL, CUDA Fortran, etc.

— Less portable to different architectures

— Requires that separate versions be maintained
* |n practice this rarely works — too costly, difficult

* Directive-based Approach

— Appear as comments in the source
— IACC$DO VECTOR (1)

— Compilers can analyze and (hopefully) generate efficient
code

* Dependent on maturity

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ M
.
N >
N .
" w4
T

Nonhydrostatic Icosahedral Model

(NIM)

* Team of scientists, parallel programmers and
computer scientists

— Designed for GPU, fast parallel execution

g °Jim Rosinski

»
.
o "
. B
: .
3 -
.
¢ -
N g
‘e ¢
" b
wen

NIM Development Team

°Jin Lee
*A.E. MacDonald
*Jung-Eun (Esther) Kim

*Ka Yee Wong]
eJian-Wen Bao Collaborators/Contributors:
. *YSU: Prof. Songyou Hong, Sueng-On Hwang(KMA)
*Ning Wang _
. *CSU : Prof. David Randall, Todd Jones
eJacques Middlecoeff i ich
Mark Govett PSD : Drs. George Kiladis, Stefan N. Tulich.

*Purdue U: Prof. Wen-Yih Sun
*GFDL: Dr. S.-J. Lin

*°Tom Henderson

ESRL finite-volume Icos- models (FIM/NIM)

ESMF |
v

v

v

* FIM (flow-following finite-
volume Icosahedral model): A
hydrostatic model for NCEP
global model ensemble.

A hydrostatic model consists of 2-D
finite-volume SWM coupled with
hybrid o-08 vertical solver.

 Produce accurate medium-range
weather forecasts with scores
comparable to GFS.

 Development began in ~2000

NIM (Nonhydrostatic Icosahedral
model): A multi-scale global
model for weather and intra-
seasonal climate predictions.

Extension of 2-D finite-volume integration
into 3-D integration on control volume
defined on the height coordinate.

Use the latest GPU technology to speed
up high-resolution model calculations

Targeting 2KM global scale
Development began in ~2005

ow AT e,
54,
5 v
. .
.)
. "
. ¥
.
¢
.
.

CLOEAL SYSTEYS BIISIEN

Novel features of FIM/NIM

® Finite-volume Integrations on Local Coordinate
® Efficient Indirect Addressing Scheme on Irregular Grid
®* Adopted by MPAS icos model at NCAR
® FIM: Hybrid 0-0 Coordinate w/ GFS Physics
® Conservative and Monotonic Adams-Bashforth 3'-order FCT Scheme
* Grid Optimization for Efficiency and Accuracy
® Novel Features of NIM
® Three dimensional finite-volume integration
e Runge-Kutta (RK) — 4th solver for vertically propagating acoustic waves

® Conservative and positive definite transport scheme

NOAA Earth System Research Laboratory -
Boulder, Colorado

§ 29 e,
s va,
5 .

. +
K N
" .
H '
¥ M

.
* ¢
s -
o /
. "
"en

NIM Code Design

iform, hexagonal-based, icosahedral grid

— Un

Imension

* 1 horizontal d

irect addressing scheme permits

ind

* Novel
concise, e

icient code

— Separated coarse and fine grain

fion

1Zd

parallel

* CPU controls high level flow

{7
m-

— Distributed memory parallelism (MPI)

Cogadts
LA
s&ﬁi&?&:
80500805007
280e0000,t¢
0es8005%00 5%

{]

— Initialization, message passing, |/0

* GPU executes dynamics routines

— Data is resident in GPU memory

— Data is passed to CPU only for I/O and inter GPU

(%)
c
®)
B =]
T
2
c
>
&
&
)
O

[ESRI

GLOBAINSY.STEMSIDIVISION]

NIM/FIM Indirect Addressing
(MacDonald, Middlecoff)

B Single horizontal index

Store number of sides (5 or 6) in
“nprox” array

B nprox(34)=6
Store neighbor indices in “prox”
array

B prox(1,34) =515

m prox(2,19)=3
>1% performance impact

B Indirect reference is not the
innermost dimension

Very compact code

Simple Loop With Indirect Addressing

 Compute sum of all horizontal neighbors

— nip = number of columns

— nvl = number of vertical levels

xnsum = 0.0

do ipn=1,nip !
do isn=1,nprox(ipn) !

ipp = prox(isn,ipn) !

Horizontal loop
Loop over edges (sides, 5 or 6)

Index of neighbor across side “isn

do k=1,nvl ! Vertical loop
xnsum(k,ipn) = xnsum(k,ipn) + x(k,ipp)
enddo
enddo

~ enddo

¥ .
. +
o)
. .
x "
3 .
. >~
N .
. ot
.en

F2C-ACC GPU Compiler

* Developed to speed parallelization of NIM
— Commercial compilers were not available in 2008

* Translates Fortran to C or CUDA
— Many (but not all) language features supported
— Generates readable, debuggable code with original comments retained

* Ten directives for code parallelization, eg.

— IACCSREGION | Define GPU regions
— IACCSDO I Identify loop level parallelism
— IACCSDATA | Move data between CPU and GPU

— JACCSINSERT, ACCSREMOVE | Hand insertions / deletions where
translation is not available

* Continues to be developed
- Until commercial compilers are better

5 v

. .
)
. .
. ¥
3 b

. >~

o /’
. o
“en

CLOEAL SYSTEYS BIISIEN

Directive-Based Fortran GPU

Compilers and Portability

OpenACC directives adopted by vendors

— PGI: Accel
— F2C-ACC: OpenSource

— CAPS: HMPP
— Cray: OpenMP

GPU Compilers

Fortran

CAPS

|

OpenACC

NVIDIA

Fortran GPU Compiler Results (2011)

Using NIM G5 - 10242 horizontal points, 96 vertical levels
Fermi GPU vs. Intel Westmere CPU Socket

NIM CPU 1- CPU6- F2C-ACC HMPP PGI GPU F2C-ACC
routine core Time core Time GPU Time GPU Time Time Speedup vs.
(sec) (sec) (sec) (sec) (sec) 6-core CPU

Total 8654 2068 449 - -- 4.6
vdmints 4559 1062 196 192 197 5.4
vdminty 2119 446 91 101 88 4.9
flux 964 175 26 24 26 6.7

vdn 131 86 18 17 18 4.8
diag 389 74 42 33 -- 1.8
force 80 33 14 11 13 4.7

B Used PAPI performance counters on CPU (GPTL)
B Estimated ~29% of peak (11.2 GFLOPS) on CPU

Parallelization Factors for NIM

* Code design a dominant factor in performance

— Weather and climate codes typically have a high memory
access to compute ratio

 Memory accesses limit performance

— Data alignment led to a 10x improvement

* Data dependencies guide
parallelization

— Dynamics are in the horizontal ipn

* a[vert, horiz] blocking >

— Physics are in the vertical column
* a[horiz, vert] NIM: a (k, ipn)

_— Transpose needed to optimize memory

w accesses j

>

Sugpean1>

WRF Physics

* Legacy code

— Community Model used worldwide for more than a decade

— WRF-ARW, WRF-NMM, WRF-RR, WRF-CHEM, HWRF
e Traditional cartesian grid

— 3D arrays (horizontal, vertical, horizontal) ==> array3D(i,k,j)
* Designed for CPU architectures

— Primary calculations on 2D arrays (i,k)

— Improves cache utilitzation

* Limited ability to change the code WRF a (i, k, 3)

* A challenge for GPU parallelization i
— Dependencies in vertical
— GPU: threading in horizontal dimensions : . >
J | blocking
Further challenge for NIM
w Only 1 horizontal dimension NIM: a (ipn, k)

Application Requirements
NIM + WRF Physics

* Chunking

— Assigning threads and blocks to the same dimension

blockl1 block 2 block 3 block 4

* Approach has been successful
— ~2-3x performance improvement anticipated

— No changes to WRF code base
e Supported in F2C-ACC

... — Working with vendors to provide this

« %
B)
. .
. "
s N
3 -
t .
. £

N
O o
Tioaen #1 4

Application Requirements
weather and climate codes

* Promotion of variables
— Needed for correctness & performance

— Added dimension needed to store block or thread
parallel calculations

e 2D array + + +> 3D array

 Demotion of variables
— 1D arrays - - -> GPU register variables
— 2D arrays - - -> shared memory arrays
~ —Results in huge performance increases

5 v

. .
.)
. .
: ¥
% .
.

. >~

N .
. e
“en

Future Work

* NIM continues to be developed
— physics integration
— Agua-planet simulations
— Testing with real data this summer

e Committed to a single source
— Performance portable between CPU, GPU, serial, parallel
 NVIDIA, Intel MIC, AMD

— We anticipate some challenges for legacy codes
* FIM, WRF, HYCOM
* Unclear performance of Intel MIC, tools

ow AT e,
- s
5 v
. .
.)
. .
: ¥
¥ M
.
. >~
o .
. e
“en

Conclusion

e F2C-ACC has proven useful
— For NIM parallelization
— To evaluate commercial compilers
* Good interactions with vendors on improvements
* NIM GPU performance results encouraging

— 5x faster than Intel-Westmere (socket-to-socket)
— Plan to run NIM on Intel MICin 2012

* Challenges Remain

— Codes take too long to port to GPUs
* MIC may be better, but price / performance unclear

— Performance portability a concern
— Standards for GPU directives

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ M
.
N >
N .
" w4
T

Final Thoughts

* Unclear how well industry will support us
— Climate & weather only a small piece of their business

* Do we need to develop our own tools?
— Preserve & adapt our models
— Enhance code portability
— Improve performance optimizations

— Architecture specific changes
* Array re-declarations
* Loop re-ordering
* Loop unrolling
* Promotion & demotion of variables
* Use of special memories, vector instructions

.. These are all possible with existing compiler technology

-)
. .
x "
¥ .
.
4 'l-
O .
. w4
e

